
Mathematical Logic and Linguistics
Slides 12

Glyn Morrill & Oriol Valentı́n

Department of Computer Science
Universitat Politècnica de Catalunya
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Algebraic interpretation for DA

I Displacement algebras (DAs) versus standard DAs (SDA).

I Phase semantics for DA: soundness and completeness.

I Powerset DAs over SDAs: soundness and completeness for the
so-called implicative fragment.

I Extending phase semantics to the other connectives of DL.
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DAs vs SDAs
General DAs have the following axiomatisation:

Continuous associativity

x + (y + z) ≈ (x + y) + z

Discontinuous associativity

x ×i (y ×j z) ≈ (x ×i y) ×i+j−1 z
(x ×i y) ×j z ≈ x ×i (y ×j−i+1 z) if i ≤ j ≤ 1 + s(y) − 1

Mixed permutation

(x ×i y) ×j z ≈ (x ×j−S(y)+1 z) ×i y if j > i + s(y) − 1
(x ×i z) ×j y ≈ (x ×j y) ×i+S(y)−1 z if j < i

Mixed associativity

(x + y) ×i z ≈ (x ×i y) + z if 1 ≤ i ≤ s(x)
(x + y) ×i z ≈ x + (y ×i−s(x) z) if x + 1 ≤ i ≤ s(x) + s(y)

Continuous unit and discontinuous unit

0 + x ≈ x ≈ x + 0 and 1 ×1 x ≈ x ≈ x ×i 1

Figure: Equational theory for DA



SDAs

D is model-theoretically motivated, and the key to its conception is the
class of standard displacement algebras. Some definitions are
needed. Let M = (M,+, 0,1) be a free monoid where 1 is a
distinguished element of the set of generators X of M. We call such
an algebra a separated monoid. Given an element a ∈ M, we can
associate to it a number, called its sort as follows:

(1)
s(1) = 1
s(a) = 0 if a ∈ X and a , 1
s(w1 + w2) = s(w1) + s(w2)

This induction is well-defined, for M is free, and 1 is a (distinguished)
generator. The sort function s(·) in a separated monoid simply counts
the number of separators an element contains.



SDAs (Continued)

Definition
(Sort Domains)
Where M = (M,+,0,1) is a separated monoid, the sort domains M i
of sort i are defined as follows:

M i = {a ∈ M : s(a) = i}, i ≥ 0

It is readily seen that for every i, j ≥ 0, M i ∩M j = ∅ iff i , j.



SDAs (Continued)

Definition
(Standard Displacement Algebra)
The standard displacement algebra (or standard DA) defined by a
separated monoid (M,+,0,1) is the ω-sorted algebra with the
ω-sorted signature ΣD = (+, {×i}i>0,0,1}) with sort functionality
((i, j → i + j)i,j≥0, (i, j → i + j − 1)i>0,j≥0,0,1):

({M i}i≥0,+, {×i}i>0,0,1)

where:

operation is such that
+ : M i ×M j → M i+j as in the separated monoid

×k : M i ×M j → M i+j−1
×k (s, t) is the result of replacing the k -th separator
in s by t



Phase semantics for DA

Consider DA augmented with the (>i)i such that S(>i) = i:

(2) >iR
∆⇒ >i

Rule (2) has the side-condition requiring that ∆ is any configuration of
sort i.



Phase semantics for DA
Definition
A displacement phase space P = (A,Facts) is a structure such that:

1. A is a DA.

2. Facts = (Factsi)i ⊆ sb(A) is a set of subsets such that
Factsi ∩ Factsj = ∅ iff i , j, and:

a) For every F ∈ Factsi , F ⊆ Ai .
b) Facts is closed by intersections of arbitrary families of

same-sort subsets.
c) Ai ∈ Factsi .
d) For all F ∈ Factsi , and for all x ∈ Aj :

x\F ∈ Factsi−j
F/x ∈ Factsi−j
F↑k x ∈ Factsi−j+1
x↓k F ∈ Factsi−j+1

Facts is also called (an ω-sorted) closure system. When F ∈ Facts
we say that F is a fact or a closed subset.



