Mathematical Logic and Linguistics

Glyn Morrill \& Oriol Valentín

Department of Computer Science
Universitat Politècnica de Catalunya
morrill@cs.upc.edu \& oriol.valentin@gmail.com

BGSMath Course

Autumn 2015

Cut elimination or Cut admissibility

- Consider the Cut rule:

$$
\frac{\Gamma \Rightarrow A \quad \Delta(A) \Rightarrow B}{\Delta(\Gamma) \Rightarrow B}
$$

- We want to provide an algorithm that given a proof \mathcal{D}, we transform it into a new one \mathfrak{D}^{*} such that it is Cut-free, i.e. all the Cut rule instances have been "removed".
- This algorithm should preserve the derivational semantics of \mathcal{D}, i.e..

$$
[[\mathcal{D}]]=\left[\left[\mathcal{D}^{*}\right]\right]
$$

Cut elimination or Cut admissibility

Cut elimination or Cut admissibility

- Define the length $|A|$ of a formula A as the number of connectives it contains.
- Define the length $|\Delta|$ of a configuration Δ as the sum of the lengths of its formula-occurrences.
- Given an instance of the Cut rule, we define its Cut complexity as:

$$
\left\lvert\, \frac{\Delta \Rightarrow A \quad \Gamma(A) \Rightarrow B}{\Delta(\Gamma) \Rightarrow B}\right. \text { Cut }|\triangleq| \Delta|+|\Gamma|+|A|+|B|
$$

Strategy of the proof

Strategy of the proof

- Suppose we have a proof \mathcal{D} whose last rule is Cut, but its premises do not use the Cut rule, i.e. they are Cut-free:

$$
\mathcal{D}=\frac{\frac{\vdots \mathcal{D}_{1}}{\Delta \Rightarrow A} \quad \frac{\vdots \mathcal{D}_{2}}{\Gamma(A) \Rightarrow B}}{\Delta(\Gamma) \Rightarrow B} C u t
$$

We want to transform \mathcal{D} into a new proof with strictly decreased Cut-complexities, or a new proof which is already Cut-free.

Reduction steps

Reduction steps

As previously mentioned, assume we have a proof with only one Cut and whose last rule is this Cut. We have the following reductions:

- The so-called principal cases.
- The so-called permutation conversions.

Principal cases

Principal cases

$$
\begin{gathered}
\frac{\Gamma, A \Rightarrow B}{\Gamma \Rightarrow B / A} / R \quad \frac{\Theta \Rightarrow A \quad \Delta(B) \Rightarrow C}{\Delta(B / A, \Theta) \Rightarrow C} / L \\
\Delta(\Gamma, \Theta) \Rightarrow C \\
\frac{\Gamma, A t_{1}}{} \frac{\Gamma(\Gamma, A \quad \Delta(B) \Rightarrow C}{\Delta(\Gamma, A) \Rightarrow C} C u t_{3} \\
\Delta(\Gamma, \Theta C
\end{gathered}
$$

- Observe that we have a new proof with exactly two Cuts, but whose Cut complexities are strictly smaller. For:

$$
\begin{aligned}
\mid \text { Cut }_{2} \mid & =|\Delta()|+|\Gamma|+|\Theta|+|A|+|C| \\
& <|\Delta()|+|\Gamma|+|\Theta|+|C|+|A|+|B|+1 \\
& =|\Delta()|+|\Gamma|+|\Theta|+|C|+|B / A| \\
& =\mid \text { Cut }_{1} \mid
\end{aligned}
$$

Principal cases continued

Principal cases continued

Similarly we have:

$$
\mid \text { Cut }_{3}|<| \text { Cut }_{1} \mid
$$

There are two other principal cases:

- \ case (Exercise).
- - case.

Principal cases continued

Principal cases continued

Product - case:

$$
\begin{gathered}
\frac{\Delta \Rightarrow A \quad \Gamma \Rightarrow B}{\frac{\Delta, \Gamma \Rightarrow A \bullet B}{} \cdot L \quad \frac{\Theta(A, B) \Rightarrow C}{\Theta(A \bullet B) \Rightarrow C} \bullet R} \text { Cut } t_{1} \\
\frac{\Gamma \Rightarrow, \Gamma) \Rightarrow C}{\sim} \quad \frac{\Delta \Rightarrow A \quad \Theta(A, B) \Rightarrow C}{\Theta(\Delta, B) \Rightarrow C} C u t_{2} \\
\Theta(\Delta, \Gamma) \Rightarrow C
\end{gathered}
$$

Since $|A, B|<|A \bullet B|$, therefore:

$$
\mid \text { Cut }_{2}\left|<\left|C u t_{1}\right|\right.
$$

Principal cases continued

Principal cases continued

Case involving the continuous unit:

$$
\begin{gathered}
\frac{\overline{\Lambda \Rightarrow I} I R \quad}{} \quad \frac{\Delta(\Lambda) \Rightarrow A}{\Delta(I) \Rightarrow A} I L \\
\Delta(\Lambda) \Rightarrow A \\
\\
\leadsto \\
\Delta(\Lambda) \Rightarrow A
\end{gathered}
$$

Permutation conversions

Permutation conversions

$$
\begin{aligned}
& \frac{\Delta \Rightarrow A \quad \frac{\Theta \Rightarrow B \quad \Gamma(C ; A) \Rightarrow D}{\Gamma(C / B, \Theta ; A) \Rightarrow D} / L}{\Gamma(C / B, \Theta ; \Delta) \Rightarrow D} C u t_{1} \\
& \Delta \Rightarrow A \quad \Gamma(C ; D) \Rightarrow D \\
& \Theta \Rightarrow B \quad \Gamma(C ; \Delta) \Rightarrow D \\
& \Gamma(C / B, \Theta ; \Delta) \Rightarrow D
\end{aligned}
$$

Observe that

$$
\begin{aligned}
\mid \text { Cut }_{2} \mid & =|\Gamma|+|\Delta|+|C|+|D| \\
& <|\Gamma|+|\Delta|+|C|+|B|+1+|D| \text {, since }|C / B|=|C|+|B|+1 \\
& =\mid \text { Cut }_{1} \mid
\end{aligned}
$$

Other cases are similar, and are left as exercises.

Identity case

Identity case

$$
\begin{aligned}
& \frac{\overline{A A P A}^{\text {Id }}}{} \quad \Delta(A) \Rightarrow B \\
& \Delta(A) \Rightarrow B \\
& \leadsto \\
& \overline{\Delta(A) \Rightarrow A}
\end{aligned}
$$

The proof of Cut elimination or Cut admissibility

- The number of Cuts in a L-proof is finite.
- Apply iteratively the previous reductions to top-most Cuts.
- Each iteration properly reduces the Cut complexity.
- Cut complexity cannot be negative.
- Therefore we are done.

Applications of Cut admissibility

Applications of Cut admissibility

We have only to consider Cut-free proofs. Let us see some of its nice corollaries:

- The subformula property.
- In a Cut-free proof, since the length of the premises are strictly smaller than the lengths of their premises, it turns out that the proof-search space is finite.
- Therefore, proof-derivability in \mathbf{L} is decidable.
- The so-called finite reading property holds.

