Simple Games

Spring 2024

(1) Simple Games

(2) Problems on simple games
(3) IsWeighted
(4) The core

(1) Simple Games

(2) Problems on simple games

(3) IsWeighted

Simple Games

- Simple Games were introduced by (Taylor \& Zwicker, 1999)

Simple Games

- Simple Games were introduced by (Taylor \& Zwicker, 1999)
- A simpe game is a cooperative game (N, v) such that $v: \mathcal{C}_{N} \rightarrow\{0,1\}$ and it is monotone.

Simple Games

- Simple Games were introduced by (Taylor \& Zwicker, 1999)
- A simpe game is a cooperative game (N, v) such that $v: \mathcal{C}_{N} \rightarrow\{0,1\}$ and it is monotone.
- A simple game can be described by a pair (N, \mathcal{W}) :
- N is a set of players,
- $\mathcal{W} \subseteq \mathcal{P}(N)$ is a monotone set of winning coalitions, those coalitions X with $v(X)=1$.
- $\mathcal{L}=\mathcal{C}_{N} \backslash \mathcal{W}$ is the set of losing coalitions those coalitions X with $v(X)=0$.

Simple Games

- Simple Games were introduced by (Taylor \& Zwicker, 1999)
- A simpe game is a cooperative game (N, v) such that $v: \mathcal{C}_{N} \rightarrow\{0,1\}$ and it is monotone.
- A simple game can be described by a pair (N, \mathcal{W}) :
- N is a set of players,
- $\mathcal{W} \subseteq \mathcal{P}(N)$ is a monotone set of winning coalitions, those coalitions X with $v(X)=1$.
- $\mathcal{L}=\mathcal{C}_{N} \backslash \mathcal{W}$ is the set of losing coalitions those coalitions X with $v(X)=0$.
- Members of $N=\{1, \ldots, n\}$ are called players or voters.

Simple games: Representation

Due to monotonicity, any one of the following families of coalitions define a simple game on a set of players N :

- winning coalitions \mathcal{W}.
- losing coalitions \mathcal{L}.
- minimal winning coalitions \mathcal{W}^{m}
$\mathcal{W}^{m}=\{X \in \mathcal{W} ; \forall Z \in \mathcal{W}, Z \nsubseteq X\}$
- maximal losing coalitions \mathcal{L}^{M}

$$
\mathcal{L}^{M}=\{X \in \mathcal{L} ; \forall Z \in \mathcal{L}, X \nsubseteq L\}
$$

This provides us with many representation forms for simple games.

Weighted voting games

Weighted voting games

- Weighted voting games (WVG)

Weighted voting games

- Weighted voting games (WVG)

A simple game for which there exists a quota q and it is possible to assign to each $i \in N$ a weight w_{i}, so that

$$
X \in \mathcal{W} \text { iff } \sum_{i \in X} w_{i} \geq q
$$

Weighted voting games

- Weighted voting games (WVG)

A simple game for which there exists a quota q and it is possible to assign to each $i \in N$ a weight w_{i}, so that

$$
X \in \mathcal{W} \text { iff } \sum_{i \in X} w_{i} \geq q
$$

- WVG can be represented by a tuple of integers $\left(q ; w_{1}, \ldots, w_{n}\right)$. as any weighted game admits such an integer realization, [Carreras and Freixas, Math. Soc.Sci., 1996]

Vector weighted voting games

Vector weighted voting games

Vector weighted voting games

- Given two simple games $\Gamma_{1}=\left(N, \mathcal{W}_{1}\right)$ and $\Gamma_{2}=\left(N, \mathcal{W}_{1}\right)$ we can define their

Vector weighted voting games

- Given two simple games $\Gamma_{1}=\left(N, \mathcal{W}_{1}\right)$ and $\Gamma_{2}=\left(N, \mathcal{W}_{1}\right)$ we can define their
- union

Vector weighted voting games

- Given two simple games $\Gamma_{1}=\left(N, \mathcal{W}_{1}\right)$ and $\Gamma_{2}=\left(N, \mathcal{W}_{1}\right)$ we can define their
- union $\Gamma_{1} \cup \Gamma_{2}=\left(N, \mathcal{W}_{1} \cup \mathcal{W}_{2}\right)$

Vector weighted voting games

- Given two simple games $\Gamma_{1}=\left(N, \mathcal{W}_{1}\right)$ and $\Gamma_{2}=\left(N, \mathcal{W}_{1}\right)$ we can define their
- union $\Gamma_{1} \cup \Gamma_{2}=\left(N, \mathcal{W}_{1} \cup \mathcal{W}_{2}\right)$
- intersection

Vector weighted voting games

- Given two simple games $\Gamma_{1}=\left(N, \mathcal{W}_{1}\right)$ and $\Gamma_{2}=\left(N, \mathcal{W}_{1}\right)$ we can define their
- union $\Gamma_{1} \cup \Gamma_{2}=\left(N, \mathcal{W}_{1} \cup \mathcal{W}_{2}\right)$
- intersection $\Gamma_{1} \cap \Gamma_{2}=\left(N, \mathcal{W}_{1} \cap \mathcal{W}_{2}\right)$

Both are simple games

Vector weighted voting games

- Given two simple games $\Gamma_{1}=\left(N, \mathcal{W}_{1}\right)$ and $\Gamma_{2}=\left(N, \mathcal{W}_{1}\right)$ we can define their
- union $\Gamma_{1} \cup \Gamma_{2}=\left(N, \mathcal{W}_{1} \cup \mathcal{W}_{2}\right)$
- intersection $\Gamma_{1} \cap \Gamma_{2}=\left(N, \mathcal{W}_{1} \cap \mathcal{W}_{2}\right)$

Both are simple games

- A simple game Γ is a vector weighted voting game if there are WVGs $\Gamma_{1}, \ldots, \Gamma_{k}$, for some $k \geq 1$, so that $\Gamma=\Gamma_{1} \cap \cdots \cap \Gamma_{k}$.

Representability

Representability

- There are simple games that are not WVGs

Representability

- There are simple games that are not WVGs The game with $N=\{1,2,3,4\}$ where the minimal winning coalitions are the sets $\{1,2\}$ and $\{3,4\}$ is not a WVG.

Representability

- There are simple games that are not WVGs

The game with $N=\{1,2,3,4\}$ where the minimal winning coalitions are the sets $\{1,2\}$ and $\{3,4\}$ is not a WVG.

- Assume it is given by $\left(q ; w_{1}, w_{2}, w_{3}, w_{4}\right)$.