Where F, G denote subsets of A of sort i, we define the closure
operator:

(3) cl(G) ,
⋂
{F ∈ Factsi : G ⊆ F}

cl(·) is well-defined for in definition (3) it is required that A i ∈ Factsi .



It is readily seen that:

I cl(F) is the least closed set such that F ⊆ cl(F).

I cl(·) is extensive, i.e.: G ⊆ cl(G).

I cl(·) is monotone, i.e.: if G1 ⊆ G2 then cl(G1) ⊆ cl(G2).

I cl(·) is idempotent, i.e.: cl2(G) = cl(G).



Some notation

We sometimes notate G instead of cl(G), for a give same-sort subset
G of A . We define the following operators:

I F◦G , {f + g : f ∈ F and g ∈ G}

I F◦iG , {f ×i g : f ∈ F and g ∈ G}

I f◦G , {f }◦G and F◦g , F◦{g}

I f◦iG , {f }◦iG and F◦ig , F◦i{g}

I G//F , {h : ∀f ∈ F ,h + f ∈ G}

I G↑↑iF , {h : ∀f ∈ F ,h ×i f ∈ G}

I G//f ,G//{f }

I G↑↑i f ,G↑↑i{f }



Recovering a closure system from a closure operator

Given cl(·) we put:

(4) G ∈ Facts iff cl(G) = G

The indexed subuniverses Ai ⊆ Ai , whence Ai ∈ Factsi . Closure by
arbitrary intersections of families of same-sort closed subsets holds
for: ⋂

i Fi ⊆ Fi where Fi ∈ Facts i.e.,Fi = cl(Fi), and i ∈ I
cl(
⋂

i Fi) ⊆
⋂

i Fi but
⋂

i Fi ⊆ cl(
⋂

i Fi) whence:⋂
i Fi ∈ Facts

In order to recover 2.d) we need additional properties (see later).



Properties on cl(·)

I F◦G ⊆ H iff F ⊆ H//G iff G ⊆ F\\H.

I F◦iG ⊆ H iff F ⊆ H↑↑iG iff G ⊆ F↓↓iH.

I By construction, cl(F) is the least closed subset such that
F ⊆ cl(F). Hence:

I If A ⊆ F and cl(F) = F then cl(A) ⊆ cl(F).



More properties on cl(·)

I If A is closed, then:

A//F ,F\\A ,A↑↑iF , and F↓↓iA are closed.

Proof: A↑↑iF =
⋂

x∈F A↑↑ix , whence A↑↑iF is closed. �

Similar for the other implicative operations.

I cl(F)◦cl(G) ⊆ cl(F◦G). Similarly, cl(F)◦icl(G) ⊆ cl(F◦iG)(?).

I Hence, cl(cl(F)◦cl(G)) ⊆ cl(F◦G), and
cl(cl(F)◦icl(G)) ⊆ cl(F◦iG)



More properties on cl(·) (continued)

I Proof of (?): cl(F)◦icl(G) ⊆ cl(F◦G).

Proof.
F◦iG ⊆ cl(F◦iG). By residuation, F ⊆ cl(F◦iG)↑↑iG. cl(F◦iG)↑↑iG is
a closed subset (see previous proof). Hence, cl(F) ⊆ cl(F◦iG)↑↑iG.
Applying again residuation, we have cl(F)◦iG ⊆ cl(F◦G). We repeat
the process with G, obtaining cl(G) ⊆ cl(F)↓↓icl(F◦iG). It follows
that:

cl(F)◦icl(G) ⊆ cl(F◦iG)

�

I It follows that: cl(cl(F)◦icl(G)) ⊆ cl(F◦iG). The inclusion trivially
holds, whence we have equality:

cl(cl(F)◦icl(G)) = cl(F◦iG)



Closed operations between closed subsets

Given F ,G closed sets:

I F◦G,cl(F◦G).

I F◦iG,cl(F◦iG).

I Ti,Ai , where Ai are the same-sort subuniverses.

I F&G,F ∩G. In general we write F ∩G.

I F∪G,cl(F ∪G).

I G↑↑iF,G↑↑iF . In general we write ↑↑iSimilar for the other
implications.

I I,cl({0}).

