Cooperative Game Theory: Solution concepts

Spring 2024

(1) Definitions

(2) Stability notions

(3) Induced subgraph games
4) Minimum cost spanning tree games
(5) References

Non-Cooperative versus cooperative Games

- Non-cooperative game theory model scenarios where players cannot make binding agreements.

Non-Cooperative versus cooperative Games

- Non-cooperative game theory model scenarios where players cannot make binding agreements.
- Cooperative game theory model scenarios, where

Non-Cooperative versus cooperative Games

- Non-cooperative game theory model scenarios where players cannot make binding agreements.
- Cooperative game theory model scenarios, where
- agents can benefit by cooperating, and
- binding agreements are possible.

Non-Cooperative versus cooperative Games

- Non-cooperative game theory model scenarios where players cannot make binding agreements.
- Cooperative game theory model scenarios, where
- agents can benefit by cooperating, and
- binding agreements are possible.
- In cooperative games, actions are taken by groups of agents, coalitions, and payoffs are given to

Non-Cooperative versus cooperative Games

- Non-cooperative game theory model scenarios where players cannot make binding agreements.
- Cooperative game theory model scenarios, where
- agents can benefit by cooperating, and
- binding agreements are possible.
- In cooperative games, actions are taken by groups of agents, coalitions, and payoffs are given to
- the group. Those have to be divided among its members: Transferable utility games (TU).

Non-Cooperative versus cooperative Games

- Non-cooperative game theory model scenarios where players cannot make binding agreements.
- Cooperative game theory model scenarios, where
- agents can benefit by cooperating, and
- binding agreements are possible.
- In cooperative games, actions are taken by groups of agents, coalitions, and payoffs are given to
- the group. Those have to be divided among its members: Transferable utility games (TU).
- individuals. Non-transferable utility games (NTU).

Non-Cooperative versus cooperative Games

- Non-cooperative game theory model scenarios where players cannot make binding agreements.
- Cooperative game theory model scenarios, where
- agents can benefit by cooperating, and
- binding agreements are possible.
- In cooperative games, actions are taken by groups of agents, coalitions, and payoffs are given to
- the group. Those have to be divided among its members: Transferable utility games (TU).
- individuals. Non-transferable utility games (NTU).
- For the moment we focus on TU games

Non-Cooperative versus cooperative Games

- Non-cooperative game theory model scenarios where players cannot make binding agreements.
- Cooperative game theory model scenarios, where
- agents can benefit by cooperating, and
- binding agreements are possible.
- In cooperative games, actions are taken by groups of agents, coalitions, and payoffs are given to
- the group. Those have to be divided among its members: Transferable utility games (TU).
- individuals. Non-transferable utility games (NTU).
- For the moment we focus on TU games
- Notation: N, set of players, $C, S, X \subseteq N$ are coalitions.

Notation

Notation

- For a set A :

Notation

- For a set A :
- \mathcal{C}_{A} denotes the subsets of A, i.e., $C \subseteq A$.
- \mathcal{P}_{A} denotes the partitions of A.

Notation

- For a set A :
- \mathcal{C}_{A} denotes the subsets of A, i.e., $C \subseteq A$.
- \mathcal{P}_{A} denotes the partitions of A.
- For a set of players N, a coalition is any subset of N.

Notation

- For a set A :
- \mathcal{C}_{A} denotes the subsets of A, i.e., $C \subseteq A$.
- \mathcal{P}_{A} denotes the partitions of A.
- For a set of players N, a coalition is any subset of N. N is the grand coalition.

Notation

- For a set A :
- \mathcal{C}_{A} denotes the subsets of A, i.e., $C \subseteq A$.
- \mathcal{P}_{A} denotes the partitions of A.
- For a set of players N, a coalition is any subset of N. N is the grand coalition.
- A partition of N is a splitting of all the players into disjoint coalitions.

Characteristic Function Games

- A characteristic function game is a pair (N, v), where:
- $N=\{1, \ldots, n\}$ is the set of players and
- $v: \mathcal{C}_{N} \rightarrow \mathbb{R}$ is the characteristic function.

