Pure Nash Equilibria
certainty versus succinctness

Maria Serna

September 16th, 2016
1. Complexity framework

2. Complexity analysis

3. Other succinct representations

4. Concluding remarks
Natural problems related to PNE

Is Nash (IsN)
Given a game \(\Gamma \) and a strategy profile \(a \), decide whether \(a \) is a Nash equilibrium of \(\Gamma \).

Exists Pure Nash (EPN)
Given a strategic game \(\Gamma \), decide whether \(\Gamma \) has a Pure Nash equilibrium.

Pure Nash with Guarantees (PNGRANT)
Given a strategic game \(\Gamma \) and a value \(v \), decide whether there is a pure Nash equilibrium in which the first player gets payoff \(v \) or higher.
How to represent a game?

- We are interested in fixing the representation of a game as an input to a program.
- It is natural to consider different levels of succinctness.
- In the most generic model some components of the game have to be represented by a TM, for example the utility functions.
All the TMs appearing in the description of games are deterministic.
All the TMs appearing in the description of games are deterministic.

The TMs will work for a limited number of timesteps \(t \). Which forms part of the input in unary \(\langle M, 1^t \rangle \).
TMs in game representations

- All the TMs appearing in the description of games are deterministic.
- The TMs will work for a limited number of timesteps (t). Which forms part of the input in unary ($\langle M, 1^t \rangle$).
- Convention: there is a pre-fixed interpretation of the contents of the output tape of a TM so that, both when the machine stops or when the machine is stopped, it always computes a rational value.
TMs in game representations

- All the TMs appearing in the description of games are deterministic.
- The TMs will work for a limited number of timesteps \(t \). Which forms part of the input in unary \(\langle M, 1^t \rangle \).
- Convention: there is a pre-fixed interpretation of the contents of the output tape of a TM so that, both when the machine stops or when the machine is stopped, it always computes a rational value.

We only consider rational valued utility functions
The convention guarantees a correct and unique game definition from its description
Strategic games in explicit form.

- A game is given by a tuple

\[\Gamma = \langle 1^n, A_1, \ldots, A_n, T \rangle. \]

- It has n players,
- For each player i, A_i is given explicitly by listing its elements.
- T is a table with an entry for each strategy profile s and player i.
- So, $u_i(s) = T(s, i)$.
Strategic games in general form.

- A game is given by a tuple

\[\Gamma = \langle 1^n, A_1, \ldots, A_n, M, 1^t \rangle. \]

- It has n players,
- For each player \(i \), \(A_i \) is given explicitly by listing its elements.
- The description of their pay-off is given by \(\langle M, 1^t \rangle \).
- So, for each strategy profile \(s \) and player \(i \),
 \[u_i(s) = M(s, i) \] stopping after \(t \) steps.
Implicit form

Strategic games in implicit form.

- A game is given by a tuple

 \[\Gamma = \langle 1^n, 1^m, M, 1^t \rangle. \]

- It has \(n \) players,
- For each player \(i \), \(A_i = \Sigma^m \)
- The description of their pay-off is given by \(\langle M, 1^t \rangle \).
- So, for each strategy profile \(s \) and player \(i \),
 \[u_i(s) = M(s, i) \] stopping after \(t \) steps.
Forms of representation

Strategic games in explicit form. A game is described by a tuple \(\Gamma = \langle 1^n, A_1, \ldots, A_n, T \rangle \).

Strategic games in general form. A game is described by a tuple \(\Gamma = \langle 1^n, A_1, \ldots, A_n, M, 1^t \rangle \).

Strategic games in implicit form. A game is described by a tuple \(\Gamma = \langle 1^n, 1^m, M, 1^t \rangle \).
What is the most suitable level of succinctness?

- Prisoners’ dilemma?
What is the most suitable level of succinctness?

- Prisoners’ dilemma?
 - Explicit
What is the most suitable level of succinctness?

- Prisoners’ dilemma?
 - Explicit
- Sending from s to t?
What is the most suitable level of succinctness?

- Prisoners’ dilemma?
 - Explicit
- Sending from s to t?
 - General
What is the most suitable level of succinctness?

- Prisoners’ dilemma?
 Explicit
- Sending from s to t?
 General
- Congestion games?
What is the most suitable level of succinctness?

- Prisoners’ dilemma?
 Explicit
- Sending from s to t?
 General
- Congestion games?
 Implicit
1 Complexity framework

2 Complexity analysis

3 Other succinct representations

4 Concluding remarks
Solving the IsPN

IsPN Given a game Γ and a strategy profile s, is s is a PNE?.
Solving the IsPN

IsPN Given a game Γ and a strategy profile s, is s a PNE?.

$$\forall i \in N \ \forall a'_i \in A_i \ u_i(s) \geq u_i(s_{-i}, a_i)$$
Solving the IsPN

IsPN Given a game Γ and a strategy profile s, is s is a PNE?

$$\forall i \in N \forall a'_i \in A_i \; u_i(s) \geq u_i(s_{-i}, a_i)$$

Algorithm: Brute force, try all combinations
Solving the IsPN

IsPN Given a game Γ and a strategy profile s, is s is a PNE?.

$$\forall i \in N \ \forall a'_i \in A_i \ u_i(s) \geq u_i(s_{-i}, a_i)$$

Algorithm: Brute force, try all combinations

- Given $\Gamma = \langle 1^n, A_1, \ldots, A_n, T \rangle$ the cost is
Solving the IsPN

IsPN Given a game Γ and a strategy profile s, is s is a PNE?

\[
\forall i \in N \forall a'_i \in A_i \; u_i(s) \geq u_i(s_{-i}, a_i)
\]

Algorithm: Brute force, try all combinations

- Given $\Gamma = \langle 1^n, A_1, \ldots, A_n, T \rangle$ the cost is polynomial.
Solving the IsPN

Given a game Γ and a strategy profile s, is s is a PNE?