Representability

- There are simple games that are not WVGs

The game with $N=\{1,2,3,4\}$ where the minimal winning coalitions are the sets $\{1,2\}$ and $\{3,4\}$ is not a WVG.

- Assume it is given by $\left(q ; w_{1}, w_{2}, w_{3}, w_{4}\right)$.
- We have $w_{1}+w_{2} \geq q$ and $w_{3}+w_{4} \geq q$.
- Thus $\max \left\{w_{1}, w_{2}\right\} \geq q / 2$ and $\max \left\{w_{3}, w_{4}\right\} \geq q / 2$,
- So, $\max \left\{w_{1}, w_{2}\right\}+\max \left\{w_{3}, w_{4}\right\} \geq q$ which cannot be.

Representability

Representability

- Any simple game Γ is a VWVGs

Representability

- Any simple game Γ is a VWVGs
- Take a losing coalition C and consider the game in which players in C have weight 0 and players outside $C 1$, set the quote to 1 .
Any set that is not contained in C wins!

Representability

- Any simple game Γ is a VWVGs
- Take a losing coalition C and consider the game in which players in C have weight 0 and players outside $C 1$, set the quote to 1 .
Any set that is not contained in C wins!
- The intersection of the above games describes Γ.

Representability

- Any simple game Γ is a VWVGs
- Take a losing coalition C and consider the game in which players in C have weight 0 and players outside $C 1$, set the quote to 1 .
Any set that is not contained in C wins!
- The intersection of the above games describes Γ. A winning coalition cannot be a subset of any losing coalition.

Representability

- Any simple game Γ is a VWVGs
- Take a losing coalition C and consider the game in which players in C have weight 0 and players outside $C 1$, set the quote to 1 .
Any set that is not contained in C wins!
- The intersection of the above games describes Γ.

A winning coalition cannot be a subset of any losing coalition.

- The dimension of a simple games is the minimum number of WVGs that allows its representation as VWVG

A representation as WVGs

A representation as WVGs

The game Γ with $N=\{1,2,3,4\}$ where the minimal winning coalitions are the sets $\{1,2\}$ and $\{3,4\}$ is not a WVG.

A representation as WVGs

The game Γ with $N=\{1,2,3,4\}$ where the minimal winning coalitions are the sets $\{1,2\}$ and $\{3,4\}$ is not a WVG.

- The maximal losing coalitions are $\{\{1,3\},\{1,4\},\{2,3\}\{2,4\}\}$

A representation as WVGs

The game Γ with $N=\{1,2,3,4\}$ where the minimal winning coalitions are the sets $\{1,2\}$ and $\{3,4\}$ is not a WVG.

- The maximal losing coalitions are $\{\{1,3\},\{1,4\},\{2,3\}\{2,4\}\}$
- This gives four WVG, according to the previous construction

$$
\Gamma=[1 ; 0,1,0,1] \cap[1 ; 0,1,1,0] \cap[1 ; 1,0,0,1] \cap[1 ; 1,0,1,0] .
$$

Input representations

- Simple Games
(N, \mathcal{W}) : extensive wining, $\left(N, \mathcal{W}^{m}\right)$: minimal wining
(N, \mathcal{L}) : extensive losing, $\left(N, \mathcal{L}^{M}\right)$ maximal losing
(N, C): monotone circuit winning
(N, F): monotone formula winning,
- Weighted voting games: $\left(q ; w_{1}, \ldots, w_{n}\right)$
- Vector weighted voting games: $\left(q_{1} ; w_{1}^{1}, \ldots, w_{n}^{1}\right), \ldots,\left(q_{k} ; w_{1}^{k}, \ldots, w_{n}^{k}\right)$

All numbers are integers

(1) Simple Games

(2) Problems on simple games

(3) IsWeighted

Problems on simple games

In general we state a property P, for simple games, and consider the associated decision problem which has the form:

Name: IsP
Input: A simple game/WVG/VWVG 「
Question: Does 「 satisfy property P?

Four properties

A simple game (N, \mathcal{W}) is

- strong if $S \notin \mathcal{W}$ implies $N \backslash S \in \mathcal{W}$.
- proper if $S \in \mathcal{W}$ implies $N \backslash S \notin \mathcal{W}$.
- a weighted voting game.
- a vector weighted voting game.

IsStrong: Simple Games

Γ is strong if $S \notin \mathcal{W}$ implies $N \backslash S \in \mathcal{W}$

IsStrong: Simple Games

Γ is strong if $S \notin \mathcal{W}$ implies $N \backslash S \in \mathcal{W}$
Theorem
The IsStrong problem, when 「 is given in explicit winning or losing form or in maximal losing form can be solved in polynomial time.

IsStrong: Simple Games

Γ is strong if $S \notin \mathcal{W}$ implies $N \backslash S \in \mathcal{W}$
Theorem
The IsStrong problem, when Γ is given in explicit winning or losing form or in maximal losing form can be solved in polynomial time.

Proof

- First observe that, given a family of subsets F, we can check, for any set in F, whether its complement is not in F in polynomial time.
- Therefore, the IsStrong problem, when the input is given in explicit losing form is polynomial time solvable.

IsStrong: Simple Games loosing forms

Γ is strong if $S \notin \mathcal{W}$ implies $N \backslash S \in \mathcal{W}$

- A simple game is not strong iff

$$
\exists S \subseteq N: S \in \mathcal{L} \wedge N \backslash S \in \mathcal{L}
$$

IsStrong: Simple Games loosing forms

Γ is strong if $S \notin \mathcal{W}$ implies $N \backslash S \in \mathcal{W}$

- A simple game is not strong iff

$$
\exists S \subseteq N: S \in \mathcal{L} \wedge N \backslash S \in \mathcal{L}
$$

which is equivalent to

$$
\exists S \subseteq N: \exists L_{1}, L_{2} \in \mathcal{L}^{M}: S \subseteq L_{1} \wedge N \backslash S \subseteq L_{2}
$$

IsStrong: Simple Games loosing forms

Γ is strong if $S \notin \mathcal{W}$ implies $N \backslash S \in \mathcal{W}$

- A simple game is not strong iff

$$
\exists S \subseteq N: S \in \mathcal{L} \wedge N \backslash S \in \mathcal{L}
$$

which is equivalent to

$$
\exists S \subseteq N: \exists L_{1}, L_{2} \in \mathcal{L}^{M}: S \subseteq L_{1} \wedge N \backslash S \subseteq L_{2}
$$

- which is equivalent to there are two maximal losing coalitions L_{1} and L_{2} such that $L_{1} \cup L_{2}=N$.

