Mathematical Logic and Linguistics Slides 12

Glyn Morrill & Oriol Valentín

Department of Computer Science Universitat Politècnica de Catalunya morrill@cs.upc.edu & oriol.valentin@gmail.com

> BGSMath Course Autumn 2015

> > ◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Algebraic interpretation for **DA**

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Algebraic interpretation for **DA**

- Displacement algebras (DAs) versus standard DAs (SDA).
- Phase semantics for DA: soundness and completeness.
- Powerset DAs over SDAs: soundness and completeness for the so-called *implicative* fragment.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Extending phase semantics to the other connectives of DL.

DAs vs SDAs

General DAs have the following axiomatisation:

Continuous associativity

 $x + (y + z) \approx (x + y) + z$

Discontinuous associativity

 $\begin{array}{l} x \times_i (y \times_j z) \approx (x \times_i y) \times_{i+j-1} z \\ (x \times_i y) \times_j z \approx x \times_i (y \times_{j-i+1} z) \text{ if } i \leq j \leq 1 + s(y) - 1 \end{array}$

Mixed permutation

$$\begin{array}{l} (x \times_i y) \times_j z \approx (x \times_{j-S(y)+1} z) \times_i y \text{ if } j > i+s(y)-1 \\ (x \times_i z) \times_j y \approx (x \times_j y) \times_{i+S(y)-1} z \text{ if } j < i \end{array}$$

Mixed associativity

 $(x + y) \times_i z \approx (x \times_i y) + z$ if $1 \le i \le s(x)$ $(x + y) \times_i z \approx x + (y \times_{i-s(x)} z)$ if $x + 1 \le i \le s(x) + s(y)$

Continuous unit and discontinuous unit

 $0 + x \approx x \approx x + 0$ and $1 \times_1 x \approx x \approx x \times_i 1$

Figure: Equational theory for DA

▲□▶▲□▶▲□▶▲□▶ □ のQ@

SDAs

D is model-theoretically motivated, and the key to its conception is the class of standard displacement algebras. Some definitions are needed. Let $\mathbf{M} = (M, +, 0, 1)$ be a free monoid where 1 is a distinguished element of the set of generators *X* of **M**. We call such an algebra a *separated monoid*. Given an element $a \in M$, we can associate to it a number, called its *sort* as follows:

$$\begin{array}{rcl} s(1) & = & 1 \\ (1) & s(a) & = & 0 \text{ if } a \in X \text{ and } a \neq 1 \\ & s(w_1 + w_2) & = & s(w_1) + s(w_2) \end{array}$$

This induction is well-defined, for **M** is free, and 1 is a (distinguished) generator. The sort function $s(\cdot)$ in a separated monoid simply counts the number of separators an element contains.

SDAs (Continued)

Definition

(Sort Domains)

Where $\mathbf{M} = (M, +, 0, 1)$ is a separated monoid, the *sort domains* M_i of sort *i* are defined as follows:

$$M_i = \{a \in M : s(a) = i\}, i \ge 0$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

It is readily seen that for every $i, j \ge 0$, $M_i \cap M_j = \emptyset$ iff $i \ne j$.

SDAs (Continued)

Definition (Standard Displacement Algebra)

The standard displacement algebra (or standard DA) defined by a separated monoid (M, +, 0, 1) is the ω -sorted algebra with the ω -sorted signature $\Sigma_D = (+, \{x_i\}_{i>0}, 0, 1\})$ with sort functionality $((i, j \rightarrow i + j)_{i,j\geq 0}, (i, j \rightarrow i + j - 1)_{i>0,j\geq 0}, 0, 1)$:

 $(\{M_i\}_{i\geq 0},+,\{\times_i\}_{i>0},0,1)$

where:

operation	is such that
$+: M_i \times M_j \to M_{i+j}$	as in the separated monoid
$\times_k: M_i \times M_j \to M_{i+j-1}$	$\times_k(s, t)$ is the result of replacing the k-th separator in s by t

Consider **DA** augmented with the $(\top_i)_i$ such that $S(\top_i) = i$:

(2)
$$\overline{\Delta \Rightarrow \tau_i} \, {}^{\tau_i R}$$

Rule (2) has the side-condition requiring that Δ is any configuration of sort *i*.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Phase semantics for **DA**

Definition

A displacement phase space $\mathbf{P} = (\mathbf{A}, \mathbf{Facts})$ is a structure such that:

- 1. **A** is a DA.
- 2. Facts = $(Facts_i)_i \subseteq sb(A)$ is a set of subsets such that $Facts_i \cap Facts_j = \emptyset$ iff $i \neq j$, and:
 - a) For every $F \in \mathbf{Facts}_i$, $F \subseteq A_i$.
 - b) **Facts** is closed by intersections of arbitrary families of same-sort subsets.
 - c) $A_i \in Facts_i$.
 - d) For all $F \in \mathbf{Facts}_i$, and for all $x \in A_j$:

$$x \setminus F \in Facts_{i-j}$$

 $F/x \in Facts_{i-j}$
 $F \uparrow_k x \in Facts_{i-j+1}$
 $x \downarrow_k F \in Facts_{i-j+1}$

Facts is also called (an ω -sorted) *closure system*. When $F \in$ **Facts** we say that *F* is a *fact* or a *closed* subset.

Where F, G denote subsets of A of sort *i*, we define the closure operator:

(3) $cl(G) \triangleq \bigcap \{F \in \mathbf{Facts}_i : G \subseteq F\}$

 $cl(\cdot)$ is well-defined for in definition (3) it is required that $A_i \in Facts_i$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

It is readily seen that:

- cl(F) is the least closed set such that $F \subseteq cl(F)$.
- $cl(\cdot)$ is extensive, i.e.: $G \subseteq cl(G)$.
- ▶ $cl(\cdot)$ is monotone, i.e.: if $G_1 \subseteq G_2$ then $cl(G_1) \subseteq cl(G_2)$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• $cl(\cdot)$ is idempotent, i.e.: $cl^2(G) = cl(G)$.

Some notation

We sometimes notate \overline{G} instead of cl(G), for a give same-sort subset G of A. We define the following operators:

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- $F \circ G \triangleq \{f + g : f \in F \text{ and } g \in G\}$
- $F \circ_i G \triangleq \{f \times_i g : f \in F \text{ and } g \in G\}$
- $f \circ G \triangleq \{f\} \circ G \text{ and } F \circ g \triangleq F \circ \{g\}$
- $f \circ_i G \triangleq \{f\} \circ_i G$ and $F \circ_i g \triangleq F \circ_i \{g\}$
- $G//F \triangleq \{h : \forall f \in F, h + f \in G\}$
- $G\uparrow\uparrow_i F \triangleq \{h : \forall f \in F, h \times_i f \in G\}$
- $G//f \triangleq G//\{f\}$
- $G\uparrow\uparrow_i f \triangleq G\uparrow\uparrow_i \{f\}$

Recovering a closure system from a closure operator

Given $cl(\cdot)$ we put:

(4) $G \in Facts$ iff cl(G) = G

The indexed subuniverses $\overline{A_i} \subseteq A_i$, whence $A_i \in Facts_i$. Closure by arbitrary intersections of families of same-sort closed subsets holds for:

$$\bigcap_i F_i \subseteq F_i$$
 where $F_i \in$ **Facts** i.e., $F_i = cl(F_i)$, and $i \in I$
 $cl(\bigcap_i F_i) \subseteq \bigcap_i F_i$ but $\bigcap_i F_i \subseteq cl(\bigcap_i F_i)$ whence:
 $\bigcap_i F_i \in$ **Facts**

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

In order to recover 2.d) we need additional properties (see later).

Properties on $cl(\cdot)$

- $F \circ G \subseteq H$ iff $F \subseteq H//G$ iff $G \subseteq F \setminus H$.
- ► $F \circ_i G \subseteq H$ iff $F \subseteq H \uparrow \uparrow_i G$ iff $G \subseteq F \downarrow \downarrow_i H$.
- By construction, cl(F) is the least closed subset such that $F \subseteq cl(F)$. Hence:

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

• If $A \subseteq F$ and cl(F) = F then $cl(A) \subseteq cl(F)$.

More properties on $cl(\cdot)$

► If A is closed, then:

 $A//F, F \setminus A, A \uparrow \uparrow_i F$, and $F \downarrow \downarrow_i A$ are closed.

Proof: $A \uparrow \uparrow_i F = \bigcap_{x \in F} A \uparrow \uparrow_i x$, whence $A \uparrow \uparrow_i F$ is closed. \Box

A D F A 同 F A E F A E F A Q A

Similar for the other implicative operations.