$$\forall i \in N \forall a'_i \in A_i \ u_i(s) \geq u_i(s_{-i}, a_i)$$

Algorithm: Brute force, try all combinations

- Given $\Gamma = \langle 1^n, A_1, \ldots, A_n, T \rangle$ the cost is polynomial.
- Given $\Gamma = \langle 1^n, A_1, \ldots, A_n, M, 1^t \rangle$ the cost is
Solving the IsPN

IsPN Given a game Γ and a strategy profile s, is s is a PNE?

$$\forall i \in N \ \forall a'_i \in A_i \ u_i(s) \geq u_i(s_{-i}, a_i)$$

Algorithm: Brute force, try all combinations

- Given $\Gamma = \langle 1^n, A_1, \ldots, A_n, T \rangle$ the cost is polynomial.
- Given $\Gamma = \langle 1^n, A_1, \ldots, A_n, M, 1^t \rangle$ the cost is polynomial.
Solving the IsPN

IsPN Given a game Γ and a strategy profile s, is s is a PNE?

$$\forall i \in N \forall a'_i \in A_i \; u_i(s) \geq u_i(s_{-i}, a_i)$$

Algorithm: Brute force, try all combinations

- Given $\Gamma = \langle 1^n, A_1, \ldots, A_n, T \rangle$ the cost is polynomial.
- Given $\Gamma = \langle 1^n, A_1, \ldots, A_n, M, 1^t \rangle$ the cost is polynomial.
- Given $\Gamma = \langle 1^n, 1^m, M, 1^t \rangle$ the cost is
Solving the IsPN

IsPN Given a game Γ and a strategy profile s, is s is a PNE?.

\[\forall i \in N \forall a' \in A_i \ u_i(s) \geq u_i(s_{-i}, a_i) \]

Algorithm: Brute force, try all combinations

- Given $\Gamma = \langle 1^n, A_1, \ldots, A_n, T \rangle$ the cost is polynomial.
- Given $\Gamma = \langle 1^n, A_1, \ldots, A_n, M, 1^t \rangle$ the cost is polynomial.
- Given $\Gamma = \langle 1^n, 1^m, M, 1^t \rangle$ the cost is exponential.
Solving the IsPN

IsPN Given a game \(\Gamma \) and a strategy profile \(s \), is \(s \) is a PNE?.

\[
\forall i \in N \ \forall a'_i \in A_i \ u_i(s) \geq u_i(s_{-i}, a_i)
\]

Algorithm: Brute force, try all combinations

- Given \(\Gamma = \langle 1^n, A_1, \ldots, A_n, T \rangle \) the cost is polynomial.
- Given \(\Gamma = \langle 1^n, A_1, \ldots, A_n, M, 1^t \rangle \) the cost is polynomial.
- Given \(\Gamma = \langle 1^n, 1^m, M, 1^t \rangle \) the cost is exponential.

A better classification?
Solving the IsPN

IsPN Given a game \(\Gamma \) and a strategy profile \(s \), is \(s \) is a PNE?.

\[
\forall i \in N \ \forall a_i' \in A_i \ u_i(s) \geq u_i(s_{-i}, a_i)
\]

Algorithm: Brute force, try all combinations

- Given \(\Gamma = \langle 1^n, A_1, \ldots, A_n, T \rangle \) the cost is polynomial.
- Given \(\Gamma = \langle 1^n, A_1, \ldots, A_n, M, 1^t \rangle \) the cost is polynomial.
- Given \(\Gamma = \langle 1^n, 1^m, M, 1^t \rangle \) the cost is exponential.

 A better classification?

The condition \(u_i(s) \geq u_i(s_{-i}, a_i) \) can be checked in polynomial time given \(\Gamma, s, \) and \(a_i \).
Solving the IsPN

IsPN Given a game Γ and a strategy profile s, is s is a PNE?

$$\forall i \in N \forall a'_i \in A_i \; u_i(s) \geq u_i(s_{-i}, a_i)$$

Algorithm: Brute force, try all combinations

- Given $\Gamma = \langle 1^n, A_1, \ldots, A_n, T \rangle$ the cost is polynomial.
- Given $\Gamma = \langle 1^n, A_1, \ldots, A_n, M, 1^t \rangle$ the cost is polynomial.
- Given $\Gamma = \langle 1^n, 1^m, M, 1^t \rangle$ the cost is exponential.

A better classification?

The condition $u_i(s) \geq u_i(s_{-i}, a_i)$ can be checked in polynomial time given $\Gamma, s, \text{and } a_i$.

Thus the problem is in
Solving the IsPN

IsPN Given a game Γ and a strategy profile s, is s is a PNE?.

\[\forall i \in N \ \forall a'_i \in A_i \ u_i(s) \geq u_i(s_{-i}, a_i) \]

Algorithm: Brute force, try all combinations

- Given $\Gamma = \langle 1^n, A_1, \ldots, A_n, T \rangle$ the cost is polynomial.
- Given $\Gamma = \langle 1^n, A_1, \ldots, A_n, M, 1^t \rangle$ the cost is polynomial.
- Given $\Gamma = \langle 1^n, 1^m, M, 1^t \rangle$ the cost is exponential.

A better classification?

The condition $u_i(s) \geq u_i(s_{-i}, a_i)$ can be checked in polynomial time given $\Gamma, s,$ and a_i.

Thus the problem is in coNP.
Solving the IsPN

IsPN Given a game Γ and a strategy profile s, is s is a PNE?

$$\forall i \in N \forall a'_i \in A_i \ u_i(s) \geq u_i(s_{-i}, a_i)$$

Algorithm: Brute force, try all combinations

- Given $\Gamma = \langle 1^n, A_1, \ldots, A_n, T \rangle$ the cost is polynomial.
- Given $\Gamma = \langle 1^n, A_1, \ldots, A_n, M, 1^t \rangle$ the cost is polynomial.
- Given $\Gamma = \langle 1^n, 1^m, M, 1^t \rangle$ the cost is exponential.

 A better classification?
 The condition $u_i(s) \geq u_i(s_{-i}, a_i)$ can be checked in polynomial time given $\Gamma, s,$ and a_i.
 Thus the problem is in coNP.
 Is this classification tight?
IsPN implicit form: Hardness

A coNP complete problem?
IsPN implicit form: Hardness

A coNP complete problem?

