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Algebraic interpretation for DA



Algebraic interpretation for DA

\4

Displacement algebras (DAs) versus standard DAs (SDA).

v

Phase semantics for DA: soundness and completeness.

v

Powerset DAs over SDAs: soundness and completeness for the
so-called implicative fragment.

v

Extending phase semantics to the other connectives of DL.



DAs vs SDAs

General DAs have the following axiomatisation:

Continuous associativity
x+(y+2)~(x+y)+z
Discontinuous associativity

XXj (Y X 2) % (XX ¥) Xjj-1 Z
(XXjy)X;Z= X Xj (Y Xj_jp1 2)Fi<j<1+5(y) -1

Mixed permutation

(XX y) X 2~ (X Xj_5(y) +1 2) ><,»y_if.j>.i+s(y) -1
(X% 2) Xjy = (XX ¥) Xj15(y)-1 Zij<i

Mixed associativity

(X+y)Xjz=(x%xjy)+zif1<i<s(x)
(X +y)Xjz=x+ (¥ Xj_g(x) 2) If x + 1 <P < 8(X) +5(y)

Continuous unit and discontinuous unit

O+x=x~x+0and1xqyx~x=xx;1

Figure: Equational theory for DA



SDAs

D is model-theoretically motivated, and the key to its conception is the
class of standard displacement algebras. Some definitions are
needed. Let M = (M, +, 0, 1) be a free monoid where 1 is a
distinguished element of the set of generators X of M. We call such
an algebra a separated monoid. Given an element a € M, we can
associate to it a number, called its sort as follows:

s(1) = 1
(1) s(a) = OifaeXanda=#1
s(wy +wz) = s(wy)+ s(wz)
This induction is well-defined, for M is free, and 1 is a (distinguished)

generator. The sort function s(-) in a separated monoid simply counts
the number of separators an element contains.



SDAs (Continued)

Definition
(Sort Domains)
Where M = (M, +,0, 1) is a separated monoid, the sort domains M;

of sort i are defined as follows:

M = {aeM:s(a)=i},i=0

It is readily seen that for every i,j > 0, Min M; = Q iff i # j.



SDAs (Continued)

Definition

(Standard Displacement Algebra)

The standard displacement algebra (or standard DA) defined by a
separated monoid (M, +,0, 1) is the w-sorted algebra with the
w-sorted signature Xp = (+, {Xi}i»0,0, 1}) with sort functionality
((I/] — i +j)i,j201 (’/j — +j -1 )i>0,j20r 0/ 1 ):

({Mi}iz0, +, {Xi}i0,0, 1)

where:
| operation [ is such that
+: M x M; > M as in the separated monoid

Xk (s, 1) is the result of replacing the k-th separator

Xt MMy = Mot || sy ¢




Phase semantics for DA

Consider DA augmented with the (T;); such that S(T;) = i:

TiR
(2) A=T; l

Rule (2) has the side-condition requiring that A is any configuration of
sort i.




Phase semantics for DA

Definition
A displacement phase space P = (A, Facts) is a structure such that:

1. Ais a DA.

2. Facts = (Facts;); C sb(A) is a set of subsets such that
Facts; N Facts; = 0 iff i # j, and:

a) Forevery F € Facts;, F C A;.

b) Facts is closed by intersections of arbitrary families of
same-sort subsets.

c) A; € Facts;.

d) For all F € Facts;, and for all x € A;:

x\ F (S Facts,-_,-
F /X [S Facts,-_,-
FTkx € Factsi_j4
xlxF € Facts;_j1

Facts is also called (an w-sorted) closure system. When F € Facts
we say that F is a fact or a closed subset.



Where F, G denote subsets of A of sort i, we define the closure
operator:

(8) cl(G) = N{FeFacts;: GCF)

cl(-) is well-defined for in definition (3) it is required that A; € Facts;.



It is readily seen that:
» cl(F) is the least closed set such that F € cI(F).
> cl(-) is extensive, i.e.: G C cl(G).
» cl(-) is monotone, i.e.: if Gy € Gy then cl(Gy) C cl(G).

» cl(-) is idempotent, i.e.: c(G) = cl(G).



Some notation

We sometimes notate G instead of ¢/(G), for a give same-sort subset
G of A. We define the following operators:

>

>

>

FoG2{f+g:feFandgce G}
FoiG2{fx;g:fe Fandge G}
foG £ {f}oG and Fog = Fo{g}
foiG = {f}o;G and Fo;g = Fo;{g}
G//F£lh:¥feF,h+fe@)
GMiF2th:¥feF,hx;feG)
G//f=aG//{f)

G17:if = GTTilf}



Recovering a closure system from a closure operator

Given cl(-) we put:
(4) GeFacts iff cl(G)=G

The indexed subuniverses A; C A;, whence A; € Facts;. Closure by
arbitrary intersections of families of same-sort closed subsets holds

for:
(M Fi € Fi where F; € Facts i.e.,F; = cl(F;),and i e |

cl(N; Fi) <€ N Fibut N, Fi € cl(N; Fi) whence:
(N, Fi € Facts

In order to recover 2.d) we need additional properties (see later).



