Mathematical Logic and Linguistics Slides 12

Glyn Morrill \& Oriol Valentín

Department of Computer Science
Universitat Politècnica de Catalunya
morrill@cs.upc.edu \& oriol.valentin@gmail.com

BGSMath Course
 Autumn 2015

Algebraic interpretation for DA

Algebraic interpretation for DA

- Displacement algebras (DAs) versus standard DAs (SDA).
- Phase semantics for DA: soundness and completeness.
- Powerset DAs over SDAs: soundness and completeness for the so-called implicative fragment.
- Extending phase semantics to the other connectives of DL.

DAs vs SDAs

General DAs have the following axiomatisation:

Continuous associativity

$x+(y+z) \approx(x+y)+z$
Discontinuous associativity

```
\(x \times_{i}\left(y x_{j} z\right) \approx\left(x \times_{i} y\right) \times_{i+j-1} z\)
\(\left(x \times_{i} y\right) \times_{j} z \approx x \times_{i}\left(y \times_{j-i+1} z\right)\) if \(i \leq j \leq 1+s(y)-1\)
```

Mixed permutation

$$
\begin{aligned}
& \left(x \times_{i} y\right) \times_{j} z \approx\left(x \times_{j-S}(y)+1 z\right) \times_{i} y \text { if } j>i+s(y)-1 \\
& \left(x \times_{i} z\right) \times_{j} y \approx\left(x \times_{j} y\right) \times_{i+S(y)-1} z \text { if } j<i
\end{aligned}
$$

Mixed associativity

$$
\begin{aligned}
& (x+y) x_{i} z \approx\left(x x_{i} y\right)+z \text { if } 1 \leq i \leq s(x) \\
& (x+y) x_{i} z \approx x+\left(y \times_{i-s(x)} z\right) \text { if } x+1 \leq i \leq s(x)+s(y)
\end{aligned}
$$

Continuous unit and discontinuous unit
$0+x \approx x \approx x+0$ and $1 \times_{1} x \approx x \approx x x_{i} 1$
Figure: Equational theory for DA

SDAs

D is model-theoretically motivated, and the key to its conception is the class of standard displacement algebras. Some definitions are needed. Let $\mathbf{M}=(M,+, 0,1)$ be a free monoid where 1 is a distinguished element of the set of generators X of \mathbf{M}. We call such an algebra a separated monoid. Given an element $a \in M$, we can associate to it a number, called its sort as follows:

(1) | $s(1)$ | $=1$ |
| :--- | :--- |
| $s(a)$ | $=0$ if $a \in X$ and $a \neq 1$ |
| $s\left(w_{1}+w_{2}\right)$ | $=s\left(w_{1}\right)+s\left(w_{2}\right)$ |

This induction is well-defined, for \mathbf{M} is free, and 1 is a (distinguished) generator. The sort function $s(\cdot)$ in a separated monoid simply counts the number of separators an element contains.

SDAs (Continued)

Definition
 (Sort Domains)

Where $\mathbf{M}=(M,+, 0,1)$ is a separated monoid, the sort domains M_{i} of sort i are defined as follows:

$$
M_{i}=\{a \in M: s(a)=i\}, i \geq 0
$$

It is readily seen that for every $i, j \geq 0, M_{i} \cap M_{j}=\emptyset$ iff $i \neq j$.

SDAs (Continued)

Definition

(Standard Displacement Algebra)

The standard displacement algebra (or standard DA) defined by a separated monoid $(M,+, 0,1)$ is the ω-sorted algebra with the ω-sorted signature $\left.\Sigma_{D}=\left(+,\left\{\times_{i}\right\}_{i>0}, 0,1\right\}\right)$ with sort functionality $\left((i, j \rightarrow i+j)_{i, j \geq 0},(i, j \rightarrow i+j-1)_{i>0, j \geq 0}, 0,1\right):$

$$
\left(\left\{M_{i}\right\}_{\geq 0},+,\left\{\times_{i}\right\}_{\gg 0}, 0,1\right)
$$

where:

operation	is such that
$+: M_{i} \times M_{j} \rightarrow M_{i+j}$	as in the separated monoid
$\times M_{k}: M_{j} \rightarrow M_{i+j-1}$	$\times_{k}(s, t)$ is the result of replacing the k-th separator in s by t

Phase semantics for DA

Consider DA augmented with the $\left(T_{i}\right)_{i}$ such that $S\left(T_{i}\right)=i$:
(2) $\overline{\Delta \Rightarrow T_{i}} \mathrm{~T}_{i} R$

Rule (2) has the side-condition requiring that Δ is any configuration of sort i.