SAT: Given a boolean formula F in CNF form, determine whether F is satisfiable.

Is an NP complete problem.
IsPN implicit form: Hardness

A coNP complete problem?

SAT: Given a boolean formula F in CNF form, determine whether F is satisfiable.

Is an NP complete problem. So, its complement is coNP-complete.
IsPN implicit form: Hardness

A coNP complete problem?

SAT: Given a boolean formula F in CNF form, determine whether F is satisfiable.

Is an NP complete problem. So, its complement is coNP-complete.

We have to associate to F a game Γ and a strategy profile s so that:

- F is not satisfiable iff s is a PNE of Γ
- and show that a description of Γ in implicit form and of s can be obtained in time polynomial in $|F|$.

Given a CNF formula F on n variables consider the game $\Gamma(F)$ which:

- Has one player and $A_1 = \{0, 1\}^{n+1}$
- $u_1(0x) = 0$, for any $x \in \{0, 1\}^n$
- $u_1(1x) = F(x)$, for any $x \in \{0, 1\}^n$
Given a CNF formula F on n variables consider the game $\Gamma(F)$ which:

- Has one player and $A_1 = \{0, 1\}^{n+1}$
- $u_1(0x) = 0$, for any $x \in \{0, 1\}^n$
- $u_1(1x) = F(x)$, for any $x \in \{0, 1\}^n$

Consider the strategy $a_1 = 0^{n+1}$.
IsPN implicit form: Hardness

Given a CNF formula F on n variables consider the game $\Gamma(F)$ which:

- Has one player and $A_1 = \{0, 1\}^{n+1}$
- $u_1(0x) = 0$, for any $x \in \{0, 1\}^n$
- $u_1(1x) = F(x)$, for any $x \in \{0, 1\}^n$

Consider the strategy $a_1 = 0^{n+1}$.

a_1 is a PNE iff F is unsatisfiable
IsPN implicit form: Hardness

Given a CNF formula F on n variables consider the game $\Gamma(F)$ which:

- Has one player and $A_1 = \{0, 1\}^{n+1}$
- $u_1(0x) = 0$, for any $x \in \{0, 1\}^n$
- $u_1(1x) = F(x)$, for any $x \in \{0, 1\}^n$

Consider the strategy $a_1 = 0^{n+1}$.

a_1 is a PNE iff F is unsatisfiable

Thus $\Gamma(F), 0^{n+1}$ verify the first requirement.
IsPN implicit form: Hardness

Given a boolean formula F on n variables, consider the game $\Gamma(F)$ which:

- Has one player and $A_1 = \{0, 1\}^{n+1}$
- $u_1(0x) = 0$, $u_1(1x) = F(x)$, for any $x \in \{0, 1\}^n$
IsPN implicit form: Hardness

Given a boolean formula F on n variables, consider the game $\Gamma(F)$ which:

- Has one player and $A_1 = \{0, 1\}^{n+1}$
- $u_1(0x) = 0$, $u_1(1x) = F(x)$, for any $x \in \{0, 1\}^n$

An implicit form representation of $\Gamma(F)$ as $\langle 1^n, 1^m, M, 1^t \rangle$?
Given a boolean formula F on n variables, consider the game $\Gamma(F)$ which:

- Has one player and $A_1 = \{0, 1\}^{n+1}$
- $u_1(0x) = 0$, $u_1(1x) = F(x)$, for any $x \in \{0, 1\}^n$

An implicit form representation of $\Gamma(F)$ as $\langle 1^n, 1^m, M, 1^t \rangle$?

- $n = 1$, $m = n + 1$
IsPN implicit form: Hardness

Given a boolean formula F on n variables, consider the game $\Gamma(F)$ which:

 1. Has one player and $A_1 = \{0, 1\}^{n+1}$
 2. $u_1(0x) = 0$, $u_1(1x) = F(x)$, for any $x \in \{0, 1\}^n$

An implicit form representation of $\Gamma(F)$ as $\langle 1^n, 1^m, M, 1^t \rangle$?

 1. $n = 1$, $m = n + 1$
 2. M:

IsPN implicit form: Hardness

Given a boolean formula F on n variables, consider the game $\Gamma(F)$ which:

- Has one player and $A_1 = \{0, 1\}^{n+1}$
- $u_1(0x) = 0$, $u_1(1x) = F(x)$, for any $x \in \{0, 1\}^n$

An implicit form representation of $\Gamma(F)$ as $\langle 1^n, 1^m, M, 1^t \rangle$?

- $n = 1$, $m = n + 1$
- M: There is a TM M' that given a CNF formula F and a truth assignment x computes $F(x)$ in linear time $O(|F|)$.
IsPN implicit form: Hardness

Given a boolean formula F on n variables, consider the game $\Gamma(F)$ which:

- Has one player and $A_1 = \{0, 1\}^{n+1}$
- $u_1(0x) = 0$, $u_1(1x) = F(x)$, for any $x \in \{0, 1\}^n$

An implicit form representation of $\Gamma(F)$ as $\langle 1^n, 1^m, M, 1^t \rangle$?

- $n = 1$, $m = n + 1$
- M: There is a TM M' that given a CNF formula F and a truth assignment x computes $F(x)$ in linear time $O(|F|)$. M on input ax checks outputs 0 if $a = 0$ otherwise transfer the control to M' after writing in the input tape F and x.
- $t = (n + |F|)^2$.
IsPN implicit form: Hardness

Given a boolean formula F on n variables, consider the game $\Gamma(F)$ which:

- Has one player and $A_1 = \{0, 1\}^{n+1}$
- $u_1(0x) = 0$, $u_1(1x) = F(x)$, for any $x \in \{0, 1\}^n$

An implicit form representation of $\Gamma(F)$ as $\langle 1^n, 1^m, M, 1^t \rangle$?

- $n = 1$, $m = n + 1$
- M: There is a TM M' that given a CNF formula F and a truth assignment x computes $F(x)$ in linear time $O(|F|)$. M on input ax checks outputs 0 if $a = 0$ otherwise transfer the control to M' after writing in the input tape F and x.
- $t = (n + |F|)^2$.

