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Definitions TU games

Non-Cooperative versus cooperative Games

Non-cooperative game theory model scenarios where players cannot
make binding agreements.

Cooperative game theory model scenarios, where

agents can benefit by cooperating, and
binding agreements are possible.

In cooperative games, actions are taken by groups of agents,
coalitions, and payoffs are given to

the group. Those have to be divided among its members: Transferable
utility games (TU).
individuals. Non-transferable utility games (NTU).

For the moment we focus on TU games

Notation: N, set of players, C ,S ,X ⊆ N are coalitions.
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Definitions TU games

Notation

For a set A:

CA denotes the subsets of A, i.e., C ⊆ A.
PA denotes the partitions of A.

For a set of players N, a coalition is any subset of N.
N is the grand coalition.

A partition of N is a splitting of all the players into disjoint coalitions.
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Definitions TU games

Characteristic Function Games

A characteristic function game is a pair (N, v), where:

N = {1, ..., n} is the set of players and
v : CN → R is the characteristic function.

for each coalition of players C ⊆ N, v(C ) is the amount that the
members of C can earn by working together

usually it is assumed that v is

normalized: v(∅) = 0,
non-negative: v(C ) ≥ 0, for any C ⊆ N, and
monotone: v(C ) ≤ v(D), for any C , D such that C ⊆ D

Example: N = {A,B,C} and

CN ∅ A B C AB AC BC ABC

v 0 12 0 0 18 18 18 24
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Definitions TU games

Buying Ice-Cream Game

We have a group of n children, each has some amount of money the
i-th child has bi dollars.

There are three types of ice-cream tubs for sale:

Type 1 costs $7, contains 500g
Type 2 costs $9, contains 750g
Type 3 costs $11, contains 1kg

The children have utility for ice-cream but do not care about money.

The payoff of each group is the maximum quantity of ice-cream the
members of the group can buy by pooling all their money.

The ice-cream can be shared arbitrarily within the group.
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Definitions TU games

Ice-Cream Game: Characteristic Function

Charlie: $6 Marcie: $4 Pattie: $3

w = 500 w = 750 w = 100

p = $7 p = $9 p = $11

v(∅) = v({C}) = v({M}) = v({P}) = 0

v({C ,M}) = 750, v({C ,P}) = 750, v({M,P}) = 500

v({C ,M,P}) = 1000
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Definitions Outcomes

Outcomes

An outcome of a game Γ = (N, v) is a pair (P, x), where:

P = (C1, ...,Ck) ∈ PN is a coalition structure

x = (x1, ..., xn) is a payoff vector, which distributes the value of each
coalition in P:

xi ≥ 0, for all i ∈ N∑
i∈C xi = v(C ), for each C ∈ P, feasibility
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Definitions Outcomes

Outcome:example

Suppose v({1, 2, 3}) = 9 and v({4, 5}) = 4

(({1, 2, 3}, {4, 5}), (3, 3, 3, 3, 1)) is an outcome

(({1, 2, 3}, {4, 5}), (2, 3, 2, 3, 3)) is NOT an outcome as transfers
between coalitions are not allowed
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Definitions Imputations

Imputations

An outcome (P, x) is called an imputation if it satisfies individual
rationality:

xi ≥ v({i}),

for all i ∈ N.

Notation: we denote
∑

i∈A xi by x(A)
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Stability notions

What Is a Good Outcome?

The solutions of a game should provide good outcomes.

There are many possible definitions of these.

To simplify the presentation we consider superadditive games.
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Stability notions

Superadditive Games

A game G = (N, v) is called superadditive if

v(C ∪ D) ≥ v(C ) + v(D),

for any two disjoint coalitions C and D

Example: v(C ) = |C |2

v(C ∪ D) = (|C |+ |D|)2 ≥ |C |2 + |D|2 = v(C ) + v(D)
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Stability notions

Superadditive Games

In superadditive games, two coalitions can always merge without
losing money; hence, we can assume in a stable outcome P = (N, ∅).
Players must form the grand coalition

In superadditive games, we identify outcomes with payoff vectors for
the grand coalition

i.e., an outcome is a vector x = (x1, ..., xn) with x(N) = v(N)
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Stability notions

What Is a Good Outcome?

Charlie: $4 Marcie: $3 Pattie: $3
Ice-cream pots: w = (500, 750, 100) and p = ($7, $9, $11)

v(∅) = v({C}) = v({M}) = v({P}) = 0

v({C ,M}) = 500, v({C ,P}) = 500, v({M,P}) = 0

v({C ,M,P}) = 750

This is a superadditive game, so outcomes are payoff vectors!
How should the players share the ice-cream?
(200, 200, 350)?
Charlie and Marcie can get more ice-cream by buying a 500g tub on their
own, and splitting it equally
(200, 200, 350) is not stable!

AGT-MIRI Cooperative Game Theory Spring 2024 15 / 59



Stability notions

What Is a Good Outcome?

Charlie: $4 Marcie: $3 Pattie: $3
Ice-cream pots: w = (500, 750, 100) and p = ($7, $9, $11)

v(∅) = v({C}) = v({M}) = v({P}) = 0

v({C ,M}) = 500, v({C ,P}) = 500, v({M,P}) = 0

v({C ,M,P}) = 750

This is a superadditive game, so outcomes are payoff vectors!
How should the players share the ice-cream?
(200, 200, 350)?
Charlie and Marcie can get more ice-cream by buying a 500g tub on their
own, and splitting it equally
(200, 200, 350) is not stable!

AGT-MIRI Cooperative Game Theory Spring 2024 15 / 59



Stability notions

What Is a Good Outcome?

Charlie: $4 Marcie: $3 Pattie: $3
Ice-cream pots: w = (500, 750, 100) and p = ($7, $9, $11)

v(∅) = v({C}) = v({M}) = v({P}) = 0

v({C ,M}) = 500, v({C ,P}) = 500, v({M,P}) = 0

v({C ,M,P}) = 750

This is a superadditive game, so outcomes are payoff vectors!

How should the players share the ice-cream?
(200, 200, 350)?
Charlie and Marcie can get more ice-cream by buying a 500g tub on their
own, and splitting it equally
(200, 200, 350) is not stable!

AGT-MIRI Cooperative Game Theory Spring 2024 15 / 59



Stability notions

What Is a Good Outcome?

Charlie: $4 Marcie: $3 Pattie: $3
Ice-cream pots: w = (500, 750, 100) and p = ($7, $9, $11)

v(∅) = v({C}) = v({M}) = v({P}) = 0

v({C ,M}) = 500, v({C ,P}) = 500, v({M,P}) = 0

v({C ,M,P}) = 750

This is a superadditive game, so outcomes are payoff vectors!
How should the players share the ice-cream?

(200, 200, 350)?
Charlie and Marcie can get more ice-cream by buying a 500g tub on their
own, and splitting it equally
(200, 200, 350) is not stable!

AGT-MIRI Cooperative Game Theory Spring 2024 15 / 59



Stability notions

What Is a Good Outcome?

Charlie: $4 Marcie: $3 Pattie: $3
Ice-cream pots: w = (500, 750, 100) and p = ($7, $9, $11)

v(∅) = v({C}) = v({M}) = v({P}) = 0

v({C ,M}) = 500, v({C ,P}) = 500, v({M,P}) = 0

v({C ,M,P}) = 750

This is a superadditive game, so outcomes are payoff vectors!
How should the players share the ice-cream?
(200, 200, 350)?

Charlie and Marcie can get more ice-cream by buying a 500g tub on their
own, and splitting it equally
(200, 200, 350) is not stable!

AGT-MIRI Cooperative Game Theory Spring 2024 15 / 59



Stability notions

What Is a Good Outcome?

Charlie: $4 Marcie: $3 Pattie: $3
Ice-cream pots: w = (500, 750, 100) and p = ($7, $9, $11)

v(∅) = v({C}) = v({M}) = v({P}) = 0

v({C ,M}) = 500, v({C ,P}) = 500, v({M,P}) = 0

v({C ,M,P}) = 750

This is a superadditive game, so outcomes are payoff vectors!
How should the players share the ice-cream?
(200, 200, 350)?
Charlie and Marcie can get more ice-cream by buying a 500g tub on their
own, and splitting it equally

(200, 200, 350) is not stable!

AGT-MIRI Cooperative Game Theory Spring 2024 15 / 59



Stability notions

What Is a Good Outcome?

Charlie: $4 Marcie: $3 Pattie: $3
Ice-cream pots: w = (500, 750, 100) and p = ($7, $9, $11)

v(∅) = v({C}) = v({M}) = v({P}) = 0

v({C ,M}) = 500, v({C ,P}) = 500, v({M,P}) = 0

v({C ,M,P}) = 750

This is a superadditive game, so outcomes are payoff vectors!
How should the players share the ice-cream?
(200, 200, 350)?
Charlie and Marcie can get more ice-cream by buying a 500g tub on their
own, and splitting it equally
(200, 200, 350) is not stable!

AGT-MIRI Cooperative Game Theory Spring 2024 15 / 59



Stability notions Core and variations

The core

The core of a game Γ is the set of all stable outcomes, i.e., outcomes that
no coalition wants to deviate from

core(Γ) = {(P, x)|x(C ) ≥ v(C ) for any C ⊆ N}

each coalition earns, according to x , at least as much as it can make on its
own.

Example: v({1, 2, 3}) = 9, v({4, 5}) = 4, v({2, 4}) = 7

(({1, 2, 3}, {4, 5}), (3, 3, 3, 3, 1)) is NOT in the core

as x({2, 4}) = 6 and v({2, 4}) = 7

no subgroup of players can deviate so that each member of the
subgroup gets more.
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Stability notions Core and variations

Ice-cream game: Core

Charlie: $4 Marcie: $3 Pattie: $3
Ice-cream pots: w = (500, 750, 100) and p = ($7, $9, $11)

v(∅) = v({C}) = v({M}) = v({P}) = 0

v({C ,M}) = 500, v({C ,P}) = 500, v({M,P}) = 0

v({C ,M,P}) = 750

(200, 200, 350) is not in the core: v({C ,M}) > x({C ,M})
(250, 250, 250) is in the core: alone or in pairs do not get more.

(750, 0, 0) is also in the core:
Marcie and Pattie cannot get more on their own!
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Stability notions Core and variations

Games with empty core?

Let Γ = (N, v), where N = {1, 2, 3} and
v(C ) = 1 if |C | > 1 and v(C ) = 0 otherwise.

Consider an outcome (P, x).

We have x1, x2, x3 ≥ 0, x1 + x2 + x3 = 1, and xi + xj = 1, for i ̸= j
As, x1 + x2 + x3 ≥ 1, for some i ∈ {1, 2, 3}, xi ≥ 1/3.
Assume that i = 1, we have x2 + x3 = 1− x1 ≤ 1− 1/3 ≤ 1!

Thus the core of Γ is empty.
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Stability notions Core and variations

Core on payoff vectors

Suppose the game is not necessarily superadditive.

Then the core on payoff vectors may be empty, even if according to
the standard definition it is not.

Γ = (N, v) with N = {1, 2, 3, 4} and
v(C ) = 1 if |C | > 1 and v(C ) = 0 otherwise

not superadditive: v({1, 2}) + v({3, 4}) = 2 > v({1, 2, 3, 4})
no payoff vector for the grand coalition is in the core:
either {1, 2} or {3, 4} get less than 1, so can deviate
But (({1, 2}, {3, 4}), (1/2, 1/2, 1/2, 1/2)) is in the core
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Stability notions Core and variations

Least Core

When the core is empty, we may want to find approximately stable
outcomes.

We need to relax the notion of the core:
core: (P, x) : x(C ) ≥ v(C ), for all C ⊆ N

ϵ-core: {(P, x) : x(C ) ≥ v(C )− ϵ, for all C ⊆ N}
Γ = (N, v), N = {1, 2, 3} and
v(C ) = 1 if |C | > 1 and v(C ) = 0 otherwise

1/3-core is non-empty: (1/3, 1/3, 1/3) ∈ 1/3-core
ϵ-core is empty for any ϵ < 1/3:
xi ≥ 1/3, for some i = 1, 2, 3, so x(N \ {i}) ≤ 2/3, v(N \ {i}) = 1

We are interested in outcomes that minimize the worst-case deficit

Let ϵ∗(Γ) = inf{ϵ|ϵ-core of Γ is not empty}.
The ϵ∗(Γ)-core is called the least core of Γ and
ϵ∗(Γ) is called the value of the least core

For the example, the least core is the 1/3-core.
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Stability notions Fairness: Shapley value

Stability vs. Fairness

Outcomes in the core may be unfair.

Γ = ({1, 2}, v) with
v(∅) = 0, v({1}) = v({2}) = 5, v({1, 2}) = 20

(15, 5) is in the core: player 2 cannot benefit by deviating.
However, this is unfair since 1 and 2 are symmetric

How do we divide payoffs in a fair way?
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Stability notions Fairness: Shapley value

Marginal Contribution

A fair payment scheme rewards each agent according to his
contribution.

Attempt: given a game Γ = (N, v), set

xi = v({1, ..., i − 1, i})− v({1, ..., i − 1}).

The payoff to each player is his marginal contribution to the coalition
of his predecessors

We have x1 + ...+ xn = v(N) thus x is a payoff vector

However, payoff to each player depends on the order

Γ = ({1, 2}, v) with
v(∅) = 0, v({1}) = v({2}) = 5, v({1, 2}) = 20
x1 = v({1})− v(∅) = 5, x2 = v({1, 2})− v({1}) = 15
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Stability notions Fairness: Shapley value

Average Marginal Contribution

Idea: Remove the dependence on ordering taking the average over all
possible orderings.

Γ = ({1, 2}, v) with
v(∅) = 0, v({1}) = v({2}) = 5, v({1, 2}) = 20

1, 2: x1 = v({1})− v(∅) = 5, x2 = v({1, 2})− v({1}) = 15
2, 1: y2 = v({2})− v(∅) = 5, y1 = v({1, 2})− v({2}) = 15

z1 = (x1 + y1)/2 = 10, z2 = (x2 + y2)/2 = 10
the resulting outcome is fair!

Can we generalize this idea?
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Stability notions Fairness: Shapley value

Shapley Value

A permutation of {1, ..., n} is a one-to-one mapping from {1, ..., n} to
itself
Π(N) denotes the set of all permutations of N

Let Sπ(i) denote the set of predecessors of i in π ∈ Π(N)

For C ⊆ N, let δi (C ) = v(C ∪ {i})− v(C )

The Shapley value of player i in a game Γ = (N, v) with n players is

Φi (Γ) =
1

n!

∑
π∈Π(N)

δi (Sπ(i))

In the previous slide we have Φ1 = Φ2 = 10
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Stability notions Fairness: Shapley value

Shapley Value: Probabilistic Interpretation

Φi is i ’s average marginal contribution to the coalition of its
predecessors, over all permutations

Suppose that we choose a permutation of players uniformly at
random, then Φi is the expected marginal contribution of player i to
the coalition of his predecessors
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Stability notions Fairness: Shapley value

Player’s properties

Given a game Γ = (N, v)

A player i is a dummy in Γ if

v(C ) = v(C ∪ {i}), for any C ⊆ N

Two players i and j are said to be symmetric in Γ if

v(C ∪ {i}) = v(C ∪ {j}), for any C ⊆ N \ {i , j}
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Stability notions Fairness: Shapley value

Shapley value: Axiomatic Characterization

Properties of the Shapley value:

Efficiency: Φ1 + ...+Φn = v(N)

Dummy: if i is a dummy, Φi = 0

Symmetry: if i and j are symmetric, Φi = Φj

Additivity: Φi (Γ1 + Γ2) = Φi ((Γ1) + Φi (Γ2)

Theorem

The Shapley value is the only payoff distribution scheme that has
properties (1) - (4)

Γ = Γ1 + Γ2 is the game (N, v) with v(C ) = v1(C ) + v2(C )
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Stability notions Banzhaf index

Banzhaf index

The Banzhaf index of player i in game Γ = (N, v) is

βi (Γ) =
1

2n−1

∑
C⊆N

[v(C ∪ {i})− v(C )]

Dummy player, symmetry, additivity, but not efficiency.
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Stability notions Computational Issues

Computational Issues

We have defined some solution concepts

can we compute them efficiently?

We need to determine how to represent a coalitional game
Γ = (N, v)?

Extensive list values of all coalitions
exponential in the number of players n
Succinct a TM describing the function v
some undecidable questions might arise

We are usually interested in algorithms whose running time is
polynomial in n

So what can we do? subclasses?
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Stability notions Computational Issues

Checking Non-emptiness of the Core: Superadditive Games

An outcome in the core of a superadditive game satisfies the following
constraints:

xi ≥ 0 for all i ∈ N∑
i∈N

xi = v(N)∑
i∈C

xi ≥ v(C ), for any C ⊆ N

A linear feasibility program, with one constraint for each coalition:
2n + n + 1 constraints
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Stability notions Computational Issues

Superadditive Games: Computing the Least Core

Starting from the linear feasibility problem for the core

min ϵ

xi ≥ 0 for all i ∈ N∑
i∈N

xi = v(N)∑
i∈C

xi ≥ v(C )− ϵ, for any C ⊆ N

A minimization program, rather than a feasibility program
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Stability notions Computational Issues

Computing Shapley Value

Φi (Γ) =
∑

π∈Π(N) δi (Sπ(i))

Φi (Γ) is the expected marginal contribution of player i to the
coalition of his predecessors

Quick and dirty way:

Use Monte-Carlo method to compute Φi (Γ)

Convergence guaranteed by Law of Large Numbers
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Induced subgraph games Definition

Induced subgraph games

A game is described by an undirected, weighted graph G = (N,E )
with |N| = n and |E | = m and an integer edge weight function w .

The weight of edge (i , j) ∈ E is denoted by wi ,j .

In the game Γ(G ,w) = (N, v) the set of players is N, and the value v
of a coalition C ⊆ N is

v(C ) =
∑

e∈E(G [C ])

we

Usually self-loops are allowed when we want that the value of a
singleton is different from 0.

Observe that v(∅) = 0 and v(N) = w(E ).
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Induced subgraph games Definition

Induced subgraph games

Induced subgraph games model aspects of social networks.

The value of each coalition (team, club) is determined by the
relationships among its members: a player assigns a positive utility to
being in a coalition with his friends and a negative utility to being in a
coalition with his enemies.

The representation is succinct as long as the number of bits required
to encode edge weights is polynomial in |N|: using an adjacency
matrix to represent the graph requires only n2 entries.

Weights can be exponential in n and still have polynomial size.
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Induced subgraph games Definition

Completeness?

Is this is a complete representation?
All coalitional games can be represented as induced subgraph games?
NO
Consider the game Γ = (N, v), where n = {1, 2, 3} and

v(C ) =


0 if |C | ≤ 1

1 if |C | = 2

6 if |C | = 3

Assume that Γ(G ,w) realizes Γ.

By the first condition all self-loops must have weight 0.
By the second condition any pair of different vertices must be
connected by an edge with weight 1. So G must be a triangle.
But then v({1, 2, 3}) = 3 ̸= 6.
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Induced subgraph games Core emptyness

Properties of valuations

monotone if v(C ) ≤ v(D) for C ⊆ D ⊆ N.

superadditive if v(C ∪ D) ≥ v(C ) + v(D), for every pair of disjoint
coalitions C ,D ⊆ N.

supermodular v(C ∪ D) + v(C ∩ D) ≥ v(C ) + v(D).

A game (N, v) is convex iff v is supermodular.

Since we allow for negative edge weights, induced subgraph games are
not necessarily monotone.

However, when all edge weights are non-negative, induced subgraph
games are convex.
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Induced subgraph games Core emptyness

Can the core be empty?

The core of Γ(N, v) is the set of all imputations x such that v(S) ≤ x(S),
for each coalition S ⊆ N.
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Induced subgraph games Core emptyness

Can the core be empty?

Theorem

If Γ = (N, v) is a convex game, then Γ has a non-empty core.

Fix an arbitrary permutation π, and let xi be the marginal
contribution of i with respect to π.

Let us show that (x1, ..., xn) is in the core of Γ.

For C ⊆ N, we can assume that C = {i1, . . . , is} where
π(i1) < · · · < π(is).
So,
v(C ) = v({i1})− v(∅)+ v({i1, i2})− v({i1})+ · · ·+ v(C )− v(C \{is}).
By supermodularity we have,
v({i1, . . . , ij−1, ij}) − v({i1, . . . , ij−1}) ≤ v({1, . . . , ij}) − v({1, . . . , ij−1}).
Therefore v(C ) ≤ x(C ) and v(N) = x(N).

Observe that we have shown that the vector formed by the Shapley
value is in the core of a convex game.
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Induced subgraph games Computing the Shapley value

Computing the Shapley value

For C ⊆ N, let δi (C ) = v(C ∪ {i})− v(C )

The Shapley value of player i in a game Γ = (N, v) with n players is

Φi (Γ) =
1

n!

∑
π∈Π(N)

δi (Sπ(i))

Properties of the Shapley value:

Efficiency: Φ1 + ...+Φn = v(N)

Dummy: if i is a dummy, Φi = 0

Symmetry: if i and j are symmetric, Φi = Φj

Additivity: Φi (Γ1 + Γ2) = Φi ((Γ1) + Φi (Γ2)

Theorem

The Shapley value is the only payoff distribution scheme that has
properties (1) - (4)
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Induced subgraph games Computing the Shapley value

Computing the Shapley value

Theorem

The Shapley value of player i in Γ(G ,w) is

Φ(i) =
1

2

∑
(i ,j)∈E

wi ,j .
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Induced subgraph games Computing the Shapley value

Computing the Shapley value

Let {e1, . . . , em} be the set of edges in G .

We can decompose the graph G into m graphs G1, . . . ,Gm, where for
1 ≤ j ≤ m the graph Gj = (V , {ej}).
Considering the same weight as in the original graph, let
Γj = Γ(Gj ,w).

According to the definitions:

Γ = Γ(G ,w) = Γ1 + · · ·+ Γm.

By the additivity axiom, for each player i ∈ N we have

Φi (Γ) =
m∑
j=1

Φi (Γj).
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Induced subgraph games Computing the Shapley value

Shapley value: Computation

We have to compute Φi (Γj).

When i is not incident to ej , i is a dummy in Γj and Φi (Γj) = 0.

When ej = (i , ℓ) for some ℓ ∈ N, players i and ℓ are symmetric in Γj .

Since the value of the grand coalition in Γj equals w(i , ℓ), by
efficiency and symmetry we get Φi (Γj) = w(i , ℓ)/2.
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Induced subgraph games Computing the Shapley value

Shapley value

Theorem

The Shapley value of player i in Γ(G ,w), when w is positive, is

Φi =
1

2

∑
(i ,j)∈E

wi ,j .

Corollary

The Shapley values of induced subgraph games can be computed in
polynomial time.
Checking if the core is non-empoty for positive induced subgraph games
can be done in polynomial time
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Induced subgraph games Computing the Shapley value

Complexity of core related problems

Theorem

The following problems are NP-hard:

Given (G ,w) and an imputation x , is it not in the core of Γ(G ,w)?

Given (G ,w), is the vector of Shapley values of Γ(G ,w) not in the
core of Γ(G ,w)?

Given (G ,w), is the core of Γ(G ,w) empty?
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Induced subgraph games Computing the Shapley value

Complexity of core related problems

Theorem

Given (G ,w), when all weights are non-negative, we can test in
polynomial time

whether the core is non-empty.

whether an imputation x is in the core of Γ(G ,w).

The first question is trivial as the vector of Shapley values belong to the
core. The second problem can be solved by a reduction to MAX-FLOW.
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Minimum cost spanning tree games Definitions

MST Games

Minimum cost spanning tree games

A game is described by a weighted complete graph (G ,w) with n + 1
vertices.

V (G ) = {v0, . . . , vn}.
The weight of edge (i , j) ∈ E is denoted by wi ,j .
We assume wi ,j ≥ 0

In the game Γ(G ,w) = (N, c) the set of players is N = {v1, . . . , vn},
and the cost c of a coalition C ⊆ N is

c(C ) = the weight of a minimum spanning tree of G [S ∪ {v0}]

Self-loops are not allowed.