- ► $cl(F) \circ cl(G) \subseteq cl(F \circ G)$. Similarly, $cl(F) \circ_i cl(G) \subseteq cl(F \circ_i G)(\star)$.
- Hence, cl(cl(F) ∘ cl(G)) ⊆ cl(F ∘ G), and cl(cl(F) ∘_icl(G)) ⊆ cl(F ∘_iG)

More properties on $cl(\cdot)$ (continued)

▶ Proof of (★): $cl(F) \circ_i cl(G) \subseteq cl(F \circ G)$.

Proof.

 $F \circ_i G \subseteq cl(F \circ_i G)$. By residuation, $F \subseteq cl(F \circ_i G) \uparrow \uparrow_i G$. $cl(F \circ_i G) \uparrow \uparrow_i G$ is a closed subset (see previous proof). Hence, $cl(F) \subseteq cl(F \circ_i G) \uparrow \uparrow_i G$. Applying again residuation, we have $cl(F) \circ_i G \subseteq cl(F \circ G)$. We repeat the process with *G*, obtaining $cl(G) \subseteq cl(F) \downarrow \downarrow_i cl(F \circ_i G)$. It follows that:

$$cl(F)\circ_i cl(G) \subseteq cl(F\circ_i G)$$

It follows that: cl(cl(F)∘_icl(G)) ⊆ cl(F∘_iG). The inclusion trivially holds, whence we have equality:

$$cl(cl(F)\circ_i cl(G)) = cl(F\circ_i G)$$

Closed operations between closed subsets

Given F, G closed sets:

- ► $F \overline{\circ} G \triangleq cl(F \circ G).$
- ► $F_{\overline{\circ}_i}G \triangleq cl(F_{\circ}_iG).$
- ► $\overline{T_i} \triangleq A_i$, where A_i are the same-sort subuniverses.
- ► $F \& G \triangleq F \cap G$. In general we write $F \cap G$.
- ► $F\overline{\cup}G\triangleq cl(F\cup G).$
- G[↑]↑_iF≜G[↑]↑_iF. In general we write ↑↑_iSimilar for the other implications.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- I ≜ cl({0}).
- ► <u>J</u>≜*cl*({*J*}).

Closed operations between closed subsets and algebraic interpretations

Let *A*, *B* be arbitrary types. Given a valuation $v : Pr \rightarrow \mathcal{F}$:

- v(p) is closed subset of A_i where p is primitive of sort i.
 We extend recursively (we drop the notation v̂) v:
- ► $v(B\uparrow_i A) \triangleq v(B)\uparrow\uparrow_i v(A)$. Similar for the other implications.
- ► $v(A \bullet B) \triangleq v(A) \overline{\circ} v(B).$
- ► $v(A \odot_i B) \triangleq v(A) \overline{\circ_i} v(B).$
- ► $v(A \oplus B) \triangleq v(A) \overline{\cup} v(B)$.
- ► $v(I) \triangleq \overline{\mathbb{I}}$.
- ► $v(J) \triangleq \overline{\mathbb{J}}$.
- ► $v(\top_i) \triangleq A_i$.

It follows that for any type A, v(A) is a closed subset.

Soundness of **DA**

Let us recall the categorical calculus. We have the faithful translation $(\cdot)^{\sharp} : \mathbf{cD} \Rightarrow \mathbf{hD}$, such that For any Δ and A, we have:

 $\mathbf{cD} \vdash (\Delta)^{\bullet} \rightarrow A \text{ iff } \mathbf{hD} \vdash \Delta \Rightarrow A$

From the above translation we get (almost) for free soundness of **DA** w.r.t. phase semantics. Residuation is obvious. Only postulates are to be checked whether they hold of a phase displacement model. Some postulates:

Continuous associativity

 $A \bullet (B \bullet C) \rightarrow (A \bullet B) \bullet C$ and $(A \bullet B) \bullet C \rightarrow A \bullet (B \bullet C)$

▶ Mixed associativity If we have that B ≬_A C:

 $A \odot_i (B \odot_j C) \Rightarrow (A \odot_i B) \odot_{i+j-1} C \text{ and } (A \odot_i B) \odot_{i+j-1} C) \rightarrow A \odot_i (B \odot_j C)$

• **Mixed permutation** If we have that $B \prec_A C$:

 $(A \odot_i B) \odot_j C \rightarrow (A \odot_{j-b+1} C) \odot_i B$ and $(A \odot_{j-b+1} C) \odot_i B \rightarrow (A \odot_i B) \odot_j C)$