I J,cl({J}).



Closed operations between closed subsets and
algebraic interpretations

Let A ,B be arbitrary types. Given a valuation v : Pr→ F :

I v(p) is closed subset of Ai where p is primitive of sort i.
We extend recursively (we drop the notation v̂) v:

I v(B↑iA),v(B)↑↑iv(A). Similar for the other implications.

I v(A • B),v(A)◦v(B).

I v(A �i B),v(A)◦iv(B).

I v(A ⊕ B),v(A)∪v(B).

I v(I),I.

I v(J),J.

I v(>i),Ai .

It follows that for any type A , v(A) is a closed subset.



Soundness of DA
Let us recall the categorical calculus. We have the faithful translation
(·)] : cD⇒ hD, such that For any ∆ and A , we have:

cD ` (∆)•→A iff hD ` ∆⇒ A

From the above translation we get (almost) for free soundness of DA
w.r.t. phase semantics. Residuation is obvious. Only postulates are to
be checked whether they hold of a phase displacement model. Some
postulates:

I Continuous associativity

A • (B • C)→(A • B) • C and (A • B) • C→A • (B • C)

I Mixed associativity If we have that B GA C:

A�i (B�jC)⇒ (A�iB)�i+j−1C and (A�iB)�i+j−1C)→A�i (B�jC)

I Mixed permutation If we have that B ≺A C:

(A�iB)�jC→(A�j−b+1C)�iB and (A�j−b+1C)�iB→(A�iB)�jC)



Soundness of DA (Continued)

Let us check mixed permutation, in the case B GA C. Remaining
postulates are proved to hold similarly. Let v be a valuation in a
phase displacement space:

v((A �i B) �j C) = (v(A)◦iv(B))◦jv(C)
= cl(cl(v(A)◦iv(B))◦jv(C))
= cl(cl(v(A)◦iv(B))◦jcl(v(C))) since cl(v(C)) = v(C)
= cl((v(A)◦iv(B))◦jv(C))
= cl((v(A) �j−b+1 v(C)) �i v(B))
= (v(A)◦j−b+1v(C))◦iv(C)
= v((A �j−b+1 C) �i B) �



Strong completeness in the sense of Okada

The notation [A ] for a given type A , corresponds to:

[A ] = {Γ : Γ⇒ A without the Cut rule}

We write `−Γ⇒ A to indicate provability without Cut, or simply Γ⇒ A
when it is from the context that we are considering Cut-free
provability.



Strong completeness in the sense of Okada
(Continued)

I Let us define the syntactic displacement phase space
P = (M,Facts) as follows:
- M = (O, conc, (interci)i>0,Λ,1) where O is the set of
configurations and conc and (interci)i>0 are respectively the
concatenation and intercalation functions of configurations. In
general, if ∆ and Γ are configurations, we write ∆, Γ and ∆|iΓ
instead of conc(∆, Γ) and interci(∆, Γ).

- M is the free DA over the set of types F . Facts is defined as
the least set closed by arbitrary intersections containing Oi , and
[A ] for every type A . In practice, by construction, for every fact
F , there exists a collection G of types such that F =

⋂
D∈G[D]. If

F = Oi , then G = {>i}. 2.d) from the definition of phase
displacement spaces holds.



Strong completeness in the sense of Okada
(Continued)

We define the canonical valuation v:

(5) v(p) = [p]

Theorem (Truth lemma)
For any type A:

v(A) = [A ]



Strong completeness in the sense of Okada
(Continued)

Proof.
By induction on the structure of type A :

- If A = p where p is a primitive type, we have by definition
v(A) = [A ]. Hence,

−→
A ∈ v(A) ⊆ [A ].

- Suppose A = B �i C.
v(B)◦iv(C) = {ΓB |iΓC : ΓB ∈ v(B), and ΓC ∈ v(C)}. By i.h. v(B) ⊆ [B]
and v(C) ⊆ [C]. Hence, by application of �iL v(B)◦iv(C) ⊆ [B �i C].
Hence, cl(v(B)◦iv(C)) ⊆ [B �i C]. This proves v(B �i C) ⊆ [B �i C].