The cost of a singleton coalition {i} is c({i}) = w0,i .

Observe that v(∅) = 0 and v(N) = w(T ) where T is a MST of G .
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Minimum cost spanning tree games Definitions

MST Games

MST games model situations where a number of users must be
connected to a common supplier, and the cost of such connection can
be modeled as a minimum spanning tree problem.

The representation is succinct as long as the number of bits required
to encode edge weights is polynomial in |N|: using an adjacency
matrix to represent the graph requires only n2 entries.
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Minimum cost spanning tree games Definitions

Completeness?

Is this is a complete representation? All coalitional games can be
represented as MST games? NO
Consider the game Γ = (N, c), where n = {1, 2, 3} and

c(C ) =


0 if |C | ≤ 1

1 if |C | = 2

6 if |C | = 3

Assume that Γ(G ,w) realizes Γ. V (G ) = {0, 1, 2, 3}
By the first condition w0,i = 0, for i ∈ {1, 2, 3}.
Thus, a coalition with |C | = 2 has a MST with zero cost and the
second condition cannot be met.
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Minimum cost spanning tree games Properties of valuations

Properties of valuations

monotone if v(C ) ≤ v(D) for C ⊆ D ⊆ N.

superadditive if v(C ∪ D) ≥ v(C ) + v(D), for every pair of disjoint
coalitions C ,D ⊆ N.

subadditive v(C ∪ D) ≤ v(C ) + v(D), for every pair of disjoint
coalitions C ,D ⊆ N.

supermodular v(C ∪ D) + v(C ∩ D) ≥ v(C ) + v(D).

A game (N, v) is convex iff v is supermodular.

MST games are not necessarily monotone. Consider a triangle on
V = {0, 1, 2} and weights w0,1 = 1, w0,2 = 10 and w1,2 = 1
c(N) = 2 and c({1}) = 1 and c({2}) = 10

c is subadditive.
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Minimum cost spanning tree games Core emptyness

Can the core be empty?

Theorem

Consider a MST game Γ(G ,w). Let T ∗ be a MST of (G ,w) obtained
using Prim’s algorithm. The vector x = (x1, . . . , xn) that allocates to
player i ∈ N the weight of the first edge i encounters on the (unique path)
from vi to v0 in T ∗ belongs to the core of Γ.

Such an allocation is called standard core allocation
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Minimum cost spanning tree games Core emptyness

Can the core be empty?

A standard allocation x belongs to the core

Clearly
∑n

i=1 xi = w(T ∗) = c(N).

We need to show that
∑n

i=1 xi ≤ c(S).

Consider a coalition S and let T be a MST obtained using Prim’s
algorithm of G [S ∪ {v0}].
For j in S , let ej be the first edge j encounters on the path from vj to
v0 in T and let yj = w(ej).

The selected edge corresponds to the point in which Prim’s algorithm
connects the vertex to the component including v0, i.e., it is a
minimum weight edge in the allowed cut.

Analyzing carefully both executions it can be shown that xj ≤ yj as
the edges considered in one partition are a subset of the other.
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Minimum cost spanning tree games Core emptyness

How fair are standard core allocations?

Most of the cost is charged to player 1.

How to find more appropriate core allocations?
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Minimum cost spanning tree games Core emptyness

More appropriate core allocations?

There are many proposals to try to get more appropriate core
allocations.

Granot and Huberman [1984] prose the weak demand allocation and
strong demand allocation procedures. Which rectify standard
allocations by transfering cost (whenever possible) from one node to
their children.

Norde, Moretti and Tijs [2001] show how to find a population
monotonic allocation scheme (pmas), which is an allocation scheme
that provides a core element for the game and all its subgames and
which, moreover, satisfies a monotonicity condition in the sense that
players have to pay less in larger coalitions.
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Minimum cost spanning tree games Core emptyness

Complexity of core related problems

Theorem

The following problem is NP-complete:

Given (G ,w) and an imputation x , is it not in the core of Γ(G ,w)?

The proof follows by a reduction from EXACT COVER BY 3-SETS [Faigle
et al., Int. J. Game Theory 1997]
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