Characteristic Function Games

- A characteristic function game is a pair (N, v), where:
- $N=\{1, \ldots, n\}$ is the set of players and
- $v: \mathcal{C}_{N} \rightarrow \mathbb{R}$ is the characteristic function.
- for each coalition of players $C \subseteq N, v(C)$ is the amount that the members of C can earn by working together

Characteristic Function Games

- A characteristic function game is a pair (N, v), where:
- $N=\{1, \ldots, n\}$ is the set of players and
- $v: \mathcal{C}_{N} \rightarrow \mathbb{R}$ is the characteristic function.
- for each coalition of players $C \subseteq N, v(C)$ is the amount that the members of C can earn by working together
- usually it is assumed that v is

Characteristic Function Games

- A characteristic function game is a pair (N, v), where:
- $N=\{1, \ldots, n\}$ is the set of players and
- $v: \mathcal{C}_{N} \rightarrow \mathbb{R}$ is the characteristic function.
- for each coalition of players $C \subseteq N, v(C)$ is the amount that the members of C can earn by working together
- usually it is assumed that v is
- normalized: $v(\emptyset)=0$,
- non-negative: $v(C) \geq 0$, for any $C \subseteq N$, and
- monotone: $v(C) \leq v(D)$, for any C, D such that $C \subseteq D$
- Example: $N=\{A, B, C\}$ and

\mathcal{C}_{N}	\emptyset	A	B	C	AB	AC	BC	ABC
v	0	12	0	0	18	18	18	24

Buying Ice-Cream Game

Buying Ice-Cream Game

- We have a group of n children, each has some amount of money the i-th child has b_{i} dollars.

Buying Ice-Cream Game

- We have a group of n children, each has some amount of money the i-th child has b_{i} dollars.
- There are three types of ice-cream tubs for sale:

Buying Ice-Cream Game

- We have a group of n children, each has some amount of money the i-th child has b_{i} dollars.
- There are three types of ice-cream tubs for sale:

Buying Ice-Cream Game

- We have a group of n children, each has some amount of money the i-th child has b_{i} dollars.
- There are three types of ice-cream tubs for sale:

Type 1 costs $\$ 7$, contains 500 g Type 2 costs $\$ 9$, contains 750 g
Type 3 costs $\$ 11$, contains 1 kg

Buying Ice-Cream Game

- We have a group of n children, each has some amount of money the i-th child has b_{i} dollars.
- There are three types of ice-cream tubs for sale:

Type 1 costs $\$ 7$, contains 500 g
Type 2 costs $\$ 9$, contains 750 g
Type 3 costs $\$ 11$, contains 1 kg

- The children have utility for ice-cream but do not care about money.

Buying Ice-Cream Game

- We have a group of n children, each has some amount of money the i-th child has b_{i} dollars.
- There are three types of ice-cream tubs for sale:

Type 1 costs $\$ 7$, contains 500 g
Type 2 costs $\$ 9$, contains 750 g
Type 3 costs $\$ 11$, contains 1 kg

- The children have utility for ice-cream but do not care about money.
- The payoff of each group is the maximum quantity of ice-cream the members of the group can buy by pooling all their money.

Buying Ice-Cream Game

- We have a group of n children, each has some amount of money the i-th child has b_{i} dollars.
- There are three types of ice-cream tubs for sale:

Type 1 costs $\$ 7$, contains 500 g
Type 2 costs $\$ 9$, contains 750 g
Type 3 costs $\$ 11$, contains 1 kg

- The children have utility for ice-cream but do not care about money.
- The payoff of each group is the maximum quantity of ice-cream the members of the group can buy by pooling all their money.
- The ice-cream can be shared arbitrarily within the group.