Properties on cl(-)

v

FoG C Hiff F C H//G iff G C F\\H.
Fo;G C Hiff F C HI1,G iff G C FL{;H.

By construction, c/(F) is the least closed subset such that
F c cl(F). Hence:

If A C Fandcl(F)= F then cl(A) C cl(F).

v

v

v



More properties on cl(-)

» If A is closed, then:

A//F,F\\A,ATT;F, and F||;A are closed.
Proof: ATT;F = N,er ATTiX, whence AT1;F is closed. O
Similar for the other implicative operations.

> cl(F)ocl(G) C cl(FoG). Similarly, cl(F)o;cl(G) C cl(Fo;G)(x).

» Hence, cl(cl(F)ocl(G)) € cl(FoG), and
cl(cl(F)oicl(G)) C cl(Fo;G)



More properties on cl(-) (continued)

> Proof of (x): cl(F)oicl(G) C cl(FoG).

Proof.
Fo;G C cl(Fo;G). By residuation, F C cl(Fo;G)T1;G. cl(Fo;G)11;G is
a closed subset (see previous proof). Hence, cl(F) C cl(Fo;G)11:G.
Applying again residuation, we have cl(F)o;G C cl(FoG). We repeat
the process with G, obtaining cl(G) C cl(F)ll;cl(Fo;G). It follows
that:

cl(F)oicl(G) C cl(Fo;G)

i

» It follows that: cl(cl(F)e;cl(G)) C cl(Fo;G). The inclusion trivially
holds, whence we have equality:

cl(cl(F)oicl(G)) = cl(Fo;iG)



Closed operations between closed subsets

Given F, G closed sets:
» FoG=cl(FoQ).
> Fo;G=cl(Fo;G).
» T,2A, where A; are the same-sort subuniverses.
» F&G=F N G. In general we write F N G.
» FUGZCI(F U G).

> Gﬁ,FéGTT,F. In general we write 17;Similar for the other
implications.

» T2cl({0}).

J=cl(iJ)).

v



Closed operations between closed subsets and
algebraic interpretations

Let A, B be arbitrary types. Given a valuation v : Pr — F:

> v(p) is closed subset of A; where p is primitive of sort i.
We extend recursively (we drop the notation ¥) v:

» v(BT;A)=v(B)11T;v(A). Similar for the other implications.

> v(A eB)2v(A)ov(B).

> v(A ©; B)=v(A)ov(B).
> v(AEBB) v(A)Uv(B).
> v(N=I

> v(J)H]

> v(T))=A;.

It follows that for any type A, v(A) is a closed subset.



Soundness of DA
Let us recall the categorical calculus. We have the faithful translation
(-)¥ : ¢D = hD, such that For any A and A, we have:

cD+ (A)>AffhDFA = A

From the above translation we get (almost) for free soundness of DA
w.r.t. phase semantics. Residuation is obvious. Only postulates are to
be checked whether they hold of a phase displacement model. Some
postulates:

» Continuous associativity
Ae(BeC)—>(AeB)eCand(AeB)eC—Ae(Be()
> Mixed associativity If we have that B (4 C:
A@,’(B@jC) = (AO,'B)O,‘H_1 C and (A@jB)®j+/‘_1 C)—>A®,‘(B®,‘C)
» Mixed permutation If we have that B <4 C:

(A0iB)o;C—(AQj—p4+1C)0;iB and (AQj_p+1C)0;B—(AG;B)o;C)



Soundness of DA (Continued)

Let us check mixed permutation, in the case B (a4 C. Remaining
postulates are proved to hold similarly. Let v be a valuation in a
phase displacement space:
v((A©iB)o;C) (v(A)oiv(B))ojv(C)
(cl(v(A)oiv(B))ojv(C))
cl(cl(v(A)oiv(B))ojcl(v(C))) since cl(v(C)) = v(C)
cl((v(A)oiv(B))o;v(C))
cl((v(A) Oj-b+1 v(C)) ©; v(B))
(v(A)ojp11v(C))oiv(C
V(AQjp+1 C)©iB) O



Strong completeness in the sense of Okada

The notation [A] for a given type A, corresponds to:
[A] = {I:T = A without the Cut rule}

We write T = A to indicate provability without Cut, or simply ' = A
when it is from the context that we are considering Cut-free
provability.