On the other hand, v(B)◦iv(C) =
⋂

D∈G[D] for a certain G. For every

D ∈ G, by i.h.
−→
B |i
−→
C ∈ [D]. By application of �iL ,

−−−−−→
B �i C ∈ [D]. Hence,

−−−−−→
B �i C ∈ v(B �i C).

�



Strong completeness in the sense of Okada (proof of
truth lemma continued)

- Suppose A = C↑iB. Let Γ ∈ v(C)↑↑iv(B). By i.h.,
−→
B ∈ v(B). We

have Γ|i
−→
B ⇒ v(C) and v(C) ⊆ [C] by i.h. Hence, Γ|i

−→
B ⇒ −C, and by

application of ↑iR, Γ⇒ C↑iB, i.e., Γ ∈ [C↑iB].

By i.h.,
−→
C ∈ v(C). v(C) =

⋂
D∈G[D] for some G. Applying ↑iL , we get

−−−−→
C↑iB |iΓB ∈ [D] for all ΓB ∈ [B]. Hence,

−−−−→
C↑iB◦i [B] ∈ [D] for all D ∈ G.

Therefore,
−−−−→
C↑iB◦i [B] ⊆ v(C). We have that

−−−−→
C↑iB◦iv(B) ⊆

−−−−→
C↑iB◦i [B],

since by i.h., v(B) ⊆ [B]. By applying residuation,
−−−−→
C↑iB ∈ v(C)↑↑iv(B).



Strong completeness in the sense of Okada (proof of
truth lemma continued)

- A = B&C. Let Γ ∈ v(B) ∩ v(C). In particular Γ ∈ v(B) and Γ ∈ v(C).
By i.h. Γ ∈ [B] and Γ ∈ [C]. By application of &R we get Γ ∈ [B&C].
This proves v(B&C) ⊆ [B&C].

- v(C) =
⋂

D∈G[D] for a certain G. For every D ∈ G,
−→
C ∈ [D]. By

applying &2L we get
−−−−→
C&B ∈ [D]. Hence,

−−−−→
C&B ∈ v(C). By a similar

reasoning, we have
−−−−→
C&B ∈ v(B). It follows that

−−−−→
C&B ∈ v(C&B).



Strong completeness in the sense of Okada (proof of
truth lemma continued)

- Case A = B ⊕ C. By i.h. v(B) ⊆ [B] and v(C) ⊆ [C]. Hence,
v(B) ∪ v(C) ⊆ cl([B] ∪ [C]) ⊆ [B ⊕ C]. The first inclusion is due to the
monotony property and properties of cl. In fact, we have
[B] ∪ [C] ⊆ [B ⊕ C]. For, [B] ⊆ [B ⊕ C] and [C] ⊆ [B ⊕ C] by ⊕iR
(i = 1,2). It follows that cl(v(B) ∪ v(C)) ⊆ [B ⊕ C].

- On the other hand, v(B ⊕ C) =
⋂

D∈G[D] for a certain G. By i.h
−→
B ∈ v(B). Hence,

−→
B ⊆ cl(v(B) ∪ v(C)). Similarly,

−→
C ⊆ cl(v(B) ∪ v(C)). Therefore, for any D ∈ G,

−→
B ∈ [D] and

−→
C ∈ [D].

By ⊕L we get
−−−−→
B ⊕ C ∈ [D]. It follows that

−−−−→
B ⊕ C ⊆ v(B ⊕ C). �



Strong completeness in the sense of Okada

Theorem
(Strong Completeness à la Okada) Let ∆⇒ A be such that for every
(P, v), (P, v) |= ∆⇒ B . It follows that ∆⇒ −B .

Corollary (Cut admissibility)
The Cut rule is admissible.

�



Strong completeness in the sense of Okada (proof of
the theorem)

Proof.
In particular, this sequent holds in the syntactic phase displacement
model. By the previous lemma, for any A ,

−→
A ∈ v(A). Hence

∆ ∈ v(∆). Since (P, v) |= ∆ ∈ v(B), we have that ∆ ∈ v(B). Again, by
the previous lemma ∆ ∈ [B]. It follows that ∆⇒ −B. �


