Spring 2024

•	\sim		Λ.	п	
А	G	-	IV	н	•

Cooperative Game Theory

・ロト ・四ト ・ヨト ・ヨト

Problems on simple games

IsWeighted

2 Problems on simple games

3 IsWeighted

	-	_		
•			νл	
-	•			

イロト イヨト イヨト イヨト

• Simple Games were introduced by (Taylor & Zwicker, 1999)

Λ	\sim	-	Ν.	Л	
А	G		IV		IN I

イロト イヨト イヨト

э

- Simple Games were introduced by (Taylor & Zwicker, 1999)
- A simple game is a cooperative game (N, v) such that v : C_N → {0, 1} and it is monotone.

э

- Simple Games were introduced by (Taylor & Zwicker, 1999)
- A simple game is a cooperative game (N, v) such that $v : C_N \to \{0, 1\}$ and it is monotone.
- A simple game can be described by a pair (N, W):
 - N is a set of players,
 - *W* ⊆ *P*(*N*) is a monotone set of winning coalitions, those coalitions *X* with *v*(*X*) = 1.
 - $\mathcal{L} = \mathcal{C}_N \setminus \mathcal{W}$ is the set of losing coalitions those coalitions X with v(X) = 0.

イロト 不得 トイヨト イヨト 二日

- Simple Games were introduced by (Taylor & Zwicker, 1999)
- A simple game is a cooperative game (N, v) such that $v: \mathcal{C}_N \to \{0, 1\}$ and it is monotone.
- A simple game can be described by a pair (N, W):
 - N is a set of players,
 - $\mathcal{W} \subseteq \mathcal{P}(N)$ is a monotone set of winning coalitions, those coalitions X with v(X) = 1.
 - $\mathcal{L} = \mathcal{C}_N \setminus \mathcal{W}$ is the set of losing coalitions those coalitions X with v(X) = 0.
- Members of $N = \{1, ..., n\}$ are called players or voters.

Simple games: Representation

Due to monotonicity, any one of the following families of coalitions define a simple game on a set of players N:

- winning coalitions \mathcal{W} .
- losing coalitions L.
- minimal winning coalitions \mathcal{W}^m $\mathcal{W}^m = \{X \in \mathcal{W}; \forall Z \in \mathcal{W}, Z \not\subseteq X\}$
- maximal losing coalitions \mathcal{L}^{M} $\mathcal{L}^{M} = \{X \in \mathcal{L}; \forall Z \in \mathcal{L}, X \not\subseteq L\}$

This provides us with many representation forms for simple games.

	-	_		
•			ΝЛ	
~	9		1.61	

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

• Weighted voting games (WVG)

イロト イヨト イヨト

э

• Weighted voting games (WVG)

A simple game for which there exists a quota q and it is possible to assign to each $i \in N$ a weight w_i , so that

 $X \in \mathcal{W}$ iff $\sum_{i \in X} w_i \ge q$.

イロト 不得 トイヨト イヨト 二日

• Weighted voting games (WVG)

A simple game for which there exists a quota q and it is possible to assign to each $i \in N$ a weight w_i , so that

$$X \in \mathcal{W}$$
 iff $\sum_{i \in X} w_i \geq q$.

 WVG can be represented by a tuple of integers (q; w₁,..., w_n). as any weighted game admits such an integer realization, [Carreras and Freixas, Math. Soc.Sci., 1996]

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

• Given two simple games $\Gamma_1=({\it N},{\it W}_1)$ and $\Gamma_2=({\it N},{\it W}_1)$ we can define their

イロト イボト イヨト イヨト

- Given two simple games $\Gamma_1=({\it N},{\it W}_1)$ and $\Gamma_2=({\it N},{\it W}_1)$ we can define their
 - union

- Given two simple games $\Gamma_1=({\it N},{\cal W}_1)$ and $\Gamma_2=({\it N},{\cal W}_1)$ we can define their
 - union $\Gamma_1 \cup \Gamma_2 = (N, \mathcal{W}_1 \cup \mathcal{W}_2)$

- Given two simple games $\Gamma_1=(\textit{N},\mathcal{W}_1)$ and $\Gamma_2=(\textit{N},\mathcal{W}_1)$ we can define their
 - union $\Gamma_1 \cup \Gamma_2 = (N, \mathcal{W}_1 \cup \mathcal{W}_2)$
 - intersection

- Given two simple games $\Gamma_1=(\textit{N},\mathcal{W}_1)$ and $\Gamma_2=(\textit{N},\mathcal{W}_1)$ we can define their
 - union $\Gamma_1 \cup \Gamma_2 = (N, \mathcal{W}_1 \cup \mathcal{W}_2)$
 - intersection $\Gamma_1 \cap \Gamma_2 = (N, \mathcal{W}_1 \cap \mathcal{W}_2)$

Both are simple games

- Given two simple games $\Gamma_1=(\textit{N},\mathcal{W}_1)$ and $\Gamma_2=(\textit{N},\mathcal{W}_1)$ we can define their
 - union $\Gamma_1 \cup \Gamma_2 = (N, \mathcal{W}_1 \cup \mathcal{W}_2)$
 - intersection $\Gamma_1 \cap \Gamma_2 = (N, \mathcal{W}_1 \cap \mathcal{W}_2)$

Both are simple games

• A simple game Γ is a vector weighted voting game if there are WVGs $\Gamma_1, \ldots, \Gamma_k$, for some $k \ge 1$, so that $\Gamma = \Gamma_1 \cap \cdots \cap \Gamma_k$.

イロト イポト イヨト ・ヨ

			Α.	
A	G .	- 1	IV	к

・ロト ・四ト ・ヨト ・ヨト

• There are simple games that are not WVGs

э

• There are simple games that are not WVGs

The game with $N = \{1, 2, 3, 4\}$ where the minimal winning coalitions are the sets $\{1, 2\}$ and $\{3, 4\}$ is not a WVG.

イロト イヨト イヨト

э

There are simple games that are not WVGs

The game with $N = \{1, 2, 3, 4\}$ where the minimal winning coalitions are the sets $\{1, 2\}$ and $\{3, 4\}$ is not a WVG.

• Assume it is given by $(q; w_1, w_2, w_3, w_4)$.

イロト イボト イヨト イヨト

There are simple games that are not WVGs

The game with $N = \{1, 2, 3, 4\}$ where the minimal winning coalitions are the sets $\{1, 2\}$ and $\{3, 4\}$ is not a WVG.

- Assume it is given by $(q; w_1, w_2, w_3, w_4)$.
- We have $w_1 + w_2 \ge q$ and $w_3 + w_4 \ge q$.
- Thus $\max\{w_1, w_2\} \ge q/2$ and $\max\{w_3, w_4\} \ge q/2$,
- So, $\max\{w_1, w_2\} + \max\{w_3, w_4\} \ge q$ which cannot be.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

			Α.	
A	G .	- 1	IV	к

・ロト ・四ト ・ヨト ・ヨト

• Any simple game Γ is a VWVGs

Α	G'	Т-І	Ν	П	R	ſ

イロト イヨト イヨト

- Any simple game Γ is a VWVGs
 - Take a losing coalition *C* and consider the game in which players in *C* have weight 0 and players outside *C* 1, set the quote to 1. Any set that is not contained in *C* wins!

くロ と く 同 と く ヨ と 一

- Any simple game Γ is a VWVGs
 - Take a losing coalition C and consider the game in which players in C have weight 0 and players outside C 1, set the quote to 1. Any set that is not contained in C wins!
 - The intersection of the above games describes $\boldsymbol{\Gamma}.$

・ロト ・四ト・モデト・

- Any simple game Γ is a VWVGs
 - Take a losing coalition *C* and consider the game in which players in *C* have weight 0 and players outside *C* 1, set the quote to 1. Any set that is not contained in *C* wins!
 - The intersection of the above games describes Γ.
 A winning coalition cannot be a subset of any losing coalition.

(4 同) (三) (三) (

- Any simple game Γ is a VWVGs
 - Take a losing coalition *C* and consider the game in which players in *C* have weight 0 and players outside *C* 1, set the quote to 1. Any set that is not contained in *C* wins!
 - The intersection of the above games describes Γ.
 A winning coalition cannot be a subset of any losing coalition.
- The dimension of a simple games is the minimum number of WVGs that allows its representation as VWVG

くロ と く 同 と く ヨ と 一

	0		
- 🕰		N/I	пк
	.		

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

э.

The game Γ with $N = \{1, 2, 3, 4\}$ where the minimal winning coalitions are the sets $\{1, 2\}$ and $\{3, 4\}$ is not a WVG.

くロ と く 同 と く ヨ と 一

э

The game Γ with $N = \{1, 2, 3, 4\}$ where the minimal winning coalitions are the sets $\{1, 2\}$ and $\{3, 4\}$ is not a WVG.

• The maximal losing coalitions are $\{\{1,3\},\{1,4\},\{2,3\}\{2,4\}\}$

・ロト ・ 一 ト ・ ヨ ト ・ 日 ト

The game Γ with $N = \{1, 2, 3, 4\}$ where the minimal winning coalitions are the sets $\{1, 2\}$ and $\{3, 4\}$ is not a WVG.

- The maximal losing coalitions are $\{\{1,3\},\{1,4\},\{2,3\}\{2,4\}\}$
- This gives four WVG, according to the previous construction

 $\Gamma = [1; 0, 1, 0, 1] \cap [1; 0, 1, 1, 0] \cap [1; 1, 0, 0, 1] \cap [1; 1, 0, 1, 0].$

・ロト ・ 一下 ・ ト ・ ト ・ ト

Input representations

Simple Games

- (N, W): extensive wining, (N, W^m) : minimal wining
- (N, \mathcal{L}) : extensive losing, (N, \mathcal{L}^M) maximal losing
- (N, C): monotone circuit winning
- (N, F): monotone formula winning,
- Weighted voting games: $(q; w_1, \ldots, w_n)$
- Vector weighted voting games: $(q_1; w_1^1, \ldots, w_n^1), \ldots, (q_k; w_1^k, \ldots, w_n^k)$

All numbers are integers

11/41

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・
2 Problems on simple games

3 IsWeighted

	-	_		
•			ΝЛ	
	•			

・ロト ・四ト ・ヨト ・ヨト

э

Problems on simple games

In general we state a property P, for simple games, and consider the associated decision problem which has the form:

Name: ISP Input: A simple game/WVG/VWVG Γ Question: Does Γ satisfy property P?

Four properties

A simple game (N, W) is

- strong if $S \notin W$ implies $N \setminus S \in W$.
- proper if $S \in W$ implies $N \setminus S \notin W$.
- a weighted voting game.
- a vector weighted voting game.

3

14/41

イロト イヨト イヨト

IsStrong: Simple Games

 Γ is strong if $S \notin W$ implies $N \setminus S \in W$

	-	_		
•			ΝЛ	
	•			

イロト イボト イヨト イヨト

IsStrong: Simple Games

 Γ is strong if $S \notin W$ implies $N \setminus S \in W$

Theorem

The ISSTRONG problem, when Γ is given in explicit winning or losing form or in maximal losing form can be solved in polynomial time.

- (目) - (日) - (1)

IsStrong: Simple Games

 Γ is strong if $S \notin W$ implies $N \setminus S \in W$

Theorem

The IsStrong problem, when Γ is given in explicit winning or losing form or in maximal losing form can be solved in polynomial time.

Proof

- First observe that, given a family of subsets *F*, we can check, for any set in *F*, whether its complement is not in *F* in polynomial time.
- Therefore, the ISSTRONG problem, when the input is given in explicit losing form is polynomial time solvable.

- Γ is strong if $S \notin W$ implies $N \setminus S \in W$
 - A simple game is not strong iff

$$\exists S \subseteq N : S \in \mathcal{L} \land N \setminus S \in \mathcal{L}$$

イロト イヨト イヨト

 Γ is strong if $S \notin W$ implies $N \setminus S \in W$

• A simple game is not strong iff

$$\exists S \subseteq N : S \in \mathcal{L} \land N \setminus S \in \mathcal{L}$$

which is equivalent to

$$\exists S \subseteq N : \exists L_1, L_2 \in \mathcal{L}^M : S \subseteq L_1 \land N \setminus S \subseteq L_2$$

イロト イヨト イヨト

э

 Γ is strong if $S \notin W$ implies $N \setminus S \in W$

• A simple game is not strong iff

$$\exists S \subseteq N : S \in \mathcal{L} \land N \setminus S \in \mathcal{L}$$

which is equivalent to

$$\exists S \subseteq N : \exists L_1, L_2 \in \mathcal{L}^M : S \subseteq L_1 \land N \setminus S \subseteq L_2$$

• which is equivalent to there are two maximal losing coalitions L_1 and L_2 such that $L_1 \cup L_2 = N$.

16/41

イロト イポト イヨト イヨト 三日

 Γ is strong if $S \notin W$ implies $N \setminus S \in W$

• A simple game is not strong iff

$$\exists S \subseteq N : S \in \mathcal{L} \land N \setminus S \in \mathcal{L}$$

which is equivalent to

$$\exists S \subseteq N : \exists L_1, L_2 \in \mathcal{L}^M : S \subseteq L_1 \land N \setminus S \subseteq L_2$$

- which is equivalent to there are two maximal losing coalitions L_1 and L_2 such that $L_1 \cup L_2 = N$.
- This can be checked in polynomial time, given \mathcal{L}^{M} .

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

IsStrong: explicit winning forms

- Γ is strong if $S \notin W$ implies $N \setminus S \in W$
 - Given (N, W), for $i \in N$ consider the family $W_i = \{X \setminus \{i\} \mid X \in W\}$ and $R = \bigcup_{i \in N} W_i$.
 - All the coalitions in $R \setminus W$ are losing coalitions.
 - Furthermore for a coalition $X \in \mathcal{L}^M$ and $i \notin X$, $X \cup \{i\} \in \mathcal{W}$.
 - Thereofore, $\mathcal{L}^M \subseteq R \setminus W$ and $(R \setminus W)^M = \mathcal{L}^M$.
 - Then, we compute \mathcal{L}^M from \mathcal{W} in polynomial time and then use the algoritm for the maximal losing form.

end proof

17/41

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

 Γ is strong if $S \notin W$ implies $N \setminus S \in W$

Theorem

The ISSTRONG problem is coNP-complete when the input game is given in explicit minimal winning form.

Proof

A B M A B M

 Γ is strong if $S \notin W$ implies $N \setminus S \in W$

Theorem

The ISSTRONG problem is coNP-complete when the input game is given in explicit minimal winning form.

Proof

• The property can be expressed as

$$\forall S \ [(S \in W) \text{ or } (S \notin W \text{ and } N \setminus S \in W)]$$

- Observe that the property $S \in W$ can be checked in polynomial time given S and W^m .
- Thus the problem belongs to coNP.

18/41

< ロ > < 同 > < 回 > < 回 > < 回 > <

- We provide a polynomial time reduction from the complement of the NP-complete set splitting problem.
- An instance of the set splitting problem is a collection C of subsets of a finite set N. The question is whether it is possible to partition N into two subsets P and N \ P such that no subset in C is entirely contained in either P or N \ P.

IsStrong: minimal winning forms

- We provide a polynomial time reduction from the complement of the NP-complete set splitting problem.
- An instance of the set splitting problem is a collection C of subsets of a finite set N. The question is whether it is possible to partition Ninto two subsets P and $N \setminus P$ such that no subset in C is entirely contained in either *P* or $N \setminus P$.
- We have to decide whether $P \subseteq N$ exists such that

$$\forall S \in C : S \not\subseteq P \land S \not\subseteq N \setminus P$$

- We provide a polynomial time reduction from the complement of the NP-complete set splitting problem.
- An instance of the set splitting problem is a collection C of subsets of a finite set N. The question is whether it is possible to partition Ninto two subsets P and $N \setminus P$ such that no subset in C is entirely contained in either *P* or $N \setminus P$.
- We have to decide whether $P \subseteq N$ exists such that

$$\forall S \in C : S \not\subseteq P \land S \not\subseteq N \setminus P$$

We associate to a set splitting instance (N, C) the simple game in explicit minimal winning form (N, C^m) .

19/41

• C^m can be computed in polynomial time, given C. Why?

イロト イボト イヨト イヨト

э.

- C^m can be computed in polynomial time, given C. Why?
- Now assume that $P \subseteq N$ satisfies

 $\forall S \in C : S \not\subseteq P \land S \not\subseteq N \setminus P$

IsStrong: minimal winning form

- C^m can be computed in polynomial time, given C. Why?
- Now assume that $P \subset N$ satisfies

$$\forall S \in C : S \not\subseteq P \land S \not\subseteq N \setminus P$$

• This means that P and $N \setminus P$ are losing coalitions in the game $(N, C^m).$

IsStrong: minimal winning form

- C^m can be computed in polynomial time, given C. Why?
- Now assume that $P \subset N$ satisfies

$$\forall S \in C : S \not\subseteq P \land S \not\subseteq N \setminus P$$

- This means that P and $N \setminus P$ are losing coalitions in the game $(N, C^m).$
- So, $S \not\subseteq P$ and $S \not\subseteq N \setminus P$, for any $S \in C^m$.

20/41

IsStrong: minimal winning form

- C^m can be computed in polynomial time, given C. Why?
- Now assume that $P \subseteq N$ satisfies

$$\forall S \in C : S \not\subseteq P \land S \not\subseteq N \setminus P$$

- This means that P and $N \setminus P$ are losing coalitions in the game (N, C^m) .
- So, $S \not\subseteq P$ and $S \not\subseteq N \setminus P$, for any $S \in C^m$.
- This implies S ⊈ P and S ⊈ N \ P, for any S ∈ C since any set in C contains a set in C^m.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

- C^m can be computed in polynomial time, given C. Why?
- Now assume that $P \subseteq N$ satisfies

$$\forall S \in C : S \not\subseteq P \land S \not\subseteq N \setminus P$$

- This means that P and $N \setminus P$ are losing coalitions in the game (N, C^m) .
- So, $S \not\subseteq P$ and $S \not\subseteq N \setminus P$, for any $S \in C^m$.
- This implies S ⊈ P and S ⊈ N \ P, for any S ∈ C since any set in C contains a set in C^m.
- Therefore, (N, C) has a set splitting iff (N, C^m) is not strong.

```
\Gamma is proper if S \in W implies N \setminus S \notin W.
```

Theorem

The ISPROPER problem, when the game is given in explicit winning or losing form or in minimal winning form, can be solved in polynomial time.

- (目) - (日) - (1)

```
\Gamma is proper if S \in W implies N \setminus S \notin W.
```

Theorem

The ISPROPER problem, when the game is given in explicit winning or losing form or in minimal winning form, can be solved in polynomial time.

Proof

As before, given a family of subsets F, we can check, for any set in F, whether its complement is not in F in polynomial time.
Taking into account the definitions, the ISPROPER problem is polynomial time solvable for the explicit forms

くロ と く 同 と く ヨ と 一

• Γ is not proper iff

 $\exists S \subseteq N : S \in \mathcal{W} \land N \setminus S \in \mathcal{W}$

			Α.	
A	G	- 1	IV	к

イロト イヨト イヨト

• Γ is not proper iff

$$\exists S \subseteq \mathsf{N} : S \in \mathcal{W} \land \mathsf{N} \setminus S \in \mathcal{W}$$

• which is equivalent to

 $\exists S \subseteq N : \exists W_1, W_2 \in \mathcal{W}^m : W_1 \subseteq S \land W_2 \subseteq N \setminus S.$

AGT-MIRI

イロト イボト イヨト イヨト

э.

• Γ is not proper iff

$$\exists S \subseteq N : S \in \mathcal{W} \land N \setminus S \in \mathcal{W}$$

• which is equivalent to

$$\exists S \subseteq N : \exists W_1, W_2 \in \mathcal{W}^m : W_1 \subseteq S \land W_2 \subseteq N \setminus S.$$

• equivalent to there are two minimal winning coalitions W_1 and W_2 such that $W_1 \cap W_2 = \emptyset$.

3

22/41

イロト イヨト イヨト

• Γ is not proper iff

$$\exists S \subseteq N : S \in \mathcal{W} \land N \setminus S \in \mathcal{W}$$

• which is equivalent to

$$\exists S \subseteq N : \exists W_1, W_2 \in \mathcal{W}^m : W_1 \subseteq S \land W_2 \subseteq N \setminus S.$$

- equivalent to there are two minimal winning coalitions W_1 and W_2 such that $W_1 \cap W_2 = \emptyset$.
- Which can be checked in polynomial time when \mathcal{W}^m is given.

end proof

 Γ is proper if $S \in W$ implies $N \setminus S \notin W$.

Theorem

The ISPROPER problem is coNP-complete when the input game is given in extensive maximal losing form.

Α	C.	Т-	- N	11	R

 Γ is proper if $S \in W$ implies $N \setminus S \notin W$.

Theorem

The ISPROPER problem is coNP-complete when the input game is given in extensive maximal losing form.

Proof

• A game is not proper iff

$$\exists S \subseteq N : S \not\in \mathcal{L} \land N \setminus S \notin \mathcal{L}$$

• which is equivalet to

```
\exists S \subseteq N : \forall T_1, T_2 \in \mathcal{L}^M : S \not\subseteq T_1 \land N \setminus S \not\subseteq T_2
```

・ 同 ト ・ ヨ ト ・ ヨ ト

 Γ is proper if $S \in W$ implies $N \setminus S \notin W$.

Theorem

The ISPROPER problem is coNP-complete when the input game is given in extensive maximal losing form.

Proof

• A game is not proper iff

$$\exists S \subseteq N : S \notin \mathcal{L} \land N \setminus S \notin \mathcal{L}$$

• which is equivalet to

```
\exists S \subseteq N : \forall T_1, T_2 \in \mathcal{L}^M : S \not\subseteq T_1 \land N \setminus S \not\subseteq T_2
```

• Therefore ISPROPER belongs to coNP.

AGT-MIRI

Cooperative Game Theory

Spring 2024

To show that the problem is also coNP-hard we provide a reduction from the IsStrong problem for games given in extensive minimal winning form.

To show that the problem is also coNP-hard we provide a reduction from the IsStrong problem for games given in extensive minimal winning form.

- If a family C of subsets of N is minimal then the family $\{N \setminus L : L \in C\}$ is maximal.
- Given a game $\Gamma = (N, W^m)$, in minimal winning form, we construct the game $\Gamma' = (N, \{N \setminus L : L \in W^m\})$ in maximal losing form.
- Which can be obtained in polynomial time.

To show that the problem is also coNP-hard we provide a reduction from the IsStrong problem for games given in extensive minimal winning form.

- If a family C of subsets of N is minimal then the family $\{N \setminus L : L \in C\}$ is maximal.
- Given a game $\Gamma = (N, W^m)$, in minimal winning form, we construct the game $\Gamma' = (N, \{N \setminus L : L \in W^m\})$ in maximal losing form.
- Which can be obtained in polynomial time.
- Besides, Γ is strong iff Γ' is proper.

end proof

24 / 41

イロト 不得 トイヨト イヨト 二日

2 Problems on simple games

・ロト ・四ト ・ヨト ・ヨト

æ

Explicit forms

Lemma

The ISWEIGHTED problem can be solved in polynomial time when the input game is given in explicit winning or losing form.

Δι.	 IN.	71	IR I
20			

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >
Explicit forms

Lemma

The ISWEIGHTED problem can be solved in polynomial time when the input game is given in explicit winning or losing form.

We can obtain \mathcal{W}^m and \mathcal{L}^M in polynomial time. Once this is done we write, in polynomial time, the LP

$$\begin{array}{ll} \min q \\ \text{subject to} & w(S) \geq q & \text{ if } S \in W^m \\ & w(S) < q & \text{ if } S \in L^M \\ & 0 \leq w_i & \text{ for all } 1 \leq i \leq n \\ & 0 \leq q \end{array}$$

IsWeighted: Minimal and Maximal

Lemma

The ISWEIGHTED problem can be solved in polynomial time when the input game is given in explicit minimal winning or maximal losing form.

Proof

IsWeighted: Minimal and Maximal

Lemma

The ISWEIGHTED problem can be solved in polynomial time when the input game is given in explicit minimal winning or maximal losing form.

Proof

• For $C \subseteq N$ we let $x_C \in \{0,1\}^n$ denote the vector with the *i*'th coordinate equal to 1 if and only if $i \in C$.

・ 「 ト ・ ヨ ト ・ ヨ ト

IsWeighted: Minimal and Maximal

Lemma

The ISWEIGHTED problem can be solved in polynomial time when the input game is given in explicit minimal winning or maximal losing form.

Proof

- For C ⊆ N we let x_C ∈ {0,1}ⁿ denote the vector with the i'th coordinate equal to 1 if and only if i ∈ C.
- In polynomial time we compute the boolean function Φ_{W^m} given by the DNF:

$$\Phi_{W^m}(x) = \bigvee_{S \in W^m} (\wedge_{i \in S} x_i)$$

IsWeighted: Minimal winning

By construction we have the following:

 $\Phi_{W^m}(x_C) = 1 \Leftrightarrow C$ is winning in the game given by (N, W^m)

IsWeighted: Minimal winning

By construction we have the following:

 $\Phi_{W^m}(x_C) = 1 \Leftrightarrow C$ is winning in the game given by (N, W^m)

• It is well known that Φ_{W^m} is a threshold function iff the game given by (N, W^m) is weighted.

IsWeighted: Minimal winning

By construction we have the following:

 $\Phi_{W/m}(x_C) = 1 \Leftrightarrow C$ is winning in the game given by (N, W^m)

- It is well known that Φ_{W^m} is a threshold function iff the game given by (N, W^m) is weighted.
- Further Φ_{W^m} is monotonic (i.e. *positive*)
- But deciding whether a monotonic formula describes a threshold • function can be solved in polynomial time.

IsWeighted: Maximal loosing

- we can prove a similar result given (N, L^M) .
- The dual of game $\Gamma = (N, W)$ is the game $\Gamma^d = (N, W^d)$ where $S \in W^d$ iff $N \setminus S \notin W$.
- Observe that Γ is weighted iff Γ^d is weighted.
- We can compute a monotone CNF formula describing the loosing coalitions of Γ. Negating this formula we get a DNF on negated variables. Replacing x̄_i by y_i we get a DNF describing W^d.
- As the formula can be computed in polynomial time the result follows.

end proof

29/41

イロト イポト イヨト イヨト 三日

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

• Given two simple games $\Gamma_1=({\it N},{\cal W}_1)$ and $\Gamma_2=({\it N},{\cal W}_1)$ we can define their

イロト イヨト イヨト

- Given two simple games $\Gamma_1=({\it N},{\it W}_1)$ and $\Gamma_2=({\it N},{\it W}_1)$ we can define their
 - union

イロト イボト イヨト イヨト

- Given two simple games $\Gamma_1=({\it N},{\it W}_1)$ and $\Gamma_2=({\it N},{\it W}_1)$ we can define their
 - union $\Gamma_1 \cup \Gamma_2 = (N, \mathcal{W}_1 \cup \mathcal{W}_2)$

イロト 不得 トイヨト イヨト 二日

- Given two simple games $\Gamma_1=({\it N},{\it W}_1)$ and $\Gamma_2=({\it N},{\it W}_1)$ we can define their
 - union $\Gamma_1 \cup \Gamma_2 = (N, \mathcal{W}_1 \cup \mathcal{W}_2)$
 - intersection

イロト 不得 トイヨト イヨト 二日

- Given two simple games $\Gamma_1=({\it N},{\it W}_1)$ and $\Gamma_2=({\it N},{\it W}_1)$ we can define their
 - union $\Gamma_1 \cup \Gamma_2 = (N, \mathcal{W}_1 \cup \mathcal{W}_2)$
 - intersection $\Gamma_1 \cap \Gamma_2 = (N, \mathcal{W}_1 \cap \mathcal{W}_2)$

Both are simple games

イロト イポト イヨト ・ヨ

- Given two simple games $\Gamma_1=({\it N},{\cal W}_1)$ and $\Gamma_2=({\it N},{\cal W}_1)$ we can define their
 - union $\Gamma_1 \cup \Gamma_2 = (N, \mathcal{W}_1 \cup \mathcal{W}_2)$
 - intersection $\Gamma_1 \cap \Gamma_2 = (N, \mathcal{W}_1 \cap \mathcal{W}_2)$

Both are simple games

• A simple game Γ is a vector weighted voting game if there are WVGs $\Gamma_1, \ldots, \Gamma_k$, for some $k \ge 1$, so that $\Gamma = \Gamma_1 \cap \cdots \cap \Gamma_k$.

イロト イポト イヨト ・ヨー

- Given two simple games $\Gamma_1=({\it N},{\it W}_1)$ and $\Gamma_2=({\it N},{\it W}_1)$ we can define their
 - union $\Gamma_1 \cup \Gamma_2 = (N, \mathcal{W}_1 \cup \mathcal{W}_2)$
 - intersection $\Gamma_1 \cap \Gamma_2 = (N, \mathcal{W}_1 \cap \mathcal{W}_2)$

Both are simple games

- A simple game Γ is a vector weighted voting game if there are WVGs $\Gamma_1, \ldots, \Gamma_k$, for some $k \ge 1$, so that $\Gamma = \Gamma_1 \cap \cdots \cap \Gamma_k$.
- Any simple game is a vector weighted voting game.

30/41

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Given two simple games $\Gamma_1 = (N, \mathcal{W}_1)$ and $\Gamma_2 = (N, \mathcal{W}_1)$ we can define their
 - union $\Gamma_1 \cup \Gamma_2 = (N, \mathcal{W}_1 \cup \mathcal{W}_2)$
 - intersection $\Gamma_1 \cap \Gamma_2 = (N, \mathcal{W}_1 \cap \mathcal{W}_2)$

Both are simple games

- A simple game Γ is a vector weighted voting game if there are WVGs $\Gamma_1, \ldots, \Gamma_k$, for some k > 1, so that $\Gamma = \Gamma_1 \cap \cdots \cap \Gamma_k$.
- Any simple game is a vector weighted voting game.
- The dimension of a simple games is the minimum number of WVGs that allows its representation as VWVG

Dimension

Theorem

For a simple game $\Gamma = (N, \mathcal{L}^M)$, $\dim(\Gamma) \leq |\mathcal{L}^M|$.

Proof.

	-	_		 .
- ^			NZ	 R 1
	•			

3

31/41

Theorem

For a simple game $\Gamma = (N, \mathcal{L}^M)$, $\dim(\Gamma) \leq |\mathcal{L}^M|$.

Proof.

• Take a losing coalition C and consider the game in which players in C have weight 0 and players outside C 1, set the quote to 1.

Any set that is not contained in C wins!

くロ と く 同 と く ヨ と 一

э

Dimension

Theorem

For a simple game $\Gamma = (N, \mathcal{L}^M)$, $\dim(\Gamma) \leq |\mathcal{L}^M|$.

Proof.

• Take a losing coalition C and consider the game in which players in C have weight 0 and players outside C 1, set the quote to 1.

Any set that is not contained in C wins!

• The intersection of the above games describes Γ, as a minimal winning coalition cannot be a subset of any losing coalition.

Α	C.	Т-	Ν	11	R	ĺ

< ロ > < 同 > < 回 > < 回 > < 回 > <

Theorem

Let d_1 and d_2 two fixed integers with $1 \le d_2 < d_1$. Then the problem of deciding whether the intersection of d_1 WVGs can be represented as the intersection of d_2 WVGs is NP-hard.

くロ と く 同 と く ヨ と 一

Hardness

Theorem

Let d_1 and d_2 two fixed integers with $1 \le d_2 < d_1$. Then the problem of deciding whether the intersection of d_1 WVGs can be represented as the intersection of d₂ WVGs is NP-hard.

Proof

< ロ > < 同 > < 回 > < 回 > < 回 > <

The reduction is from the NP-complete problem Name: SUBSET SUM Input: n + 1 integer values, x_1, \ldots, x_n and b Question: Is there $S \subseteq \{1, \ldots, n\}$ for which

$$\sum_{i\in S}x_i=b.$$

AGT-MIRI

3

33/41

イロト イヨト イヨト

The reduction is from the NP-complete problem Name: SUBSET SUM Input: n + 1 integer values, x_1, \ldots, x_n and b Question: Is there $S \subseteq \{1, \ldots, n\}$ for which

$$\sum_{i\in S}x_i=b.$$

AGT-MIRI

3

33/41

イロト イヨト イヨト

Hardness

From an instance $I = (x_1, \ldots, x_k, b)$ of SUBSET SUM and any $d \ge 2$ construct WVGs:

From an instance $I = (x_1, \ldots, x_k, b)$ of SUBSET SUM and any $d \ge 2$ construct WVGs:

• $\Gamma_1, ..., \Gamma_d$ have k + 2d players, $p_1, ..., p_k, q_1, ..., q_d, q'_1, ..., q'_d$.

34 / 41

From an instance $I = (x_1, \ldots, x_k, b)$ of SUBSET SUM and any $d \ge 2$ construct WVGs:

• $\Gamma_1, ..., \Gamma_d$ have k + 2d players, $p_1, ..., p_k, q_1, ..., q_d, q'_1, ..., q'_d$.

• In
$$G_{\ell}$$
, $1 \le \ell \le d$
• $w_{\ell}(p_i) = 2x_i$, $1 \le i \le k$.
• For $1 \le j \le d$ and $j \ne \ell$, $w_{\ell}(q_j) = w_{\ell}(q'_j) = 0$
• and, $w_{\ell}(q_{\ell}) = w_{\ell}(q'_{\ell}) = 1$

34 / 41

From an instance $I = (x_1, \ldots, x_k, b)$ of SUBSET SUM and any $d \ge 2$ construct WVGs:

• $\Gamma_1, ..., \Gamma_d$ have k + 2d players, $p_1, ..., p_k, q_1, ..., q_d, q'_1, ..., q'_d$.

• In
$$G_{\ell}$$
, $1 \leq \ell \leq d$
• $w_{\ell}(p_i) = 2x_i$, $1 \leq i \leq k$.
• For $1 \leq j \leq d$ and $j \neq \ell$, $w_{\ell}(q_j) = w_{\ell}(q'_j) = 0$
• and, $w_{\ell}(q_{\ell}) = w_{\ell}(q'_{\ell}) = 1$
• $q_{\ell} = 2b + 1$.

Hardness

From an instance $I = (x_1, \ldots, x_k, b)$ of SUBSET SUM and any $d \ge 2$ construct WVGs:

• $\Gamma_1, ..., \Gamma_d$ have k + 2d players, $p_1, ..., p_k, q_1, ..., q_d, q'_1, ..., q'_d$.

• In
$$G_{\ell}$$
, $1 \leq \ell \leq d$
• $w_{\ell}(p_i) = 2x_i$, $1 \leq i \leq k$.
• For $1 \leq j \leq d$ and $j \neq \ell$, $w_{\ell}(q_j) = w_{\ell}(q'_j) = 0$
• and, $w_{\ell}(q_{\ell}) = w_{\ell}(q'_{\ell}) = 1$
• $q_{\ell} = 2b + 1$.

•
$$\Gamma(I)$$
 is the intersection of $\Gamma_1, \ldots, \Gamma_d$

34 / 41

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

If $I = (x_1, \ldots, x_k, b)$ is a NO instance then $\Gamma(I)$ is weighted.

If I = (x₁,...,x_k, b) is a NO instance then Γ(I) is weighted.
Let S be a coalition in Γ(I)

イロト 不得 トイヨト イヨト 二日

- If $I = (x_1, \ldots, x_k, b)$ is a NO instance then $\Gamma(I)$ is weighted.
 - Let S be a coalition in $\Gamma(I)$
 - Either $x(S) \leq b-1$ or $x(S) \geq b+1$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

- If $I = (x_1, \ldots, x_k, b)$ is a NO instance then $\Gamma(I)$ is weighted.
 - Let S be a coalition in $\Gamma(I)$
 - Either $x(S) \leq b-1$ or $x(S) \geq b+1$.
 - If $x(S) \ge b+1$, for $1 \le \ell \le d$, $w_{\ell}(S) \ge 2b+2$, and S wins in Γ_{ℓ} .

35 / 41

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

- If $I = (x_1, \ldots, x_k, b)$ is a NO instance then $\Gamma(I)$ is weighted.
 - Let S be a coalition in $\Gamma(I)$
 - Either $x(S) \leq b-1$ or $x(S) \geq b+1$.
 - If $x(S) \ge b+1$, for $1 \le \ell \le d$, $w_{\ell}(S) \ge 2b+2$, and S wins in Γ_{ℓ} .
 - If $x(S) \leq b-1$, for $1 \leq \ell \leq d$, $w_{\ell}(S) \leq 2x(S) + 2 \leq 2b+1$, and S loses in Γ_{ℓ} .

35 / 41

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

- If $I = (x_1, \ldots, x_k, b)$ is a NO instance then $\Gamma(I)$ is weighted.
 - Let S be a coalition in $\Gamma(I)$
 - Either x(S) < b 1 or x(S) > b + 1.
 - If x(S) > b+1, for $1 < \ell < d$, $w_{\ell}(S) > 2b+2$, and S wins in Γ_{ℓ} .
 - If $x(S) \le b-1$, for $1 \le \ell \le d$, $w_{\ell}(S) \le 2x(S) + 2 \le 2b+1$, and S loses in Γ_{ℓ} .
 - So, $\Gamma(I)$ is equivalent to the WVG in which $w(p_i) = x_i$, $1 \le i \le k$, $w(q_i) = w(q'_i) = 0, \ 1 \le j \le d$, and q = b + 1
If $I = (x_1, \ldots, x_k, b)$ is a YES instance, assume that $\Gamma(I)$ can be represented ad the intersection of d - 1 WVGs H_1, \ldots, H_{d-1} .

イロト イヨト イヨト

If $I = (x_1, \ldots, x_k, b)$ is a YES instance, assume that $\Gamma(I)$ can be represented ad the intersection of d - 1 WVGs H_1, \ldots, H_{d-1} .

• Let $J \subset \{1, \ldots, k\}$ be a solution with $\sum_{j \in J} x_j = b$.

イロト イポト イヨト イヨト 三日

If $I = (x_1, \ldots, x_k, b)$ is a YES instance, assume that $\Gamma(I)$ can be represented ad the intersection of d - 1 WVGs H_1, \ldots, H_{d-1} .

• Let $J \subset \{1, \ldots, k\}$ be a solution with $\sum_{i \in J} x_i = b$.

• Let S_{ℓ} be the coalition formed by p_j for $j \in J$ and q_i, q'_j , for $i \neq \ell$.

If $I = (x_1, \ldots, x_k, b)$ is a YES instance, assume that $\Gamma(I)$ can be represented ad the intersection of d - 1 WVGs H_1, \ldots, H_{d-1} .

• Let $J \subset \{1, \ldots, k\}$ be a solution with $\sum_{j \in J} x_j = b$.

- Let S_{ℓ} be the coalition formed by p_j for $j \in J$ and q_i, q'_j , for $i \neq \ell$.
- As w_ℓ(S_ℓ) = 2b < q_ℓ, S_ℓ loses in Γ_ℓ and in Γ(I), so it must lose in some of the H games.

36/41

イロト 不得 トイヨト イヨト 二日

If $I = (x_1, \ldots, x_k, b)$ is a YES instance, assume that $\Gamma(I)$ can be represented ad the intersection of d - 1 WVGs H_1, \ldots, H_{d-1} .

• Let $J \subset \{1, \ldots, k\}$ be a solution with $\sum_{j \in J} x_j = b$.

- Let S_{ℓ} be the coalition formed by p_j for $j \in J$ and q_i, q'_j , for $i \neq \ell$.
- As w_ℓ(S_ℓ) = 2b < q_ℓ, S_ℓ loses in Γ_ℓ and in Γ(I), so it must lose in some of the H games.

• Let
$$h(\ell)$$
 such that S_{ℓ} loses in $H_{h(\ell)}$.

36/41

イロト 不得 トイヨト イヨト 二日

If $I = (x_1, \ldots, x_k, b)$ is a YES instance, assume that $\Gamma(I)$ can be represented ad the intersection of d - 1 WVGs H_1, \ldots, H_{d-1} .

• Let $J \subset \{1, \ldots, k\}$ be a solution with $\sum_{j \in J} x_j = b$.

• Let S_{ℓ} be the coalition formed by p_j for $j \in J$ and q_i, q'_j , for $i \neq \ell$.

As w_ℓ(S_ℓ) = 2b < q_ℓ, S_ℓ loses in Γ_ℓ and in Γ(I), so it must lose in some of the H games.

• Let
$$h(\ell)$$
 such that S_{ℓ} loses in $H_{h(\ell)}$.

Since h(1),..., h(d) take values in 1,..., d − 1, two of them must be equal.

36/41

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

If $I = (x_1, \ldots, x_k, b)$ is a YES instance, assume that $\Gamma(I)$ can be represented ad the intersection of d - 1 WVGs H_1, \ldots, H_{d-1} .

• Let $J \subset \{1, \ldots, k\}$ be a solution with $\sum_{i \in J} x_i = b$.

• Let S_{ℓ} be the coalition formed by p_i for $j \in J$ and q_i, q'_i , for $i \neq \ell$.

• As $w_{\ell}(S_{\ell}) = 2b < q_{\ell}$, S_{ℓ} loses in Γ_{ℓ} and in $\Gamma(I)$, so it must lose in some of the H games.

• Let
$$h(\ell)$$
 such that S_{ℓ} loses in $H_{h(\ell)}$.

• Since $h(1), \ldots, h(d)$ take values in $1, \ldots, d-1$, two of them must be equal.

• Let
$$\alpha \neq \beta$$
 such that $h(\alpha) = h(\beta) = \gamma$.

Hardness

- Let $\alpha \neq \beta$ such that $h(\alpha) = h(\beta) = \gamma$, consider H_{γ}
 - Let W be the total weight of players $p_i, \ 1 \leq i \leq k$, and $q_j, q_j', \ j \notin \{\alpha, \beta\}$
 - Let $w_{\alpha}, w_{\beta}, w'_{\alpha}, w'_{\beta}$ the weight of players $q_{\alpha}, q_{\beta}, q'_{\alpha}, q'_{\beta}$.
 - Let q^* be the quota.

イロト 不得 トイヨト イヨト 二日

Hardness

- Let $\alpha \neq \beta$ such that $h(\alpha) = h(\beta) = \gamma$, consider H_{γ}
 - Let W be the total weight of players p_i , $1 \le i \le k$, and q_j, q'_j , $j \notin \{\alpha, \beta\}$
 - Let $w_{\alpha}, w_{\beta}, w'_{\alpha}, w'_{\beta}$ the weight of players $q_{\alpha}, q_{\beta}, q'_{\alpha}, q'_{\beta}$.
 - Let q^* be the quota.

• S_{lpha} loses, $W + w_{eta} + w_{eta}' < q^*$ and S_{eta} loses, $W + w_{lpha} + w_{lpha}' < q^*$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Hardness

- Let $\alpha \neq \beta$ such that $h(\alpha) = h(\beta) = \gamma$, consider H_{γ}
 - Let W be the total weight of players p_i , $1 \le i \le k$, and q_j , q'_j , $j \notin \{\alpha, \beta\}$
 - Let $w_{\alpha}, w_{\beta}, w'_{\alpha}, w'_{\beta}$ the weight of players $q_{\alpha}, q_{\beta}, q'_{\alpha}, q'_{\beta}$.
 - Let q^* be the quota.
- S_lpha loses, $W + w_eta + w_eta' < q^*$ and S_eta loses, $W + w_lpha + w_lpha' < q^*$
- The coalition with players p_i with $i \in J$ and $\{q_1, \ldots, q_d\}$ wins in $\Gamma(I)$, so $W + w_\alpha + w_\beta \ge q^*$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Hardness

- Let $\alpha \neq \beta$ such that $h(\alpha) = h(\beta) = \gamma$, consider H_{γ}
 - Let W be the total weight of players p_i , $1 \le i \le k$, and q_j , q'_j , $j \notin \{\alpha, \beta\}$
 - Let $w_{\alpha}, w_{\beta}, w'_{\alpha}, w'_{\beta}$ the weight of players $q_{\alpha}, q_{\beta}, q'_{\alpha}, q'_{\beta}$.
 - Let q^* be the quota.
- S_lpha loses, $W+w_eta+w_eta'< q^*$ and S_eta loses, $W+w_lpha+w_lpha'< q^*$
- The coalition with players p_i with $i \in J$ and $\{q_1, \ldots, q_d\}$ wins in $\Gamma(I)$, so $W + w_\alpha + w_\beta \ge q^*$.
- The coalition with players p_i with $i \in J$ and $\{q'_1, \ldots, q'_d\}$ wins in $\Gamma(I)$, so $W + w'_{\alpha} + w'_{\beta} \ge q^*$.

くロ とくぼ とくほ とくほ とうしょ

Hardness

- Let $\alpha \neq \beta$ such that $h(\alpha) = h(\beta) = \gamma$, consider H_{γ}
 - Let W be the total weight of players p_i , $1 \le i \le k$, and q_j , q'_j , $j \notin \{\alpha, \beta\}$
 - Let $w_{\alpha}, w_{\beta}, w'_{\alpha}, w'_{\beta}$ the weight of players $q_{\alpha}, q_{\beta}, q'_{\alpha}, q'_{\beta}$.
 - Let q^* be the quota.
- S_lpha loses, $W + w_eta + w_eta' < q^*$ and S_eta loses, $W + w_lpha + w_lpha' < q^*$
- The coalition with players p_i with $i \in J$ and $\{q_1, \ldots, q_d\}$ wins in $\Gamma(I)$, so $W + w_{\alpha} + w_{\beta} \ge q^*$.
- The coalition with players p_i with $i \in J$ and $\{q'_1, \ldots, q'_d\}$ wins in $\Gamma(I)$, so $W + w'_{\alpha} + w'_{\beta} \ge q^*$.
- So, $2W + w_{lpha} + w_{eta} + w_{eta}' + w_{eta}'$ must be $> q^*$ and $\leq q^*$, we get a contradiction

End Proof

э

37 / 41

- ∢ ⊒ →

Spring 2024

▲ 伊 ▶ ▲ 国 ▶

AGT-MIRI

Cooperative Game Theory

Theorem

Computing the dimension of a VWVG is NP-hard

Theorem

The ISWEIGHTED problem is NP hard for VWVGs

_				
 ~		×.	- Di	т.
	_		 	
	_		 	

イロト イボト イヨト イヨト

Simple Games

2 Problems on simple games

3 IsWeighted

・ロト ・四ト ・ヨト ・ヨト

æ

The core

Recall that a veto player is a player such that any coalition that does not contain it is losing.

The core

Recall that a veto player is a player such that any coalition that does not contain it is losing.

Theorem

The core on payoff vectors for the grand coalition of a simple game is non-empty iff it has a veto player.

The core

Recall that a veto player is a player such that any coalition that does not contain it is losing.

Theorem

The core on payoff vectors for the grand coalition of a simple game is non-empty iff it has a veto player.

Proof.

- If *i* is a veto player in Γ, the payoff x_i = 1, x_j = 0, is in the core as any coalition containing *i* gets 1.
- If Γ has no veto player and x is in the core, x(N) = 1.
- If there is $i \in N$ with $x_i > 0$, so $x(N \setminus \{i\}) < 1$.
- But as *i* is not a veto player $v(N \setminus \{i\}) = 1$.

- ∢ ⊒ →

▲ 伊 ▶ ▲ 国 ▶

References

- G. Chalkiadakis, E. Elkind, M. Wooldridge. Computational Aspects of Cooperative Game Theory Synthesis Lectures on Artificial Intelligence and Machine Learning, Morgan & Claypool, October 2011.
- V.G. Deineko, G.J. Woeginger: On the dimension of simple monotonic games. EJOR 170:315-318, 2006.
- J. Freixas, X. Molinero, M. Olsen, M. Serna: On the complexity of problems on simple games. RAIRO Oper. Res. 45(4): 295-314, 2011.