Soundness of **DA** (Continued)

Let us check mixed permutation, in the case $B \notin_A C$. Remaining postulates are proved to hold similarly. Let *v* be a valuation in a phase displacement space:

$$\begin{aligned} v((A \odot_i B) \odot_j C) &= (v(A)\overline{\circ_i}v(B))\overline{\circ_j}v(C) \\ &= cl(cl(v(A)\circ_iv(B))\circ_jv(C)) \\ &= cl(cl(v(A)\circ_iv(B))\circ_jcl(v(C))) \text{ since } cl(v(C)) = v(C) \\ &= cl((v(A)\circ_iv(B))\circ_jv(C)) \\ &= cl((v(A)\odot_{j-b+1}v(C))\odot_iv(B)) \\ &= (v(A)\overline{\circ_{j-b+1}}v(C))\overline{\circ_i}v(C) \\ &= v((A\odot_{j-b+1}C)\odot_i B) \quad \Box \end{aligned}$$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Strong completeness in the sense of Okada

The notation [A] for a given type A, corresponds to:

 $[A] = \{\Gamma : \Gamma \Rightarrow A \text{ without the Cut rule}\}\$

We write $\vdash^{-}\Gamma \Rightarrow A$ to indicate provability without Cut, or simply $\Gamma \Rightarrow A$ when it is from the context that we are considering Cut-free provability.

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Strong completeness in the sense of Okada (Continued)

• Let us define the syntactic displacement phase space P = (M, Facts) as follows:

- $\mathbf{M} = (O, conc, (interc_i)_{i>0}, \Lambda, 1)$ where O is the set of configurations and *conc* and $(interc_i)_{i>0}$ are respectively the concatenation and intercalation functions of configurations. In general, if Δ and Γ are configurations, we write Δ, Γ and $\Delta|_i\Gamma$ instead of $conc(\Delta, \Gamma)$ and $interc_i(\Delta, \Gamma)$.

- **M** is the free DA over the set of types \mathcal{F} . **Facts** is defined as the least set closed by arbitrary intersections containing O_i , and [A] for every type A. In practice, by construction, for every fact F, there exists a collection \mathcal{G} of types such that $F = \bigcap_{D \in \mathcal{G}} [D]$. If $F = O_i$, then $\mathcal{G} = \{\top_i\}$. 2.d) from the definition of phase displacement spaces holds.

Strong completeness in the sense of Okada (Continued)

We define the canonical valuation v:

(5) v(p) = [p]

Theorem (Truth lemma) For any type A:

v(A) = [A]

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Strong completeness in the sense of Okada (Continued)

Proof.

By induction on the structure of type A:

- If A = p where p is a primitive type, we have by definition v(A) = [A]. Hence, $\overrightarrow{A} \in v(A) \subseteq [A]$.

- Suppose $A = B \odot_i C$. $v(B) \circ_i v(C) = \{\Gamma_B|_i \Gamma_C : \Gamma_B \in v(B), \text{ and } \Gamma_C \in v(C)\}$. By i.h. $v(B) \subseteq [B]$ and $v(C) \subseteq [C]$. Hence, by application of $\odot_i L v(B) \circ_i v(C) \subseteq [B \odot_i C]$. Hence, $cl(v(B) \circ_i v(C)) \subseteq [B \odot_i C]$. This proves $v(B \odot_i C) \subseteq [B \odot_i C]$.

On the other hand, $v(B)\overline{\circ_i}v(C) = \bigcap_{D \in \mathcal{G}}[D]$ for a certain \mathcal{G} . For every $D \in \mathcal{G}$, by i.h. $\overrightarrow{B}|_i \overrightarrow{C} \in [D]$. By application of $\odot_i L$, $\overrightarrow{B \odot_i C} \in [D]$. Hence, $\overrightarrow{B \odot_i C} \in v(B \odot_i C)$.

Strong completeness in the sense of Okada (proof of truth lemma continued)

- Suppose $A = C\uparrow_i B$. Let $\Gamma \in v(C)\uparrow\uparrow_i v(B)$. By i.h., $\vec{B} \in v(B)$. We have $\Gamma|_i \vec{B} \Rightarrow v(C)$ and $v(C) \subseteq [C]$ by i.h. Hence, $\Gamma|_i \vec{B} \Rightarrow {}^-C$, and by application of $\uparrow_i R$, $\Gamma \Rightarrow C\uparrow_i B$, i.e., $\Gamma \in [C\uparrow_i B]$.