IsStrong: Simple Games loosing forms

Γ is strong if $S \notin \mathcal{W}$ implies $N \backslash S \in \mathcal{W}$

- A simple game is not strong iff

$$
\exists S \subseteq N: S \in \mathcal{L} \wedge N \backslash S \in \mathcal{L}
$$

which is equivalent to

$$
\exists S \subseteq N: \exists L_{1}, L_{2} \in \mathcal{L}^{M}: S \subseteq L_{1} \wedge N \backslash S \subseteq L_{2}
$$

- which is equivalent to there are two maximal losing coalitions L_{1} and L_{2} such that $L_{1} \cup L_{2}=N$.
- This can be checked in polynomial time, given \mathcal{L}^{M}.

IsStrong: explicit winning forms

Γ is strong if $S \notin \mathcal{W}$ implies $N \backslash S \in \mathcal{W}$

- Given (N, \mathcal{W}), for $i \in N$ consider the family $\mathcal{W}_{i}=\{X \backslash\{i\} \mid X \in \mathcal{W}\}$ and $R=\cup_{i \in N} \mathcal{W}_{i}$.
- All the coalitions in $R \backslash W$ are losing coalitions.
- Furthermore for a coalition $X \in \mathcal{L}^{M}$ and $i \notin X, X \cup\{i\} \in \mathcal{W}$.
- Thereofore, $\mathcal{L}^{M} \subseteq R \backslash W$ and $(R \backslash W)^{M}=\mathcal{L}^{M}$.
- Then, we compute \mathcal{L}^{M} from \mathcal{W} in polynomial time and then use the algoritm for the maximal losing form.

IsStrong: minimal winning forms

Γ is strong if $S \notin \mathcal{W}$ implies $N \backslash S \in \mathcal{W}$
Theorem
The IsStrong problem is coNP-complete when the input game is given in explicit minimal winning form.

Proof

IsStrong: minimal winning forms

Γ is strong if $S \notin \mathcal{W}$ implies $N \backslash S \in \mathcal{W}$

Theorem

The IsStrong problem is coNP-complete when the input game is given in explicit minimal winning form.

Proof

- The property can be expressed as

$$
\forall S[(S \in \mathcal{W}) \text { or }(S \notin \mathcal{W} \text { and } N \backslash S \in \mathcal{W})]
$$

- Observe that the property $S \in \mathcal{W}$ can be checked in polynomial time given S and \mathcal{W}^{m}.
- Thus the problem belongs to coNP.

IsStrong: minimal winning forms

- We provide a polynomial time reduction from the complement of the NP-complete set splitting problem.
- An instance of the set splitting problem is a collection C of subsets of a finite set N. The question is whether it is possible to partition N into two subsets P and $N \backslash P$ such that no subset in C is entirely contained in either P or $N \backslash P$.

IsStrong: minimal winning forms

- We provide a polynomial time reduction from the complement of the NP-complete set splitting problem.
- An instance of the set splitting problem is a collection C of subsets of a finite set N. The question is whether it is possible to partition N into two subsets P and $N \backslash P$ such that no subset in C is entirely contained in either P or $N \backslash P$.
- We have to decide whether $P \subseteq N$ exists such that

$$
\forall S \in C: S \nsubseteq P \wedge S \nsubseteq N \backslash P
$$

IsStrong: minimal winning forms

- We provide a polynomial time reduction from the complement of the NP-complete set splitting problem.
- An instance of the set splitting problem is a collection C of subsets of a finite set N. The question is whether it is possible to partition N into two subsets P and $N \backslash P$ such that no subset in C is entirely contained in either P or $N \backslash P$.
- We have to decide whether $P \subseteq N$ exists such that

$$
\forall S \in C: S \nsubseteq P \wedge S \nsubseteq N \backslash P
$$

We associate to a set splitting instance (N, C) the simple game in explicit minimal winning form $\left(N, C^{m}\right)$.

IsStrong: minimal winning form

- C^{m} can be computed in polynomial time, given C. Why?

IsStrong: minimal winning form

- C^{m} can be computed in polynomial time, given C. Why?
- Now assume that $P \subseteq N$ satisfies

$$
\forall S \in C: S \nsubseteq P \wedge S \nsubseteq N \backslash P
$$

IsStrong: minimal winning form

- C^{m} can be computed in polynomial time, given C. Why?
- Now assume that $P \subseteq N$ satisfies

$$
\forall S \in C: S \nsubseteq P \wedge S \nsubseteq N \backslash P
$$

- This means that P and $N \backslash P$ are losing coalitions in the game (N, C^{m}).

IsStrong: minimal winning form

- C^{m} can be computed in polynomial time, given C. Why?
- Now assume that $P \subseteq N$ satisfies

$$
\forall S \in C: S \nsubseteq P \wedge S \nsubseteq N \backslash P
$$

- This means that P and $N \backslash P$ are losing coalitions in the game $\left(N, C^{m}\right)$.
- So, $S \nsubseteq P$ and $S \nsubseteq N \backslash P$, for any $S \in C^{m}$.

IsStrong: minimal winning form

- C^{m} can be computed in polynomial time, given C. Why?
- Now assume that $P \subseteq N$ satisfies

$$
\forall S \in C: S \nsubseteq P \wedge S \nsubseteq N \backslash P
$$

- This means that P and $N \backslash P$ are losing coalitions in the game $\left(N, C^{m}\right)$.
- So, $S \nsubseteq P$ and $S \nsubseteq N \backslash P$, for any $S \in C^{m}$.
- This implies $S \nsubseteq P$ and $S \nsubseteq N \backslash P$, for any $S \in C$ since any set in C contains a set in C^{m}.

IsStrong: minimal winning form

- C^{m} can be computed in polynomial time, given C. Why?
- Now assume that $P \subseteq N$ satisfies

$$
\forall S \in C: S \nsubseteq P \wedge S \nsubseteq N \backslash P
$$

- This means that P and $N \backslash P$ are losing coalitions in the game (N, C^{m}).
- So, $S \nsubseteq P$ and $S \nsubseteq N \backslash P$, for any $S \in C^{m}$.
- This implies $S \nsubseteq P$ and $S \nsubseteq N \backslash P$, for any $S \in C$ since any set in C contains a set in C^{m}.
- Therefore, (N, C) has a set splitting iff $\left(N, C^{m}\right)$ is not strong.

IsProper: winning forms

Γ is proper if $S \in \mathcal{W}$ implies $N \backslash S \notin \mathcal{W}$.
Theorem
The IsProper problem, when the game is given in explicit winning or losing form or in minimal winning form, can be solved in polynomial time.

IsProper: winning forms

Γ is proper if $S \in \mathcal{W}$ implies $N \backslash S \notin \mathcal{W}$.
Theorem
The IsProper problem, when the game is given in explicit winning or losing form or in minimal winning form, can be solved in polynomial time.

Proof

- As before, given a family of subsets F, we can check, for any set in F, whether its complement is not in F in polynomial time. Taking into account the definitions, the IsProper problem is polynomial time solvable for the explicit forms

IsProper: winning forms

- Γ is not proper iff

$$
\exists S \subseteq N: S \in \mathcal{W} \wedge N \backslash S \in \mathcal{W}
$$

IsProper: winning forms

- Γ is not proper iff

$$
\exists S \subseteq N: S \in \mathcal{W} \wedge N \backslash S \in \mathcal{W}
$$

- which is equivalent to

$$
\exists S \subseteq N: \exists W_{1}, W_{2} \in \mathcal{W}^{m}: W_{1} \subseteq S \wedge W_{2} \subseteq N \backslash S
$$

IsProper: winning forms

- Γ is not proper iff

$$
\exists S \subseteq N: S \in \mathcal{W} \wedge N \backslash S \in \mathcal{W}
$$

- which is equivalent to

$$
\exists S \subseteq N: \exists W_{1}, W_{2} \in \mathcal{W}^{m}: W_{1} \subseteq S \wedge W_{2} \subseteq N \backslash S
$$

- equivalent to there are two minimal winning coalitions W_{1} and W_{2} such that $W_{1} \cap W_{2}=\emptyset$.

IsProper: winning forms

- Γ is not proper iff

$$
\exists S \subseteq N: S \in \mathcal{W} \wedge N \backslash S \in \mathcal{W}
$$

- which is equivalent to

$$
\exists S \subseteq N: \exists W_{1}, W_{2} \in \mathcal{W}^{m}: W_{1} \subseteq S \wedge W_{2} \subseteq N \backslash S
$$

- equivalent to there are two minimal winning coalitions W_{1} and W_{2} such that $W_{1} \cap W_{2}=\emptyset$.
- Which can be checked in polynomial time when \mathcal{W}^{m} is given.

IsProper: maximal losing form

Γ is proper if $S \in \mathcal{W}$ implies $N \backslash S \notin \mathcal{W}$.
Theorem
The IsProper problem is coNP-complete when the input game is given in extensive maximal losing form.

IsProper: maximal losing form

Γ is proper if $S \in \mathcal{W}$ implies $N \backslash S \notin \mathcal{W}$.
Theorem
The IsProper problem is coNP-complete when the input game is given in extensive maximal losing form.

Proof

- A game is not proper iff

$$
\exists S \subseteq N: S \notin \mathcal{L} \wedge N \backslash S \notin \mathcal{L}
$$

- which is equivalet to

$$
\exists S \subseteq N: \forall T_{1}, T_{2} \in \mathcal{L}^{M}: S \nsubseteq T_{1} \wedge N \backslash S \nsubseteq T_{2}
$$

IsProper: maximal losing form

Γ is proper if $S \in \mathcal{W}$ implies $N \backslash S \notin \mathcal{W}$.
Theorem
The IsProper problem is coNP-complete when the input game is given in extensive maximal losing form.

Proof

- A game is not proper iff

$$
\exists S \subseteq N: S \notin \mathcal{L} \wedge N \backslash S \notin \mathcal{L}
$$

- which is equivalet to

$$
\exists S \subseteq N: \forall T_{1}, T_{2} \in \mathcal{L}^{M}: S \nsubseteq T_{1} \wedge N \backslash S \nsubseteq T_{2}
$$

- Therefore IsProper belongs to coNP.

IsProper: maximal losing form

To show that the problem is also coNP-hard we provide a reduction from the IsStrong problem for games given in extensive minimal winning form.

IsProper: maximal losing form

To show that the problem is also coNP-hard we provide a reduction from the IsStrong problem for games given in extensive minimal winning form.

- If a family C of subsets of N is minimal then the family $\{N \backslash L: L \in C\}$ is maximal.
- Given a game $\Gamma=\left(N, \mathcal{W}^{m}\right)$, in minimal winning form, we construct the game $\Gamma^{\prime}=\left(N,\left\{N \backslash L: L \in \mathcal{W}^{m}\right\}\right)$ in maximal losing form.
- Which can be obtained in polynomial time.

IsProper: maximal losing form

To show that the problem is also coNP-hard we provide a reduction from the IsStrong problem for games given in extensive minimal winning form.

- If a family C of subsets of N is minimal then the family $\{N \backslash L: L \in C\}$ is maximal.
- Given a game $\Gamma=\left(N, \mathcal{W}^{m}\right)$, in minimal winning form, we construct the game $\Gamma^{\prime}=\left(N,\left\{N \backslash L: L \in \mathcal{W}^{m}\right\}\right)$ in maximal losing form.
- Which can be obtained in polynomial time.
- Besides, Γ is strong iff Γ^{\prime} is proper.

(1) Simple Games

(2) Problems on simple games
(3) IsWeighted

Explicit forms

Lemma

The IsWeighted problem can be solved in polynomial time when the input game is given in explicit winning or losing form.

Explicit forms

Lemma

The IsWeighted problem can be solved in polynomial time when the input game is given in explicit winning or losing form.

We can obtain \mathcal{W}^{m} and \mathcal{L}^{M} in polynomial time.
Once this is done we write, in polynomial time, the LP

$$
\begin{array}{lll}
\min q & & \\
\text { subject to } & w(S) \geq q & \text { if } S \in W^{m} \\
& w(S)<q & \text { if } S \in L^{M} \\
& 0 \leq w_{i} & \text { for all } 1 \leq i \leq n \\
& 0 \leq q &
\end{array}
$$

IsWeighted: Minimal and Maximal

Lemma

The IsWeighted problem can be solved in polynomial time when the input game is given in explicit minimal winning or maximal losing form.

Proof

IsWeighted: Minimal and Maximal

Lemma

The IsWeighted problem can be solved in polynomial time when the input game is given in explicit minimal winning or maximal losing form.

Proof

- For $C \subseteq N$ we let $x_{C} \in\{0,1\}^{n}$ denote the vector with the i 'th coordinate equal to 1 if and only if $i \in C$.

IsWeighted: Minimal and Maximal

Lemma

The IsWeighted problem can be solved in polynomial time when the input game is given in explicit minimal winning or maximal losing form.

Proof

- For $C \subseteq N$ we let $x_{C} \in\{0,1\}^{n}$ denote the vector with the i 'th coordinate equal to 1 if and only if $i \in C$.
- In polynomial time we compute the boolean function $\Phi_{W^{m}}$ given by the DNF:

$$
\Phi_{W^{m}}(x)=\bigvee_{S \in W^{m}}\left(\wedge_{i \in S} x_{i}\right)
$$

IsWeighted: Minimal winning

By construction we have the following:
$\Phi_{W^{m}}\left(x_{C}\right)=1 \Leftrightarrow C$ is winning in the game given by $\left(N, W^{m}\right)$

IsWeighted: Minimal winning

By construction we have the following:

$$
\Phi_{W^{m}}\left(x_{C}\right)=1 \Leftrightarrow C \text { is winning in the game given by }\left(N, W^{m}\right)
$$

- It is well known that $\Phi_{W^{m}}$ is a threshold function iff the game given by $\left(N, W^{m}\right)$ is weighted.

IsWeighted: Minimal winning

By construction we have the following:
$\Phi_{W^{m}}\left(x_{C}\right)=1 \Leftrightarrow C$ is winning in the game given by $\left(N, W^{m}\right)$

- It is well known that $\Phi_{W^{m}}$ is a threshold function iff the game given by $\left(N, W^{m}\right)$ is weighted.
- Further $\Phi_{W^{m}}$ is monotonic (i.e. positive)
- But deciding whether a monotonic formula describes a threshold function can be solved in polynomial time.

IsWeighted: Maximal loosing

- we can prove a similar result given $\left(N, L^{M}\right)$.
- The dual of game $\Gamma=(N, \mathcal{W})$ is the game $\Gamma^{d}=\left(N, \mathcal{W}^{d}\right)$ where $S \in \mathcal{W}^{d}$ iff $N \backslash S \notin \mathcal{W}$.
- Observe that Γ is weighted iff Γ^{d} is weighted.
- We can compute a monotone CNF formula describing the loosing coalitions of Γ. Negating this formula we get a DNF on negated variables. Replacing \bar{x}_{i} by y_{i} we get a DNF describing \mathcal{W}^{d}.
- As the formula can be computed in polynomial time the result follows.

Vector weighted voting games

Vector weighted voting games

Vector weighted voting games

- Given two simple games $\Gamma_{1}=\left(N, \mathcal{W}_{1}\right)$ and $\Gamma_{2}=\left(N, \mathcal{W}_{1}\right)$ we can define their

Vector weighted voting games

- Given two simple games $\Gamma_{1}=\left(N, \mathcal{W}_{1}\right)$ and $\Gamma_{2}=\left(N, \mathcal{W}_{1}\right)$ we can define their
- union

Vector weighted voting games

- Given two simple games $\Gamma_{1}=\left(N, \mathcal{W}_{1}\right)$ and $\Gamma_{2}=\left(N, \mathcal{W}_{1}\right)$ we can define their
- union $\Gamma_{1} \cup \Gamma_{2}=\left(N, \mathcal{W}_{1} \cup \mathcal{W}_{2}\right)$

Vector weighted voting games

- Given two simple games $\Gamma_{1}=\left(N, \mathcal{W}_{1}\right)$ and $\Gamma_{2}=\left(N, \mathcal{W}_{1}\right)$ we can define their
- union $\Gamma_{1} \cup \Gamma_{2}=\left(N, \mathcal{W}_{1} \cup \mathcal{W}_{2}\right)$
- intersection

Vector weighted voting games

- Given two simple games $\Gamma_{1}=\left(N, \mathcal{W}_{1}\right)$ and $\Gamma_{2}=\left(N, \mathcal{W}_{1}\right)$ we can define their
- union $\Gamma_{1} \cup \Gamma_{2}=\left(N, \mathcal{W}_{1} \cup \mathcal{W}_{2}\right)$
- intersection $\Gamma_{1} \cap \Gamma_{2}=\left(N, \mathcal{W}_{1} \cap \mathcal{W}_{2}\right)$

Both are simple games

Vector weighted voting games

- Given two simple games $\Gamma_{1}=\left(N, \mathcal{W}_{1}\right)$ and $\Gamma_{2}=\left(N, \mathcal{W}_{1}\right)$ we can define their
- union $\Gamma_{1} \cup \Gamma_{2}=\left(N, \mathcal{W}_{1} \cup \mathcal{W}_{2}\right)$
- intersection $\Gamma_{1} \cap \Gamma_{2}=\left(N, \mathcal{W}_{1} \cap \mathcal{W}_{2}\right)$

Both are simple games

- A simple game Γ is a vector weighted voting game if there are WVGs $\Gamma_{1}, \ldots, \Gamma_{k}$, for some $k \geq 1$, so that $\Gamma=\Gamma_{1} \cap \cdots \cap \Gamma_{k}$.

Vector weighted voting games

- Given two simple games $\Gamma_{1}=\left(N, \mathcal{W}_{1}\right)$ and $\Gamma_{2}=\left(N, \mathcal{W}_{1}\right)$ we can define their
- union $\Gamma_{1} \cup \Gamma_{2}=\left(N, \mathcal{W}_{1} \cup \mathcal{W}_{2}\right)$
- intersection $\Gamma_{1} \cap \Gamma_{2}=\left(N, \mathcal{W}_{1} \cap \mathcal{W}_{2}\right)$

Both are simple games

- A simple game Γ is a vector weighted voting game if there are WVGs $\Gamma_{1}, \ldots, \Gamma_{k}$, for some $k \geq 1$, so that $\Gamma=\Gamma_{1} \cap \cdots \cap \Gamma_{k}$.
- Any simple game is a vector weighted voting game.

Vector weighted voting games

- Given two simple games $\Gamma_{1}=\left(N, \mathcal{W}_{1}\right)$ and $\Gamma_{2}=\left(N, \mathcal{W}_{1}\right)$ we can define their
- union $\Gamma_{1} \cup \Gamma_{2}=\left(N, \mathcal{W}_{1} \cup \mathcal{W}_{2}\right)$
- intersection $\Gamma_{1} \cap \Gamma_{2}=\left(N, \mathcal{W}_{1} \cap \mathcal{W}_{2}\right)$

Both are simple games

- A simple game Γ is a vector weighted voting game if there are WVGs $\Gamma_{1}, \ldots, \Gamma_{k}$, for some $k \geq 1$, so that $\Gamma=\Gamma_{1} \cap \cdots \cap \Gamma_{k}$.
- Any simple game is a vector weighted voting game.
- The dimension of a simple games is the minimum number of WVGs that allows its representation as VWVG

Dimension

Theorem
For a simple game $\Gamma=\left(N, \mathcal{L}^{M}\right), \operatorname{dim}(\Gamma) \leq\left|\mathcal{L}^{M}\right|$.

Proof.

Dimension

Theorem
For a simple game $\Gamma=\left(N, \mathcal{L}^{M}\right), \operatorname{dim}(\Gamma) \leq\left|\mathcal{L}^{M}\right|$.

Proof.

- Take a losing coalition C and consider the game in which players in C have weight 0 and players outside $C 1$, set the quote to 1 .
Any set that is not contained in C wins!

Dimension

Theorem
For a simple game $\Gamma=\left(N, \mathcal{L}^{M}\right), \operatorname{dim}(\Gamma) \leq\left|\mathcal{L}^{M}\right|$.

Proof.

- Take a losing coalition C and consider the game in which players in C have weight 0 and players outside $C 1$, set the quote to 1 .
Any set that is not contained in C wins!
- The intersection of the above games describes Γ, as a minimal winning coalition cannot be a subset of any losing coalition.

Hardness

> Theorem
> Let d_{1} and d_{2} two fixed integers with $1 \leq d_{2}<d_{1}$. Then the problem of deciding whether the intersection of d_{1} WVGs can be represented as the intersection of d_{2} WVGs is NP-hard.

Hardness

> Theorem
> Let d_{1} and d_{2} two fixed integers with $1 \leq d_{2}<d_{1}$. Then the problem of deciding whether the intersection of d_{1} WVGs can be represented as the intersection of d_{2} WVGs is NP-hard.

Proof

Hardness

The reduction is from the NP-complete problem
Name: Subset Sum
Input: $n+1$ integer values, x_{1}, \ldots, x_{n} and b
Question: Is there $S \subseteq\{1, \ldots, n\}$ for which

$$
\sum_{i \in S} x_{i}=b .
$$

Hardness

The reduction is from the NP-complete problem
Name: Subset Sum
Input: $n+1$ integer values, x_{1}, \ldots, x_{n} and b
Question: Is there $S \subseteq\{1, \ldots, n\}$ for which

$$
\sum_{i \in S} x_{i}=b .
$$

Hardness

From an instance $I=\left(x_{1}, \ldots, x_{k}, b\right)$ of SUbSEt Sum and any $d \geq 2$ construct WVGs:

Hardness

From an instance $I=\left(x_{1}, \ldots, x_{k}, b\right)$ of Subset Sum and any $d \geq 2$ construct WVGs:

- $\Gamma_{1}, \ldots, \Gamma_{d}$ have $k+2 d$ players, $p_{1}, \ldots, p_{k}, q_{1}, \ldots, q_{d}, q_{1}^{\prime}, \ldots, q_{d}^{\prime}$.

Hardness

From an instance $I=\left(x_{1}, \ldots, x_{k}, b\right)$ of SUbSEt Sum and any $d \geq 2$ construct WVGs:

- $\Gamma_{1}, \ldots, \Gamma_{d}$ have $k+2 d$ players, $p_{1}, \ldots, p_{k}, q_{1}, \ldots, q_{d}, q_{1}^{\prime}, \ldots, q_{d}^{\prime}$.
- $\ln G_{\ell}, 1 \leq \ell \leq d$
- $w_{\ell}\left(p_{i}\right)=2 x_{i}, 1 \leq i \leq k$.
- For $1 \leq j \leq d$ and $j \neq \ell, w_{\ell}\left(q_{j}\right)=w_{\ell}\left(q_{j}^{\prime}\right)=0$
- and, $w_{\ell}\left(q_{\ell}\right)=w_{\ell}\left(q_{\ell}^{\prime}\right)=1$

Hardness

From an instance $I=\left(x_{1}, \ldots, x_{k}, b\right)$ of SUbSEt Sum and any $d \geq 2$ construct WVGs:

- $\Gamma_{1}, \ldots, \Gamma_{d}$ have $k+2 d$ players, $p_{1}, \ldots, p_{k}, q_{1}, \ldots, q_{d}, q_{1}^{\prime}, \ldots, q_{d}^{\prime}$.
- $\ln G_{\ell}, 1 \leq \ell \leq d$
- $w_{\ell}\left(p_{i}\right)=2 x_{i}, 1 \leq i \leq k$.
- For $1 \leq j \leq d$ and $j \neq \ell, w_{\ell}\left(q_{j}\right)=w_{\ell}\left(q_{j}^{\prime}\right)=0$
- and, $w_{\ell}\left(q_{\ell}\right)=w_{\ell}\left(q_{\ell}^{\prime}\right)=1$
- $q_{\ell}=2 b+1$.

Hardness

From an instance $I=\left(x_{1}, \ldots, x_{k}, b\right)$ of SUbSEt Sum and any $d \geq 2$ construct WVGs:

- $\Gamma_{1}, \ldots, \Gamma_{d}$ have $k+2 d$ players, $p_{1}, \ldots, p_{k}, q_{1}, \ldots, q_{d}, q_{1}^{\prime}, \ldots, q_{d}^{\prime}$.
- $\ln G_{\ell}, 1 \leq \ell \leq d$
- $w_{\ell}\left(p_{i}\right)=2 x_{i}, 1 \leq i \leq k$.
- For $1 \leq j \leq d$ and $j \neq \ell, w_{\ell}\left(q_{j}\right)=w_{\ell}\left(q_{j}^{\prime}\right)=0$
- and, $w_{\ell}\left(q_{\ell}\right)=w_{\ell}\left(q_{\ell}^{\prime}\right)=1$
- $q_{\ell}=2 b+1$.
- $\Gamma(I)$ is the intersection of $\Gamma_{1}, \ldots, \Gamma_{d}$

Hardness

If $I=\left(x_{1}, \ldots, x_{k}, b\right)$ is a NO instance then $\Gamma(I)$ is weighted.

Hardness

If $I=\left(x_{1}, \ldots, x_{k}, b\right)$ is a NO instance then $\Gamma(I)$ is weighted.

- Let S be a coalition in $\Gamma(I)$

Hardness

If $I=\left(x_{1}, \ldots, x_{k}, b\right)$ is a NO instance then $\Gamma(I)$ is weighted.

- Let S be a coalition in $\Gamma(I)$
- Either $x(S) \leq b-1$ or $x(S) \geq b+1$.

Hardness

If $I=\left(x_{1}, \ldots, x_{k}, b\right)$ is a NO instance then $\Gamma(I)$ is weighted.

- Let S be a coalition in $\Gamma(I)$
- Either $x(S) \leq b-1$ or $x(S) \geq b+1$.
- If $x(S) \geq b+1$, for $1 \leq \ell \leq d, w_{\ell}(S) \geq 2 b+2$, and S wins in Γ_{ℓ}.