Phase semantics for DA

Definition

A displacement phase space $\mathbf{P}=(\mathbf{A}$, Facts $)$ is a structure such that:

1. \mathbf{A} is a DA.
2. Facts $=\left(\text { Facts }_{i}\right)_{i} \subseteq s b(A)$ is a set of subsets such that Facts $_{i} \cap$ Facts $_{j}=\emptyset$ iff $i \neq j$, and:
a) For every $F \in$ Facts $_{i}, F \subseteq A_{i}$.
b) Facts is closed by intersections of arbitrary families of same-sort subsets.
c) $A_{i} \in$ Facts $_{i}$.
d) For all $F \in$ Facts $_{i}$, and for all $x \in A_{j}$:

$$
\begin{array}{lll}
x \backslash F & \in \text { Facts }_{i-j} \\
F / x & \in & \text { Facts }_{i-j} \\
F \uparrow_{k} x & \in & \text { Facts }_{i-j+1} \\
x \downarrow_{k} F & \in \text { Facts }_{i-j+1}
\end{array}
$$

Facts is also called (an ω-sorted) closure system. When $F \in$ Facts we say that F is a fact or a closed subset.

Where F, G denote subsets of A of sort i, we define the closure operator:
(3) $c l(G) \triangleq \bigcap\left\{F \in\right.$ Facts $\left._{i}: G \subseteq F\right\}$
$c l(\cdot)$ is well-defined for in definition (3) it is required that $A_{i} \in$ Facts $_{i}$.

It is readily seen that:

- $c l(F)$ is the least closed set such that $F \subseteq c l(F)$.
- $c l(\cdot)$ is extensive, i.e.: $G \subseteq c l(G)$.
- $c l(\cdot)$ is monotone, i.e.: if $G_{1} \subseteq G_{2}$ then $c l\left(G_{1}\right) \subseteq c l\left(G_{2}\right)$.
- $c l(\cdot)$ is idempotent, i.e.: $c l^{2}(G)=c l(G)$.

Some notation

We sometimes notate \bar{G} instead of $c l(G)$, for a give same-sort subset G of A. We define the following operators:

- $F \circ G \triangleq\{f+g: f \in F$ and $g \in G\}$
- $F \circ_{i} G \triangleq\left\{f \times_{i} g: f \in F\right.$ and $\left.g \in G\right\}$
- $f \circ G \triangleq\{f\} \circ G$ and $F \circ g \triangleq F \circ\{g\}$
- $f \circ_{i} G \triangleq\{f\} \circ_{i} G$ and $F \circ_{i} g \triangleq F_{o_{i}}\{g\}$
- $G / / F \triangleq\{h: \forall f \in F, h+f \in G\}$
- $G \uparrow \uparrow_{i} F \triangleq\left\{h: \forall f \in F, h \times_{i} f \in G\right\}$
- $G / / f \triangleq G / /\{f\}$
- $G \uparrow \uparrow_{i} f \triangleq G \uparrow \uparrow_{i}\{f\}$

Recovering a closure system from a closure operator

Given $c l(\cdot)$ we put:
(4) $G \in$ Facts iff $\quad C l(G)=G$

The indexed subuniverses $\overline{A_{i}} \subseteq A_{i}$, whence $A_{i} \in$ Facts ${ }_{i}$. Closure by arbitrary intersections of families of same-sort closed subsets holds for:

$$
\begin{aligned}
& \bigcap_{i} F_{i} \subseteq F_{i} \text { where } F_{i} \in \text { Facts i.e., } F_{i}=c l\left(F_{i}\right) \text {, and } i \in I \\
& c l\left(\bigcap_{i} F_{i}\right) \subseteq \bigcap_{i} F_{i} \text { but } \bigcap_{i} F_{i} \subseteq c l\left(\bigcap_{i} F_{i}\right) \text { whence: } \\
& \bigcap_{i} F_{i} \in \text { Facts }
\end{aligned}
$$

In order to recover 2.d) we need additional properties (see later).

Properties on cl(•)

- $F \circ G \subseteq H$ iff $F \subseteq H / / G$ iff $G \subseteq F \backslash \backslash H$.
- $F \circ_{i} G \subseteq H$ iff $F \subseteq H \uparrow \uparrow_{i} G$ iff $G \subseteq F \downarrow_{i} H$.
- By construction, $c l(F)$ is the least closed subset such that $F \subseteq c l(F)$. Hence:
- If $A \subseteq F$ and $c l(F)=F$ then $c l(A) \subseteq c l(F)$.

More properties on cl(•)

- If A is closed, then:
$A / / F, F \backslash \backslash A, A \uparrow \uparrow_{i} F$, and $F \downarrow \downarrow_{i} A$ are closed.
Proof: $A \uparrow \uparrow_{i} F=\bigcap_{x \in F} A \uparrow \uparrow_{i} x$, whence $A \uparrow \uparrow_{i} F$ is closed.
Similar for the other implicative operations.
- $c l(F) \circ c l(G) \subseteq c l(F \circ G)$. Similarly, $c l(F) \circ ; c l(G) \subseteq c l(F \circ ; G)(\star)$.
- Hence, $c l(c l(F) \circ c l(G)) \subseteq c l_{l}(F \circ G)$, and $c l\left(c l(F) \circ{ }_{i} l(G)\right) \subseteq c l\left(F \circ_{i} G\right)$

More properties on cl(•) (continued)

- Proof of $(\star): c l(F) \circ_{i} c l(G) \subseteq c l(F \circ G)$.

Proof.

$F \circ_{i} G \subseteq c l\left(F \circ_{i} G\right)$. By residuation, $F \subseteq c l\left(F \circ_{i} G\right) \uparrow \uparrow_{i} G . c l\left(F \circ_{i} G\right) \uparrow \uparrow_{i} G$ is a closed subset (see previous proof). Hence, $c l(F) \subseteq c l\left(F \circ_{i} G\right) \uparrow \uparrow_{i} G$. Applying again residuation, we have $c l(F) \circ_{i} G \subseteq c l(F \circ G)$. We repeat the process with G, obtaining $c l(G) \subseteq c l(F) \downarrow \downarrow_{i} c l\left(F \circ_{i} G\right)$. It follows that:

$$
c l(F) \circ_{i} c l(G) \subseteq c l\left(F \circ_{i} G\right)
$$

- It follows that: $c l\left(c l(F) \circ_{i} c l(G)\right) \subseteq c l\left(F \circ_{i} G\right)$. The inclusion trivially holds, whence we have equality:

$$
c l\left(c l(F) \circ_{i} c l(G)\right)=c l(F \circ ; G)
$$

Closed operations between closed subsets

Given F, G closed sets:

- $F \circ G \triangleq C l(F \circ G)$.
- $F_{O_{i}} G \triangleq C l\left(F \circ_{i} G\right)$.
- $\overline{T_{i}} \triangleq A_{i}$, where A_{i} are the same-sort subuniverses.
- $F \overline{\&} G \triangleq F \cap G$. In general we write $F \cap G$.
- $F \bar{\cup} G \triangleq c l(F \cup G)$.
- $G \overline{\uparrow \uparrow_{i}} F \triangleq G \uparrow \uparrow_{i} F$. In general we write $\uparrow \uparrow_{i}$ Similar for the other implications.
- $\overline{\mathrm{I}} \stackrel{\underline{\wedge}}{ } c l(\{0\})$.
- $\overline{\mathrm{J}} \triangleq c l(\{J\})$.