Strong completeness in the sense of Okada
(Continued)

» Let us define the syntactic displacement phase space
P = (M, Facts) as follows:

- M = (O, conc, (interci)iso, \, 1) where O is the set of
configurations and conc and (interc;);-o are respectively the
concatenation and intercalation functions of configurations. In
general, if A and I are configurations, we write A, I and A|;l"
instead of conc(A, ') and interci(A,T).

- M is the free DA over the set of types 7. Facts is defined as
the least set closed by arbitrary intersections containing O;, and
[A] for every type A. In practice, by construction, for every fact
F, there exists a collection G of types such that F = (pg[D]. If
F = 0;, then G = {T;}. 2.d) from the definition of phase
displacement spaces holds.



Strong completeness in the sense of Okada
(Continued)

We define the canonical valuation v:
(6) vip) = I[p]

Theorem (Truth lemma)

For any type A:
v(A) = [A]



Strong completeness in the sense of Okada
(Continued)

Proof.
By induction on the structure of type A:

-If A =pwherep is_:;1 primitive type, we have by definition
v(A) = [A]. Hence, A e v(A) C [A].

- Suppose A = B©o; C.

v(B)oiv(C) ={IgliFc : Tg € v(B), and I'¢ € v(C)}. By i.h. v(B) C [B]
and v(C) ¢ [C]. Hence, by application of ®;,L v(B)o;jv(C) C [B ©; C].
Hence, cl(v(B)o;v(C)) € [B ©; C]. This proves v(B ©; C) ¢ [B©; C].

On the other hand, v(B)o;v(C) = (Npeg([D] for a certain G. For every
D € G, by i.h. BI;C € [D]. By application of o,L, B®; G € [D]. Hence,
_—

Bo: C e v(Bo; C).



Strong completeness in the sense of Okada (proof of
truth lemma continued)

- Suppose A = C1yB. Let T € v(C)Mv(B). By i, B e v(B). We
é

have ;B = v(C) and v(C) ¢ [C] by i.h. Hence, I'|;B = ~C, and by

application of T;R, I = C1;B, i.e., T € [CT;B].

By i.h., Ce v(C). v(C) = NpeglD] for some G. Applying T,L, we get

—_— —_—

C1;B|il'g € [D] for all Tg € [B]. Hence, C1;Bo[B] € [D] for all D € G.
-_— _— _—

Therefore, C1;Bo;[B] € v(C). We have that C1;Bo;v(B) € C1;Bo;[B],

since by i.h., v(B) ¢ [B]. By applying residuation,

—_—

C1iB € v(C)11iv(B).



Strong completeness in the sense of Okada (proof of
truth lemma continued)

-A=B&C. LetT e v(B)nv(C). In particular I e v(B) and I € v(C).
Byi.h.T e [B] and I € [C]. By application of &R we get I € [B&C].
This proves v(B&C) c [B&C].

—_
- V(C) = NpeglD] for a certain G. Forevery D € G, C € [D]. By
—_— —_—
applying &2L we get C&B < [D]. Hence, C&B € v(C). By a similar
—_— _—
reasoning, we have C&B € v(B). It follows that C&B < v(C&B).



Strong completeness in the sense of Okada (proof of
truth lemma continued)

-Case A=B@&C.Byih.v(B)c[B]and v(C) c [C]. Hence,
v(B)uv(C) ccl([BJU[C]) € [B® C]. The first inclusion is due to the
monotony property and properties of cl. In fact, we have
[BJu[Clc[Be@C]. For,[B]c [Be@ C]and [C] C [B& C] by ®iR
(i=1,2). It follows that cl(v(B) U v(C)) c [B& C].

- On the other hand, v(B & C) = (pcg[D] for a certain G. By i.h

Be v(B). Hence, B c cl(v(B)u v(C)). S|m|larly,

%

C ccl(v(B) U v(C)). Therefore, forany D € G, Be [D] and C € [D].
— —

By ®L we get B@ C € [D]. It follows that Be C € v(B & C). o



Strong completeness in the sense of Okada

Theorem

(Strong Completeness a la Okada) Let A = A be such that for every
(P,v), (P,v) E A = B. It follows that A = ~B.

Corollary (Cut admissibility)
The Cut rule is admissible.



Strong completeness in the sense of Okada (proof of
the theorem)

Proof.
In particular, this sequent holds in the syntigztic phase displacement

model. By the previous lemma, for any A, A € v(A). Hence
A e v(A). Since (P,v) = A € v(B), we have that A € v(B). Again, by
the previous lemma A € [B]. It follows that A = ~B. ]