The time required to obtain $\langle 1^n, 1^m, M, 1^t \rangle$, given F, is...
IsPN implicit form: Hardness

Given a boolean formula F on n variables, consider the game $\Gamma(F)$ which:

- Has one player and $A_1 = \{0, 1\}^{n+1}$
- $u_1(0x) = 0$, $u_1(1x) = F(x)$, for any $x \in \{0, 1\}^n$

An implicit form representation of $\Gamma(F)$ as $\langle 1^n, 1^m, M, 1^t \rangle$?

- $n = 1$, $m = n + 1$
- M: There is a TM M' that given a CNF formula F and a truth assignment x computes $F(x)$ in linear time $O(|F|)$. M on input ax checks outputs 0 if $a = 0$ otherwise transfer the control to M' after writing in the input tape F and x.
- $t = (n + |F|)^2$.

The time required to obtain $\langle 1^n, 1^m, M, 1^t \rangle$, given F, is polynomial in $|F|$.
IsPN implicit form

Theorem

The IsPN problem for strategic games in implicit form is coNP-complete.
Solving the EPN

EPN Given a game Γ does it have a PNE?
Solving the EPN

EPN Given a game Γ does it have a PNE?.

$$\exists s \ \forall i \in N \ \forall a'_i \in A_i \ u_i(s) \geq u_i(s_{-i}, a_i)$$
Solving the EPN

EPN: Given a game Γ does it have a PNE?

$$\exists s \ \forall i \in N \ \forall a'_i \in A_i \ u_i(s) \geq u_i(s_{-i}, a_i)$$

Algorithm: Brute force, try all combination
Solving the EPN

EPN Given a game Γ does it have a PNE?

$$\exists s \ \forall i \in N \ \forall a'_i \in A_i \ u_i(s) \geq u_i(s_{-i}, a_i)$$

Algorithm: Brute force, try all combination

- Given $\Gamma = \langle 1^n, A_1, \ldots, A_n, T \rangle$ the cost is
Solving the EPN

EPN Given a game Γ does it have a PNE?

\[\exists s \ \forall i \in N \ \forall a'_i \in A_i \ u_i(s) \geq u_i(s_{-i}, a_i) \]

Algorithm: Brute force, try all combination

- Given $\Gamma = \langle 1^n, A_1, \ldots, A_n, T \rangle$ the cost is polynomial.
Solving the EPN

EPN Given a game Γ does it have a PNE?

\[\exists s \ \forall i \in \mathbb{N} \ \forall a'_i \in A_i \ u_i(s) \geq u_i(s_{-i}, a_i) \]

Algorithm: Brute force, try all combination

- Given $\Gamma = \langle 1^n, A_1, \ldots, A_n, T \rangle$ the cost is polynomial.
- Given $\Gamma = \langle 1^n, A_1, \ldots, A_n, M, 1^t \rangle$ the cost is
Solving the EPN

EPN Given a game Γ does it have a PNE?.

$$\exists s \ \forall i \in N \ \forall a_i' \in A_i \ \ u_i(s) \geq u_i(s_{-i}, a_i)$$

Algorithm: Brute force, try all combination

- Given $\Gamma = \langle 1^n, A_1, \ldots, A_n, T \rangle$ the cost is polynomial.
- Given $\Gamma = \langle 1^n, A_1, \ldots, A_n, M, 1^t \rangle$ the cost is exponential.
Solving the EPN

EPN Given a game Γ does it have a PNE?.

$$\exists s \ \forall i \in N \ \forall a'_i \in A_i \ u_i(s) \geq u_i(s_{-i}, a_i)$$

Algorithm: Brute force, try all combination

- Given $\Gamma = \langle 1^n, A_1, \ldots, A_n, T \rangle$ the cost is polynomial.
- Given $\Gamma = \langle 1^n, A_1, \ldots, A_n, M, 1^t \rangle$ the cost is exponential. So, in NP.
Solving the EPN

EPN Given a game Γ does it have a PNE?

$$\exists s \ \forall i \in N \ \forall a'_i \in A_i \ \ u_i(s) \geq u_i(s_{-i}, a_i)$$

Algorithm: Brute force, try all combination

- Given $\Gamma = \langle 1^n, A_1, \ldots, A_n, T \rangle$ the cost is polynomial.
- Given $\Gamma = \langle 1^n, A_1, \ldots, A_n, M, 1^t \rangle$ the cost is exponential. So, in NP.
 - In the case that n is constant, in P.
Solving the EPN

EPN Given a game Γ does it have a PNE?

$$\exists s \ \forall i \in N \ \forall a'_i \in A_i \ u_i(s) \geq u_i(s_{-i}, a_i)$$

Algorithm: Brute force, try all combination

- Given $\Gamma = \langle 1^n, A_1, \ldots, A_n, T \rangle$ the cost is polynomial.
- Given $\Gamma = \langle 1^n, A_1, \ldots, A_n, M, 1^t \rangle$ the cost is exponential. So, in NP.
 - In the case that n is constant, in P.
- Given $\Gamma = \langle 1^n, 1^m, M, 1^t \rangle$ the cost is
Solving the EPN

EPN Given a game Γ does it have a PNE?

\[\exists s \ \forall i \in N \ \forall a'_{i} \in A_{i} \ u_{i}(s) \geq u_{i}(s_{-i}, a_{i}) \]

Algorithm: Brute force, try all combinations

- Given $\Gamma = \langle 1^{n}, A_{1}, \ldots, A_{n}, T \rangle$ the cost is polynomial.
- Given $\Gamma = \langle 1^{n}, A_{1}, \ldots, A_{n}, M, 1^{t} \rangle$ the cost is exponential. So, in NP.
 - In the case that n is constant, in P.
- Given $\Gamma = \langle 1^{n}, 1^{m}, M, 1^{t} \rangle$ the cost is exponential.
Solving the EPN

EPN Given a game Γ does it have a PNE?

$$\exists s \ \forall i \in N \ \forall a'_i \in A_i \ u_i(s) \geq u_i(s_{-i}, a_i)$$

Algorithm: Brute force, try all combination

- Given $\Gamma = \langle 1^n, A_1, \ldots, A_n, T \rangle$ the cost is polynomial.
- Given $\Gamma = \langle 1^n, A_1, \ldots, A_n, M, 1^t \rangle$ the cost is exponential. So, in NP.
 In the case that n is constant, in P.
- Given $\Gamma = \langle 1^n, 1^m, M, 1^t \rangle$ the cost is exponential.
 A better classification?
Solving the EPN

EPN Given a game Γ does it have a PNE?

\[\exists s \ \forall i \in N \ \forall a'_i \in A_i \ u_i(s) \geq u_i(s_{-i}, a_i) \]

Algorithm: Brute force, try all combination

- Given \(\Gamma = \langle 1^n, A_1, \ldots, A_n, T \rangle \) the cost is polynomial.
- Given \(\Gamma = \langle 1^n, A_1, \ldots, A_n, M, 1^t \rangle \) the cost is exponential. So, in NP.
 In the case that \(n \) is constant, in P.
- Given \(\Gamma = \langle 1^n, 1^m, M, 1^t \rangle \) the cost is exponential. A better classification? in \(\Sigma_2^P \).
The EPN problem for strategic games in general form is NP-complete.

We provide a reduction from SAT. Let F be a CNF formula.

- $F \rightarrow \Gamma(F) = \langle 1^n, \{0, 1\} \ldots \{0, 1\}, M^F, 1^{(n+|F|)^2} \rangle$ where
- n is the number of variables in F and
- M^F is a TM that on input (a, i), evaluates F on assignment a and afterwards it implements the utility function of the i-th player. According to the following definition:
EPN: general form

\[u_1(a) = \begin{cases}
5 & \text{if } F(a) = 1, \\
4 & \text{if } F(a) = 0 \land a_1 = 0 \land a_2 = 1, \\
3 & \text{if } F(a) = 0 \land a_1 = 1 \land a_2 = 1, \\
2 & \text{if } F(a) = 0 \land a_1 = 1 \land a_2 = 0, \\
1 & \text{if } F(a) = 0 \land a_1 = 0 \land a_2 = 0,
\end{cases} \]

\[u_2(a) = \begin{cases}
5 & \text{if } F(a) = 1, \\
4 & \text{if } F(a) = 0 \land a_1 = 0 \land a_2 = 0, \\
3 & \text{if } F(a) = 0 \land a_1 = 0 \land a_2 = 1, \\
2 & \text{if } F(a) = 0 \land a_1 = 1 \land a_2 = 1, \\
1 & \text{if } F(a) = 0 \land a_1 = 1 \land a_2 = 0.
\end{cases} \]

And, for any \(j > 2 \)

\[u_j(a) = \begin{cases}
5 & \text{if } F(a) = 1, \\
1 & \text{otherwise.}
\end{cases} \]
We have that

- Given a description of F, $\Gamma(F)$ is computable in polynomial time.
We have that

- Given a description of F, $\Gamma(F)$ is computable in polynomial time.
 Similar arguments as before.
Reduction correctness

We have that

- Given a description of F, $\Gamma(F)$ is computable in polynomial time.
- Similar arguments as before.
- F is satisfiable iff $\Gamma(F)$ has a PNE?
Reduction trick

Look at the two player strategic game that can be played by the first and second players:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1,4</td>
<td>4,3</td>
</tr>
<tr>
<td>1</td>
<td>2,1</td>
<td>3,2</td>
</tr>
</tbody>
</table>

PNE?
Reduction trick

Look at the two player strategic game that can be played by the first and second players:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1,4</td>
<td>4,3</td>
</tr>
<tr>
<td>1</td>
<td>2,1</td>
<td>3,2</td>
</tr>
</tbody>
</table>

PNE?
None
Reduction correctness

- F is a yes instance of SAT.
F is a yes instance of SAT.
There is a satisfying assignment x. So $u_i(x) = 5$, for any i. Such a strategy profile is a PNE.
Reduction correctness

- F is a yes instance of SAT.
 There is a satisfying assignment x. So $u_i(x) = 5$, for any i. Such a strategy profile is a PNE.
- F is a no instance of SAT.
Reduction correctness

- **F** is a yes instance of SAT.
 There is a satisfying assignment x. So $u_i(x) = 5$, for any i.
 Such a strategy profile is a PNE.

- **F** is a no instance of SAT.
 For any strategy profile the payoff of players $j > 2$ is always 1.
 So they cannot change strategy and improve payoff.
 However, players 1 and 2 are engaged in a game with no PNE
 so one of them can change strategy and increase its payoff.
 Therefore $\Gamma(F)$ has no PNE
Let $L \subseteq \Sigma^*$ be a language.
$L \in \Sigma_2^p$ if and only if there is a polynomially decidable relation R and a polynomial p such that

$$L = \{x \mid \exists z |z| \leq p(|x|) \forall y |y| \leq p(|x|) \langle x, y, z \rangle \in R \}.$$
Let \(L \subseteq \Sigma^* \) be a language. \(L \in \Sigma_2^p \) if and only if there is a polynomially decidable relation \(R \) and a polynomial \(p \) such that

\[
L = \{ x \mid \exists z |z| \leq p(|x|) \forall y |y| \leq p(|x|) \langle x, y, z \rangle \in R \}.
\]

Q2SAT
Given \(\Phi = \exists \alpha_1, \ldots, \alpha_{n_1} \forall \beta_1, \ldots, \beta_{n_2} F \) where \(F \) is a Boolean formula over the boolean variables \(\alpha_1, \ldots, \alpha_{n_1}, \beta_1, \ldots, \beta_{n_2} \), decide whether \(\Phi \) is valid.

Q2SAT is \(\Sigma_2^p \)-complete.
The EPN problem for strategic games in implicit form is Σ^P_2-complete.

Let's provide a reduction from $Q2SAT$.
For each $\Phi = \exists \alpha_1, \ldots, \alpha_{n_1} \forall \beta_1, \ldots \beta_{n_2} F$
we define a game $\Gamma(\Phi)$ as follows.
There are four players:
For each $\Phi = \exists \alpha_1, \ldots, \alpha_{n_1} \forall \beta_1, \ldots \beta_{n_2} F$ we define a game $\Gamma(\Phi)$ as follows.

There are four players:

- Player 1, the *existential player*, assigns truth values to the boolean variables $\alpha_1, \ldots, \alpha_{n_1}$ and $A_1 = \{0, 1\}^{n_1}$ and $a_1 = (\alpha_1, \ldots \alpha_{n_1}) \in A_1$.
For each $\Phi = \exists \alpha_1, \ldots, \alpha_{n_1} \forall \beta_1, \ldots \beta_{n_2} F$
we define a game $\Gamma(\Phi)$ as follows.
There are four players:

- **Player 1**, the *existential player*, assigns truth values to the boolean variables $\alpha_1, \ldots, \alpha_{n_1}$ and $A_1 = \{0, 1\}^{n_1}$ and $a_1 = (\alpha_1, \ldots \alpha_{n_1}) \in A_1$.
- **Player 2**, the *universal player*, assigns truth values to the boolean variables $\beta_1, \ldots, \beta_{n_2}$ and $A_2 = \{0, 1\}^{n_2}$ and $a_2 = (\beta_1, \ldots, \beta_{n_2}) \in A_2$.
For each $\Phi = \exists \alpha_1, \ldots, \alpha_{n_1} \forall \beta_1, \ldots \beta_{n_2} F$
we define a game $\Gamma(\Phi)$ as follows.
There are four players:

- **Player 1**, the *existential player*, assigns truth values to the boolean variables $\alpha_1, \ldots, \alpha_{n_1}$ and $A_1 = \{0, 1\}^{n_1}$ and $a_1 = (\alpha_1, \ldots, \alpha_{n_1}) \in A_1$.
- **Player 2**, the *universal player*, assigns truth values to the boolean variables $\beta_1, \ldots, \beta_{n_2}$ and $A_2 = \{0, 1\}^{n_2}$ and $a_2 = (\beta_1, \ldots, \beta_{n_2}) \in A_2$.
- Players 3 and 4 avoid entering into a Nash equilibrium when the actions played by players 1 and 2 do not satisfy F. Their set of actions are $A_3 = A_4 = \{0, 1\}$.
Let us denote by $F(a_1, a_2)$ the truth value of F under the assignment given by a_1 and a_2.

$$u_1(a_1, a_2, a_3, a_4) = \begin{cases} 1 & \text{if } F(a_1, a_2) = 1, \\ 0 & \text{otherwise.} \end{cases}$$

$$u_2(a_1, a_2, a_3, a_4) = \begin{cases} 1 & \text{if } F(a_1, a_2) = 0, \\ 0 & \text{otherwise.} \end{cases}$$
$u_3(a_1, a_2, a_3, a_4) = \begin{cases}
5 & \text{if } F(a_1, a_2) = 1, \\
4 & \text{if } F(a_1, a_2) = 0 \land a_3 = 0 \land a_4 = 1, \\
3 & \text{if } F(a_1, a_2) = 0 \land a_3 = 1 \land a_4 = 1, \\
2 & \text{if } F(a_1, a_2) = 0 \land a_3 = 1 \land a_4 = 0, \\
1 & \text{if } F(a_1, a_2) = 0 \land a_3 = 0 \land a_4 = 0.
\end{cases}$

$u_4(a_1, a_2, a_3, a_4) = \begin{cases}
5 & \text{if } F(a_1, a_2) = 1, \\
3 & \text{if } F(a_1, a_2) = 0 \land a_3 = 0 \land a_4 = 1, \\
2 & \text{if } F(a_1, a_2) = 0 \land a_3 = 1 \land a_4 = 1, \\
1 & \text{if } F(a_1, a_2) = 0 \land a_3 = 1 \land a_4 = 0, \\
4 & \text{if } F(a_1, a_2) = 0 \land a_3 = 0 \land a_4 = 0.
\end{cases}$
Let us assume that $\Phi = \exists \alpha_1, \ldots, \alpha_n \forall \beta_1, \ldots, \beta_m F$, where F is a Boolean formula over the boolean variables $\alpha_1, \ldots, \alpha_n, \beta_1, \ldots, \beta_m$, is true.

Then there exists $\alpha \in \{0, 1\}^n$ such that for all $\beta \in \{0, 1\}^m$, $F(\alpha, \beta) = 1$.

This means that if player 1 plays action α, for each $\beta \in \{0, 1\}^m$, $a_3, a_4 \in \{0, 1\}$, no player has incentive to change strategy.
Let us assume that Φ is not valid. It means that for any $\alpha \in \{0, 1\}^n$ there exists $\beta \in \{0, 1\}^m$ such that $F(\alpha, \beta) = 0$. Let (α, β, a, b) be a strategy profile. We have two cases.
Let us assume that Φ is not valid.

It means that for any $\alpha \in \{0, 1\}^n$ there exists $\beta \in \{0, 1\}^m$ such that $F(\alpha, \beta) = 0$.

Let (α, β, a, b) be a strategy profile. We have two cases.

Case 1: $F(\alpha, \beta) = 0$, in this case players 3 an 4 engage in a no PNE game.
Let us assume that Φ is not valid.

It means that for any $\alpha \in \{0, 1\}^n$ there exists $\beta \in \{0, 1\}^m$ such that $F(\alpha, \beta) = 0$.

Let (α, β, a, b) be a strategy profile. We have two cases.

Case 1: $F(\alpha, \beta) = 0$, in this case players 3 and 4 engage in a no PNE game.

Case 2: $F(\alpha, \beta) = 1$, since Φ is not valid, there exists $\beta' \in \{0, 1\}^m$ such that $F(\alpha, \beta') = 0$. Therefore player 2 has an incentive to change strategy β by β'.

\[\text{AGT-MIRI} \]
Let us assume that Φ is not valid.

It means that for any $\alpha \in \{0, 1\}^n$ there exists $\beta \in \{0, 1\}^m$ such that $F(\alpha, \beta) = 0$.

Let (α, β, a, b) be a strategy profile. We have two cases.

Case 1: $F(\alpha, \beta) = 0$, in this case players 3 an 4 engage in a no PNE game.

Case 2: $F(\alpha, \beta) = 1$, since Φ is not valid, there exists $\beta' \in \{0, 1\}^m$ such that $F(\alpha, \beta') = 0$. Therefore player 2 has an incentive to change strategy β by β'.

Therefore, the strategy profile is not a PNE.
PNGrant problem

PNGrant Given a strategic game Γ and a value ν, decide whether there is a PNE s so the $u_1(s) \geq \nu$.

Theorem

The PNGrant problem can be solved in polynomial time for strategic games given in explicit form but it is NP-complete for strategic games given in general form. It is Σ^p_2-complete for strategic games given in implicit form.
PNGrant problem

PNGrant Given a strategic game \(\Gamma \) and a value \(v \), decide whether there is a PNE \(s \) so the \(u_1(s) \geq v \).

Theorem

The PNGrant problem can be solved in polynomial time for strategic games given in explicit form but it is NP-complete for strategic games given in general form.

is \(\Sigma^p_2 \)-complete for strategic games given in implicit form.

Membership follows from the same arguments.
The PNGrant problem

Given a strategic game Γ and a value v, decide whether there is a PNE s so the $u_1(s) \geq v$.

Theorem

The PNGrant problem can be solved in polynomial time for strategic games given in explicit form but it is NP-complete for strategic games given in general form is Σ_2^P-complete for strategic games given in implicit form.

Membership follows from the same arguments. In all the reduction the utility for the first player in all PNE is constant, this provides the value of v in each reduction.
1 Complexity framework
2 Complexity analysis
3 Other succinct representations
4 Concluding remarks
In a circuit game, players still control disjoint sets of variables, but each player’s payoff is given by a single boolean circuit.

The boolean circuit computes a rational value as the quotient of two integers.

Boolean circuit games are the special case of circuit games where each player controls a single boolean variable.
(Boolean) Circuit games

[Schoenebeck and Vadhan, EC 2006 - ACM TCT 2012]

- In a circuit game, players still control disjoint sets of variables, but each player’s payoff is given by a single boolean circuit.
- The boolean circuit computes a rational value as the quotient of two integers.
- Boolean circuit games are the special case of circuit games where each player controls a single boolean variable.

TMs can be simulated by circuits and vice versa.
(Boolean) Circuit games

[Schoenebeck and Vadhan, EC 2006 - ACM TCT 2012]

• In a circuit game, players still control disjoint sets of variables, but each player’s payoff is given by a single boolean circuit.
• The boolean circuit computes a rational value as the quotient of two integers
• Boolean circuit games are the special case of circuit games where each player controls a single boolean variable.

TMs can be simulated by circuits and viceversa
• Circuit games are equivalent to implicit form games
• Boolean circuit games are a subset of general form games.
In a formula game, players still control disjoint sets of variables, but each player’s payoff is given by a weighted combination of boolean formulas.

Boolean formula games are the special case of formula games where each player controls a single boolean variable.
(Boolean) weighted formula games

[Mavronicolas, Monien, Wagner, WINE 2007]

- In a formula game, players still control disjoint sets of variables, but each player’s payoff is given by a weighted combination of boolean formulas.

- Boolean formula games are the special case of formula games where each player controls a single boolean variable.

- Formulas can be casted as circuits but not vice versa as the size might grow exponentially.
(Boolean) weighted formula games

[Mavronicolas, Monien, Wagner, WINE 2007]

- In a formula game, players still control disjoint sets of variables, but each player’s payoff is given by a weighted combination of boolean formulas.
- Boolean formula games are the special case of formula games where each player controls a single boolean variable.
- Formulas can be casted as circuits but not viceversa as the size might grow exponentially.
- Nevertheless the utility functions of the provided reductions can be easily described in this way. So the problems are equivalent from the complexity point of view.
Graphical games

[Gottlob, Greco and Scarcello, JAIR 2005]

- Graphical games are a representation of multiplayer games meant to capture and exploit locality or sparsity of direct influences.
- They are most appropriate for large population games in which the payoffs of each player are determined by the actions of only a small subpopulation.
- Players’ relationship is described by a graph and the payoff of a player depends only on the actions of its neighbors.
Graphical games

[Gottlob, Greco and Scarcello, JAIR 2005]

- Graphical games are a representation of multiplayer games meant to capture and exploit locality or sparsity of direct influences.
- They are most appropriate for large population games in which the payoffs of each player are determined by the actions of only a small subpopulation.
- Players’ relationship is described by a graph and the payoff of a player depends only on the actions of its neighbors.
- Provide a complementary framework to analyze complexity based on the graph parameters:
Graphical games

[Gottlob, Greco and Scarcello, JAIR 2005]

- Graphical games are a representation of multiplayer games meant to capture and exploit locality or sparsity of direct influences.
- They are most appropriate for large population games in which the payoffs of each player are determined by the actions of only a small subpopulation.
- Players’ relationship is described by a graph and the payoff of a player depends only on the actions of its neighbors.
- Provide a complementary framework to analyze complexity based on the graph parameters: bounded degree, bounded treewidth, ...
Uniform families of games with polynomial time computable utilities

- We have analyzed the representations of the strategic games as potential inputs to a problem.
- However those representation forms do not capture completely the notion of games whose utility functions are computable in polynomial time as we expect to have a TM describing the game family and not a TM per game.
We have analyzed the representations of the strategic games as potential inputs to a problem.

However those representation forms do not capture completely the notion of games whose utility functions are computable in polynomial time as we expect to have a TM describing the game family and not a TM per game.

Even though in many papers studying the computational complexity of some specific games, it is assumed that the utilities are computable in polynomial time this assumption has different interpretations.
Uniform families of games with polynomial time computable utilities

- We adopt: games defined uniformly by polynomial time Turing machines.
Uniform families of games with polynomial time computable utilities

- We adopt: games defined uniformly by polynomial time Turing machines.