Closed operations between closed subsets and algebraic interpretations

Let A, B be arbitrary types. Given a valuation $v: \operatorname{Pr} \rightarrow \mathcal{F}$:

- $v(p)$ is closed subset of A_{i} where p is primitive of sort i. We extend recursively (we drop the notation \hat{v}) v :
- $v\left(B \uparrow_{i} A\right) \triangleq v(B) \uparrow \uparrow_{i} v(A)$. Similar for the other implications.
- $v(A \bullet B)^{\triangleq} v(A) \bar{\sigma} v(B)$.
- $v\left(A \odot_{i} B\right) \triangleq v(A) \bar{\circ}_{i} v(B)$.
- $v(A \oplus B) \triangleq v(A) \bar{\cup} v(B)$.
- $v(I) \triangleq \overline{=} \overline{\mathrm{I}}$.
- $v(J) \triangleq \overline{\mathrm{J}}$.
- $v\left(T_{i}\right) \triangleq A_{i}$.

It follows that for any type $A, v(A)$ is a closed subset.

Soundness of DA

Let us recall the categorical calculus. We have the faithful translation $(\cdot)^{\sharp}: \mathbf{c D} \Rightarrow \mathbf{h D}$, such that For any Δ and A, we have:

$$
\mathbf{c D} \vdash(\Delta)^{\bullet} \rightarrow A \text { iff } \mathbf{h D} \vdash \Delta \Rightarrow A
$$

From the above translation we get (almost) for free soundness of DA w.r.t. phase semantics. Residuation is obvious. Only postulates are to be checked whether they hold of a phase displacement model. Some postulates:

- Continuous associativity

$$
A \bullet(B \bullet C) \rightarrow(A \bullet B) \bullet C \text { and }(A \bullet B) \bullet C \rightarrow A \bullet(B \bullet C)
$$

- Mixed associativity If we have that $B \chi_{A} C$:

$$
\left.A \odot_{i}\left(B \odot_{j} C\right) \Rightarrow\left(A \odot_{i} B\right) \odot_{i+j-1} C \text { and }\left(A \odot_{i} B\right) \odot_{i+j-1} C\right) \rightarrow A \odot_{i}\left(B \odot_{j} C\right)
$$

- Mixed permutation If we have that $B<{ }_{A} C$:

$$
\left.\left(A \odot_{i} B\right) \odot_{j} C \rightarrow\left(A \odot_{j-b+1} C\right) \odot_{i} B \text { and }\left(A \odot_{j-b+1} C\right) \odot_{i} B \rightarrow\left(A \odot_{i} B\right) \odot_{j} C\right)
$$

Soundness of DA (Continued)

Let us check mixed permutation, in the case $B{\chi_{A} C \text {. Remaining }}$ postulates are proved to hold similarly. Let v be a valuation in a phase displacement space:

$$
\begin{aligned}
v\left(\left(A \odot_{i} B\right) \odot_{j} C\right) & =\left(v(A) \bar{\circ}_{i} v(B)\right)_{\rho_{j}} v(C) \\
& =c l\left(c l\left(v(A) \circ_{i} v(B)\right) \circ_{j} v(C)\right) \\
& =c l\left(c l\left(v(A) \circ_{i} v(B)\right) \circ_{j} c l(v(C))\right) \text { since } c l(v(C))=v(C) \\
& =c l\left(\left(v(A) \circ_{i} v(B)\right) \circ_{j} v(C)\right) \\
& =c l\left(\left(v(A) \odot_{j-b+1} v(C)\right) \odot_{i} v(B)\right) \\
& =\left(v(A) \overline{\left.\sigma_{j-b+1} v(C)\right) \overline{\circ_{i}} v(C)}\right. \\
& =v\left(\left(A \odot_{j-b+1} C\right) \odot_{i} B\right)
\end{aligned}
$$

Strong completeness in the sense of Okada

The notation $[A]$ for a given type A, corresponds to:

$$
[A]=\{\Gamma: \Gamma \Rightarrow A \text { without the Cut rule }\}
$$

We write $\vdash^{-} \Gamma \Rightarrow A$ to indicate provability without Cut, or simply $\Gamma \Rightarrow A$ when it is from the context that we are considering Cut-free provability.

Strong completeness in the sense of Okada (Continued)

- Let us define the syntactic displacement phase space $\mathbf{P}=(\mathbf{M}$, Facts $)$ as follows:
- $\left.\mathbf{M}=\left(O, \text { conc },\left(\text { interc }_{i}\right)\right)_{>0}, \wedge, 1\right)$ where O is the set of configurations and conc and (interc $i_{i>0}$ are respectively the concatenation and intercalation functions of configurations. In general, if Δ and Γ are configurations, we write Δ, Γ and $\left.\Delta\right|_{i} \Gamma$ instead of $\operatorname{conc}(\Delta, \Gamma)$ and $\operatorname{interc}_{i}(\Delta, \Gamma)$.
- \mathbf{M} is the free DA over the set of types \mathcal{F}. Facts is defined as the least set closed by arbitrary intersections containing O_{i}, and $[A]$ for every type A. In practice, by construction, for every fact F, there exists a collection \mathcal{G} of types such that $F=\bigcap_{D \in \mathcal{G}}[D]$. If $F=O_{i}$, then $\mathcal{G}=\left\{\mathrm{T}_{i}\right\}$. 2.d) from the definition of phase displacement spaces holds.

Strong completeness in the sense of Okada (Continued)

We define the canonical valuation v :
(5) $v(p)=[p]$

Theorem (Truth lemma)
For any type A:

$$
v(A)=[A]
$$

Strong completeness in the sense of Okada (Continued)

Proof.

By induction on the structure of type A :

- If $A=p$ where p is a primitive type, we have by definition $v(A)=[A]$. Hence, $\vec{A} \in v(A) \subseteq[A]$.
- Suppose $A=B \odot_{i} C$.
$v(B) \circ_{i} v(C)=\left\{\left.\Gamma_{B}\right|_{i} \Gamma_{C}: \Gamma_{B} \in v(B)\right.$, and $\left.\Gamma_{C} \in v(C)\right\}$. By i.h. $v(B) \subseteq[B]$ and $v(C) \subseteq[C]$. Hence, by application of $\odot_{i} L v(B) \circ_{i} v(C) \subseteq\left[B \odot_{i} C\right]$. Hence, $c l\left(v(B) \circ_{i} v(C)\right) \subseteq\left[B \odot_{i} C\right]$. This proves $v\left(B \odot_{i} C\right) \subseteq\left[B \odot_{i} C\right]$.

On the other hand, $v(B){\overline{\sigma_{i}}} v(C)=\bigcap_{D \in \mathcal{G}}[D]$ for a certain \mathcal{G}. For every $D \in \mathcal{G}$, by i.h. $\left.\vec{B}\right|_{i} \vec{C} \in[D]$. By application of $\odot_{i} L, \overrightarrow{B \odot_{i} C} \in[D]$. Hence, $\overrightarrow{B \odot_{i} C} \in v\left(B \odot_{i} C\right)$.

Strong completeness in the sense of Okada (proof of truth lemma continued)

- Suppose $A=C \uparrow_{i} B$. Let $\Gamma \in v(C) \uparrow \uparrow_{i} v(B)$. By i.h., $\vec{B} \in v(B)$. We have $\Gamma_{i} \vec{B} \Rightarrow v(C)$ and $v(C) \subseteq[C]$ by i.h. Hence, $\Gamma \mid ; \vec{B} \Rightarrow^{-} C$, and by application of $\uparrow_{i} R, \Gamma \Rightarrow C \uparrow_{i} B$, i.e., $\Gamma \in\left[C \uparrow_{i} B\right]$.