Hardness

If $I=\left(x_{1}, \ldots, x_{k}, b\right)$ is a NO instance then $\Gamma(I)$ is weighted.

- Let S be a coalition in $\Gamma(I)$
- Either $x(S) \leq b-1$ or $x(S) \geq b+1$.
- If $x(S) \geq b+1$, for $1 \leq \ell \leq d, w_{\ell}(S) \geq 2 b+2$, and S wins in Γ_{ℓ}.
- If $x(S) \leq b-1$, for $1 \leq \ell \leq d$, $w_{\ell}(S) \leq 2 x(S)+2 \leq 2 b+1$, and S loses in Γ_{ℓ}.

Hardness

If $I=\left(x_{1}, \ldots, x_{k}, b\right)$ is a NO instance then $\Gamma(I)$ is weighted.

- Let S be a coalition in $\Gamma(I)$
- Either $x(S) \leq b-1$ or $x(S) \geq b+1$.
- If $x(S) \geq b+1$, for $1 \leq \ell \leq d$, $w_{\ell}(S) \geq 2 b+2$, and S wins in Γ_{ℓ}.
- If $x(S) \leq b-1$, for $1 \leq \ell \leq d$, $w_{\ell}(S) \leq 2 x(S)+2 \leq 2 b+1$, and S loses in Γ_{ℓ}.
- So, $\Gamma(I)$ is equivalent to the WVG in which $w\left(p_{i}\right)=x_{i}, 1 \leq i \leq k$, $w\left(q_{j}\right)=w\left(q_{j}^{\prime}\right)=0,1 \leq j \leq d$, and $q=b+1$

Hardness

If $I=\left(x_{1}, \ldots, x_{k}, b\right)$ is a YES instance, assume that $\Gamma(I)$ can be represented ad the intersection of $d-1$ WVGs H_{1}, \ldots, H_{d-1}.

Hardness

If $I=\left(x_{1}, \ldots, x_{k}, b\right)$ is a YES instance, assume that $\Gamma(I)$ can be represented ad the intersection of $d-1$ WVGs H_{1}, \ldots, H_{d-1}.

- Let $J \subset\{1, \ldots, k\}$ be a solution with $\sum_{j \in J} x_{j}=b$.

Hardness

If $I=\left(x_{1}, \ldots, x_{k}, b\right)$ is a YES instance, assume that $\Gamma(I)$ can be represented ad the intersection of $d-1$ WVGs H_{1}, \ldots, H_{d-1}.

- Let $J \subset\{1, \ldots, k\}$ be a solution with $\sum_{j \in J} x_{j}=b$.
- Let S_{ℓ} be the coalition formed by p_{j} for $j \in J$ and q_{i}, q_{i}^{\prime}, for $i \neq \ell$.

Hardness

If $I=\left(x_{1}, \ldots, x_{k}, b\right)$ is a YES instance, assume that $\Gamma(I)$ can be represented ad the intersection of $d-1$ WVGs H_{1}, \ldots, H_{d-1}.

- Let $J \subset\{1, \ldots, k\}$ be a solution with $\sum_{j \in J} x_{j}=b$.
- Let S_{ℓ} be the coalition formed by p_{j} for $j \in J$ and q_{i}, q_{i}^{\prime}, for $i \neq \ell$.
- As $w_{\ell}\left(S_{\ell}\right)=2 b<q_{\ell}, S_{\ell}$ loses in Γ_{ℓ} and in $\Gamma(I)$, so it must lose in some of the H games.

Hardness

If $I=\left(x_{1}, \ldots, x_{k}, b\right)$ is a YES instance, assume that $\Gamma(I)$ can be represented ad the intersection of $d-1$ WVGs H_{1}, \ldots, H_{d-1}.

- Let $J \subset\{1, \ldots, k\}$ be a solution with $\sum_{j \in J} x_{j}=b$.
- Let S_{ℓ} be the coalition formed by p_{j} for $j \in J$ and q_{i}, q_{i}^{\prime}, for $i \neq \ell$.
- As $w_{\ell}\left(S_{\ell}\right)=2 b<q_{\ell}, S_{\ell}$ loses in Γ_{ℓ} and in $\Gamma(I)$, so it must lose in some of the H games.
- Let $h(\ell)$ such that S_{ℓ} loses in $H_{h(\ell)}$.

Hardness

If $I=\left(x_{1}, \ldots, x_{k}, b\right)$ is a YES instance, assume that $\Gamma(I)$ can be represented ad the intersection of $d-1$ WVGs H_{1}, \ldots, H_{d-1}.

- Let $J \subset\{1, \ldots, k\}$ be a solution with $\sum_{j \in J} x_{j}=b$.
- Let S_{ℓ} be the coalition formed by p_{j} for $j \in J$ and q_{i}, q_{i}^{\prime}, for $i \neq \ell$.
- As $w_{\ell}\left(S_{\ell}\right)=2 b<q_{\ell}, S_{\ell}$ loses in Γ_{ℓ} and in $\Gamma(I)$, so it must lose in some of the H games.
- Let $h(\ell)$ such that S_{ℓ} loses in $H_{h(\ell)}$.
- Since $h(1), \ldots, h(d)$ take values in $1, \ldots, d-1$, two of them must be equal.

Hardness

If $I=\left(x_{1}, \ldots, x_{k}, b\right)$ is a YES instance, assume that $\Gamma(I)$ can be represented ad the intersection of $d-1$ WVGs H_{1}, \ldots, H_{d-1}.

- Let $J \subset\{1, \ldots, k\}$ be a solution with $\sum_{j \in J} x_{j}=b$.
- Let S_{ℓ} be the coalition formed by p_{j} for $j \in J$ and q_{i}, q_{i}^{\prime}, for $i \neq \ell$.
- As $w_{\ell}\left(S_{\ell}\right)=2 b<q_{\ell}, S_{\ell}$ loses in Γ_{ℓ} and in $\Gamma(I)$, so it must lose in some of the H games.
- Let $h(\ell)$ such that S_{ℓ} loses in $H_{h(\ell)}$.
- Since $h(1), \ldots, h(d)$ take values in $1, \ldots, d-1$, two of them must be equal.
- Let $\alpha \neq \beta$ such that $h(\alpha)=h(\beta)=\gamma$.

Hardness

- Let $\alpha \neq \beta$ such that $h(\alpha)=h(\beta)=\gamma$, consider H_{γ}
- Let W be the total weight of players $p_{i}, 1 \leq i \leq k$, and q_{j}, q_{j}^{\prime}, $j \notin\{\alpha, \beta\}$
- Let $w_{\alpha}, w_{\beta}, w_{\alpha}^{\prime}, w_{\beta}^{\prime}$ the weight of players $q_{\alpha}, q_{\beta}, q_{\alpha}^{\prime}, q_{\beta}^{\prime}$.
- Let q^{*} be the quota.