- Let M be a DTM and let us assume that an alphabet Σ is fixed.

- We define uniformly families of games associated to M:
Uniform families of games with polynomial time computable utilities

- We adopt: games defined uniformly by polynomial time Turing machines.

- Let M be a DTM and let us assume that an alphabet Σ is fixed.

- We define uniformly families of games associated to M:

- Observe that this approach does not make sense for the explicit form.
M-implicit form strategic family Each instance of the family specifies the number of players n and their set of actions in an succinct way.

$$\left\{ \left\langle 1^n, 1^{m_1}, \ldots, 1^{m_n} \right\rangle \mid n, m_1, \ldots, m_n \in \mathbb{N} \right\}.$$

In the game described by $\left\langle 1^n, 1^{m_1}, \ldots, 1^{m_n} \right\rangle$, $A_i = \Sigma^{\leq m_i}$ and if a is a strategy profile of such a game, and $1 \leq i \leq n$, then the utility of the i-th player on a is defined as $u_i(a) = M(a, i)$.
General form

M-general form strategic family. Each instance of the family describes a game by giving the number of players n and explicitly listing the set of actions of each player.

$$\{\langle 1^n, A_1, \ldots, A_n \rangle \mid n, m \in \mathbb{N} \land \forall i \ A_i \subseteq \Sigma^* \}$$

*In the game described by $\langle 1^n, A_1, \ldots, A_n \rangle$, if a is a strategy profile of such game, and $1 \leq i \leq n$, then the utility of the i-th player on a is defined as $u_i(a) = M(a, i)$.***
Hence, given a family of games defined from a polynomial time DTM M, we can also pose the question of determining whether a game of this family has a Nash equilibrium.

M-Exists Pure Nash (M-EPN)

Given a game Γ, defined uniformly by M, decide whether Γ has a Pure Nash equilibrium.

M-Pure Nash equilibrium with guarantee (M-PNGrant)

Given a game Γ, defined uniformly by M, a value u, and a player i, decide whether Γ has a Pure Nash equilibrium in which player i gets payoff u or higher.
Theorem

- There exists a polynomial time DTM M for which the M-EPN problem for games in the M-implicit form strategic family is Σ^p_2-complete.
- There exists a polynomial time DTM M for which the M-EPN problem for games in the M-general form strategic family is NP-complete.
- There exists a polynomial time DTM M for which the M-PNGrant problem for games in the M-implicit form strategic family is Σ^p_2-complete.
- There exists a polynomial time DTM M for which the M-PNGrant problem for games in the M-general form strategic family is NP-complete.
We are considering uniform families of games.

The main difference with respect to the proofs of the analogous results in the previous section is that the DTM cannot be parameterized by the quantified boolean formula Φ or the CNF formula F.
Uniformity vs non-uniformity

- We are considering uniform families of games.
- The main difference with respect to the proofs of the analogous results in the previous section is that the DTM cannot be parameterized by the quantified boolean formula Φ or the CNF formula F.
- Now these formulae should be part of the input of the machines.
- This requires an additional trick.
For any fixed polynomial time DTM M, the problem of deciding whether a game Γ in M-implicit form has a PNE can be solved by an Alternating TM, with 2 alternations, existential and universal, in polynomial time. Hence M-SPN $\in \Sigma_2^P$.
To prove hardness, we have to define first the polynomial time DTM M.

Let M be the TM such that on input $(\Phi, a_1, a_2, a_3, a_4, i)$ being $\Phi = \exists \alpha_1, \ldots, \alpha_{n_1} \forall \beta_1, \ldots, \beta_{n_2} F$ an instance of the Q2SAT problem, $a_1 \in A_1 = \{0, 1\}^{n_1}$, $a_2 \in A_2 = \{0, 1\}^{n_2}$ and $a_3, a_4 \in \{0, 1\}$, computes the utilities defined as before.

M works in polynomial time with respect to the input length.
For each Φ we define a game $\Gamma(\Phi)$ with five players. Players 1, 2, 3 and 4 are defined exactly equal to the four players of the game defined in the previous reduction.
For each Φ we define a game $\Gamma(\Phi)$ with five players. Players 1, 2, 3 and 4 are defined exactly equal to the four players of the game defined in the previous reduction.

We have an additional player, player 0 who has a unique action that defines the rules of the game, i.e. $A_0 = \{\Phi\}$.
For each Φ we define a game $\Gamma(\Phi)$ with five players. Players 1, 2, 3 and 4 are defined exactly equal to the four players of the game defined in the previous reduction.

We have an additional player, player 0 who has a unique action that defines the rules of the game, i.e. $A_0 = \{\Phi\}$.

As we have shown, Φ is valid if and only if $\Gamma(\Phi)$ has a PNE, and the description of $\Gamma(\Phi)$ in implicit form can be obtained in polynomial time.
1. Complexity framework
2. Complexity analysis
3. Other succinct representations
4. Concluding remarks
We have analyzed some ways of describing games with polynomial time computable utilities: uniform and non-uniform models for strategic games.

We have concentrated on the study of two computational problems.

As expected complexity increases with succinctness.

There are many other game classes and problems of interest not covered in this talk.
Contents taken from a subset of the results in

- C. Alvarez, J. Gabarr’o, M. Serna
 Equilibria problems on games: Complexity versus succinctness
 J. of Comp. and Sys. Sci. 77:1172-1197, 2011
Further suggested reading (among many others)

- G. Gottlob, G. Greco, F. Scarcello
 Pure Nash equilibria: Hard and easy games
 J. Artificial Intelligence Res. 24:357–406, 2005

- J. Gabarro, A. Garcia, M. Serna
 The complexity of game isomorphism
References

- M. Mavronicolas, B. Monien, K. Wagner
 Weighted boolean formula games
 in: X. Deng, F. Graham (Eds.), WINE 2007,

- G.R. Schoenebeck, S. Vadhan
 The Computational Complexity of Nash Equilibria in Concisely
 Represented Games
 ACM Transactions on Computational Theory, 4(2) article 4, 2012