By i.h., $\vec{C} \in v(C) . v(C)=\bigcap_{D \in \mathcal{G}}[D]$ for some \mathcal{G}. Applying $\uparrow_{i} L$, we get $\left.\overrightarrow{C \uparrow_{i} B}\right|_{i} \Gamma_{B} \in[D]$ for all $\Gamma_{B} \in[B]$. Hence, $\overrightarrow{C \uparrow_{i} B} \circ_{i}[B] \in[D]$ for all $D \in \mathcal{G}$. Therefore, $\overrightarrow{C \uparrow_{i} B} \circ_{i}[B] \subseteq v(C)$. We have that $\overrightarrow{C \uparrow_{i} B} \circ_{i} v(B) \subseteq \overrightarrow{C \uparrow_{i} B} \circ_{i}[B]$, since by i.h., $v(B) \subseteq[B]$. By applying residuation, $\overrightarrow{C \uparrow_{i} B} \in v(C) \uparrow \uparrow_{i} v(B)$.

Strong completeness in the sense of Okada (proof of truth lemma continued)

- $A=B \& C$. Let $\Gamma \in v(B) \cap v(C)$. In particular $\Gamma \in v(B)$ and $\Gamma \in v(C)$. By i.h. $\Gamma \in[B]$ and $\Gamma \in[C]$. By application of $\& R$ we get $\Gamma \in[B \& C]$. This proves $v(B \& C) \subseteq[B \& C]$.
$-v(C)=\bigcap_{D \in \mathcal{G}}[D]$ for a certain \mathcal{G}. For every $D \in \mathcal{G}, \vec{C} \in[D]$. By applying \& $2 L$ we get $\overrightarrow{C \& B} \in[D]$. Hence, $\overrightarrow{C \& B} \in v(C)$. By a similar reasoning, we have $\overrightarrow{C \& B} \in v(B)$. It follows that $\overrightarrow{C \& B} \in v(C \& B)$.

Strong completeness in the sense of Okada (proof of truth lemma continued)

- Case $A=B \oplus C$. By i.h. $v(B) \subseteq[B]$ and $v(C) \subseteq[C]$. Hence, $v(B) \cup v(C) \subseteq c l([B] \cup[C]) \subseteq[B \oplus C]$. The first inclusion is due to the monotony property and properties of $c l$. In fact, we have $[B] \cup[C] \subseteq[B \oplus C]$. For, $[B] \subseteq[B \oplus C]$ and $[C] \subseteq[B \oplus C]$ by $\oplus i R$ $(i=1,2)$. It follows that $c l(v(B) \cup v(C)) \subseteq[B \oplus C]$.
- On the other hand, $v(B \oplus C)=\bigcap_{D \in \mathcal{G}}[D]$ for a certain \mathcal{G}. By i.h
$\vec{B} \in v(B)$. Hence, $\vec{B} \subseteq c l(v(B) \cup v(C))$. Similarly,
$\vec{C} \subseteq \operatorname{cl}(v(B) \cup v(C))$. Therefore, for any $D \in \mathcal{G}, \vec{B} \in[D]$ and $\vec{C} \in[D]$.
By $\oplus L$ we get $\overrightarrow{B \oplus C} \in[D]$. It follows that $\overrightarrow{B \oplus C} \subseteq v(B \oplus C)$.

Strong completeness in the sense of Okada

Theorem
(Strong Completeness à la Okada) Let $\Delta \Rightarrow A$ be such that for every $(\mathbf{P}, v),(\mathbf{P}, v) \models \Delta \Rightarrow B$. It follows that $\Delta \Rightarrow-B$.
Corollary (Cut admissibility)
The Cut rule is admissible.

Strong completeness in the sense of Okada (proof of the theorem)

Proof.

In particular, this sequent holds in the syntactic phase displacement model. By the previous lemma, for any $A, \vec{A} \in v(A)$. Hence $\Delta \in v(\Delta)$. Since $(\mathbf{P}, v) \vDash \Delta \in v(B)$, we have that $\Delta \in v(B)$. Again, by the previous lemma $\Delta \in[B]$. It follows that $\Delta \Rightarrow^{-} B$.