Hardness

- Let $\alpha \neq \beta$ such that $h(\alpha)=h(\beta)=\gamma$, consider H_{γ}
- Let W be the total weight of players $p_{i}, 1 \leq i \leq k$, and q_{j}, q_{j}^{\prime}, $j \notin\{\alpha, \beta\}$
- Let $w_{\alpha}, w_{\beta}, w_{\alpha}^{\prime}, w_{\beta}^{\prime}$ the weight of players $q_{\alpha}, q_{\beta}, q_{\alpha}^{\prime}, q_{\beta}^{\prime}$.
- Let q^{*} be the quota.
- S_{α} loses, $W+w_{\beta}+w_{\beta}^{\prime}<q^{*}$ and S_{β} loses, $W+w_{\alpha}+w_{\alpha}^{\prime}<q^{*}$

Hardness

- Let $\alpha \neq \beta$ such that $h(\alpha)=h(\beta)=\gamma$, consider H_{γ}
- Let W be the total weight of players $p_{i}, 1 \leq i \leq k$, and q_{j}, q_{j}^{\prime}, $j \notin\{\alpha, \beta\}$
- Let $w_{\alpha}, w_{\beta}, w_{\alpha}^{\prime}, w_{\beta}^{\prime}$ the weight of players $q_{\alpha}, q_{\beta}, q_{\alpha}^{\prime}, q_{\beta}^{\prime}$.
- Let q^{*} be the quota.
- S_{α} loses, $W+w_{\beta}+w_{\beta}^{\prime}<q^{*}$ and S_{β} loses, $W+w_{\alpha}+w_{\alpha}^{\prime}<q^{*}$
- The coalition with players p_{i} with $i \in J$ and $\left\{q_{1}, \ldots, q_{d}\right\}$ wins in $\Gamma(I)$, so $W+w_{\alpha}+w_{\beta} \geq q^{*}$.

Hardness

- Let $\alpha \neq \beta$ such that $h(\alpha)=h(\beta)=\gamma$, consider H_{γ}
- Let W be the total weight of players $p_{i}, 1 \leq i \leq k$, and q_{j}, q_{j}^{\prime}, $j \notin\{\alpha, \beta\}$
- Let $w_{\alpha}, w_{\beta}, w_{\alpha}^{\prime}, w_{\beta}^{\prime}$ the weight of players $q_{\alpha}, q_{\beta}, q_{\alpha}^{\prime}, q_{\beta}^{\prime}$.
- Let q^{*} be the quota.
- S_{α} loses, $W+w_{\beta}+w_{\beta}^{\prime}<q^{*}$ and S_{β} loses, $W+w_{\alpha}+w_{\alpha}^{\prime}<q^{*}$
- The coalition with players p_{i} with $i \in J$ and $\left\{q_{1}, \ldots, q_{d}\right\}$ wins in $\Gamma(I)$, so $W+w_{\alpha}+w_{\beta} \geq q^{*}$.
- The coalition with players p_{i} with $i \in J$ and $\left\{q_{1}^{\prime}, \ldots, q_{d}^{\prime}\right\}$ wins in $\Gamma(I)$, so $W+w_{\alpha}^{\prime}+w_{\beta}^{\prime} \geq q^{*}$.

Hardness

- Let $\alpha \neq \beta$ such that $h(\alpha)=h(\beta)=\gamma$, consider H_{γ}
- Let W be the total weight of players $p_{i}, 1 \leq i \leq k$, and q_{j}, q_{j}^{\prime}, $j \notin\{\alpha, \beta\}$
- Let $w_{\alpha}, w_{\beta}, w_{\alpha}^{\prime}, w_{\beta}^{\prime}$ the weight of players $q_{\alpha}, q_{\beta}, q_{\alpha}^{\prime}, q_{\beta}^{\prime}$.
- Let q^{*} be the quota.
- S_{α} loses, $W+w_{\beta}+w_{\beta}^{\prime}<q^{*}$ and S_{β} loses, $W+w_{\alpha}+w_{\alpha}^{\prime}<q^{*}$
- The coalition with players p_{i} with $i \in J$ and $\left\{q_{1}, \ldots, q_{d}\right\}$ wins in $\Gamma(I)$, so $W+w_{\alpha}+w_{\beta} \geq q^{*}$.
- The coalition with players p_{i} with $i \in J$ and $\left\{q_{1}^{\prime}, \ldots, q_{d}^{\prime}\right\}$ wins in $\Gamma(I)$, so $W+w_{\alpha}^{\prime}+w_{\beta}^{\prime} \geq q^{*}$.
- So, $2 W+w_{\alpha}+w_{\beta}+w_{\alpha}^{\prime}+w_{\beta}^{\prime}$ must be $>q^{*}$ and $\leq q^{*}$, we get a contradiction

Hardness

```
Theorem
Computing the dimension of a VWVG is NP-hard
```

Theorem

The IsWeighted problem is NP hard for VWVGs

(1) Simple Games

(2) Problems on simple games

(3) IsWeighted

(4) The core

The core

Recall that a veto player is a player such that any coalition that does not contain it is losing.

The core

Recall that a veto player is a player such that any coalition that does not contain it is losing.

Theorem
The core on payoff vectors for the grand coalition of a simple game is non-empty iff it has a veto player.

The core

Recall that a veto player is a player such that any coalition that does not contain it is losing.

Theorem

The core on payoff vectors for the grand coalition of a simple game is non-empty iff it has a veto player.

Proof.

- If i is a veto player in Γ, the payoff $x_{i}=1, x_{j}=0$, is in the core as any coalition containing i gets 1.
- If Γ has no veto player and x is in the core, $x(N)=1$.
- If there is $i \in N$ with $x_{i}>0$, so $x(N \backslash\{i\})<1$.
- But as i is not a veto player $v(N \backslash\{i\})=1$.

References

- G. Chalkiadakis, E. Elkind, M. Wooldridge. Computational Aspects of Cooperative Game Theory Synthesis Lectures on Artificial Intelligence and Machine Learning, Morgan \& Claypool, October 2011.
- V.G. Deineko, G.J. Woeginger: On the dimension of simple monotonic games. EJOR 170:315-318, 2006.
- J. Freixas, X. Molinero, M. Olsen, M. Serna: On the complexity of problems on simple games. RAIRO Oper. Res. 45(4): 295-314, 2011.