By i.h., $\overrightarrow{C} \in v(C)$. $v(C) = \bigcap_{D \in \mathcal{G}} [D]$ for some \mathcal{G} . Applying $\uparrow_i L$, we get $\overrightarrow{C\uparrow_i B}|_i \Gamma_B \in [D]$ for all $\Gamma_B \in [B]$. Hence, $\overrightarrow{C\uparrow_i B} \circ_i [B] \in [D]$ for all $D \in \mathcal{G}$. Therefore, $\overrightarrow{C\uparrow_i B} \circ_i [B] \subseteq v(C)$. We have that $\overrightarrow{C\uparrow_i B} \circ_i v(B) \subseteq \overrightarrow{C\uparrow_i B} \circ_i [B]$, since by i.h., $v(B) \subseteq [B]$. By applying residuation, $\overrightarrow{C\uparrow_i B} \in v(C) \uparrow \uparrow_i v(B)$.

Strong completeness in the sense of Okada (proof of truth lemma continued)

- A = B&C. Let $\Gamma \in v(B) \cap v(C)$. In particular $\Gamma \in v(B)$ and $\Gamma \in v(C)$. By i.h. $\Gamma \in [B]$ and $\Gamma \in [C]$. By application of &R we get $\Gamma \in [B\&C]$. This proves $v(B\&C) \subseteq [B\&C]$.

- $v(C) = \bigcap_{D \in \mathcal{G}}[D]$ for a certain \mathcal{G} . For every $D \in \mathcal{G}, \overrightarrow{C} \in [D]$. By applying &2L we get $\overrightarrow{C \& B} \in [D]$. Hence, $\overrightarrow{C \& B} \in v(C)$. By a similar reasoning, we have $\overrightarrow{C \& B} \in v(B)$. It follows that $\overrightarrow{C \& B} \in v(C \& B)$.

Strong completeness in the sense of Okada (proof of truth lemma continued)

- Case $A = B \oplus C$. By i.h. $v(B) \subseteq [B]$ and $v(C) \subseteq [C]$. Hence, $v(B) \cup v(C) \subseteq cl([B] \cup [C]) \subseteq [B \oplus C]$. The first inclusion is due to the monotony property and properties of *cl*. In fact, we have $[B] \cup [C] \subseteq [B \oplus C]$. For, $[B] \subseteq [B \oplus C]$ and $[C] \subseteq [B \oplus C]$ by $\oplus iR$ (i = 1, 2). It follows that $cl(v(B) \cup v(C)) \subseteq [B \oplus C]$.

- On the other hand, $v(B \oplus C) = \bigcap_{D \in \mathcal{G}} [D]$ for a certain \mathcal{G} . By i.h $\overrightarrow{B} \in v(B)$. Hence, $\overrightarrow{B} \subseteq cl(v(B) \cup v(C))$. Similarly, $\overrightarrow{C} \subseteq cl(v(B) \cup v(C))$. Therefore, for any $D \in \mathcal{G}$, $\overrightarrow{B} \in [D]$ and $\overrightarrow{C} \in [D]$. By $\oplus L$ we get $\overrightarrow{B \oplus C} \in [D]$. It follows that $\overrightarrow{B \oplus C} \subseteq v(B \oplus C)$.

Strong completeness in the sense of Okada

Theorem

(Strong Completeness à la Okada) Let $\Delta \Rightarrow A$ be such that for every $(\mathbf{P}, \mathbf{v}), (\mathbf{P}, \mathbf{v}) \models \Delta \Rightarrow B$. It follows that $\Delta \Rightarrow {}^{-}B$.

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Corollary (Cut admissibility)

The Cut rule is admissible.

Strong completeness in the sense of Okada (proof of the theorem)

Proof.

In particular, this sequent holds in the syntactic phase displacement model. By the previous lemma, for any $A, \overrightarrow{A} \in v(A)$. Hence $\Delta \in v(\Delta)$. Since $(\mathbf{P}, v) \models \Delta \in v(B)$, we have that $\Delta \in v(B)$. Again, by the previous lemma $\Delta \in [B]$. It follows that $\Delta \Rightarrow {}^{-}B$.

(日) (日) (日) (日) (日) (日) (日)