Ice-Cream Game: Characteristic Function

Ice-Cream Game: Characteristic Function

Ice-Cream Game: Characteristic Function

$$
\begin{aligned}
w & =500 \\
p & =\$ 7
\end{aligned}
$$

$$
\begin{aligned}
w & =750 \\
p & =\$ 9
\end{aligned}
$$

Ice-Cream Game: Characteristic Function

Charlie: $\$ 6$
Marcie: $\$ 4$
Pattie: \$3

$$
\begin{aligned}
w & =500 \\
p & =\$ 7
\end{aligned}
$$

$$
\begin{aligned}
w & =750 \\
p & =\$ 9
\end{aligned}
$$

- $v(\emptyset)=v(\{C\})=v(\{M\})=v(\{P\})=0$
- $v(\{C, M\})=750, v(\{C, P\})=750, v(\{M, P\})=500$
- $v(\{C, M, P\})=1000$

Outcomes

An outcome of a game $\Gamma=(N, v)$ is a pair (P, x), where:

Outcomes

An outcome of a game $\Gamma=(N, v)$ is a pair (P, x), where:

- $P=\left(C_{1}, \ldots, C_{k}\right) \in \mathcal{P}_{N}$ is a coalition structure

Outcomes

An outcome of a game $\Gamma=(N, v)$ is a pair (P, x), where:

- $P=\left(C_{1}, \ldots, C_{k}\right) \in \mathcal{P}_{N}$ is a coalition structure
- $x=\left(x_{1}, \ldots, x_{n}\right)$ is a payoff vector, which distributes the value of each coalition in P :
- $x_{i} \geq 0$, for all $i \in N$
- $\sum_{i \in C} x_{i}=v(C)$, for each $C \in P$,

Outcomes

An outcome of a game $\Gamma=(N, v)$ is a pair (P, x), where:

- $P=\left(C_{1}, \ldots, C_{k}\right) \in \mathcal{P}_{N}$ is a coalition structure
- $x=\left(x_{1}, \ldots, x_{n}\right)$ is a payoff vector, which distributes the value of each coalition in P :
- $x_{i} \geq 0$, for all $i \in N$
- $\sum_{i \in C} x_{i}=v(C)$, for each $C \in P$, feasibility

Outcome:example

Suppose $v(\{1,2,3\})=9$ and $v(\{4,5\})=4$

Outcome:example

Suppose $v(\{1,2,3\})=9$ and $v(\{4,5\})=4$

- $((\{1,2,3\},\{4,5\}),(3,3,3,3,1))$ is an outcome

Outcome:example

Suppose $v(\{1,2,3\})=9$ and $v(\{4,5\})=4$

- $((\{1,2,3\},\{4,5\}),(3,3,3,3,1))$ is an outcome
- $((\{1,2,3\},\{4,5\}),(2,3,2,3,3))$ is NOT an outcome as transfers between coalitions are not allowed

Imputations

Imputations

An outcome (P, x) is called an imputation if it satisfies individual rationality:

$$
x_{i} \geq v(\{i\})
$$

for all $i \in N$.

Imputations

An outcome (P, x) is called an imputation if it satisfies individual rationality:

$$
x_{i} \geq v(\{i\})
$$

for all $i \in N$.

Notation: we denote $\sum_{i \in A} x_{i}$ by $x(A)$

(1) Definitions

(2) Stability notions

(3) Induced subgraph games

4) Minimum cost spanning tree games
(5) References

What Is a Good Outcome?

What Is a Good Outcome?

- The solutions of a game should provide good outcomes.

What Is a Good Outcome?

- The solutions of a game should provide good outcomes.
- There are many possible definitions of these.

What Is a Good Outcome?

- The solutions of a game should provide good outcomes.
- There are many possible definitions of these.
- To simplify the presentation we consider superadditive games.

Superadditive Games

- A game $G=(N, v)$ is called superadditive if

$$
v(C \cup D) \geq v(C)+v(D)
$$

for any two disjoint coalitions C and D

Superadditive Games

- A game $G=(N, v)$ is called superadditive if

$$
v(C \cup D) \geq v(C)+v(D)
$$

for any two disjoint coalitions C and D

- Example: $v(C)=|C|^{2}$

$$
v(C \cup D)=(|C|+|D|)^{2} \geq|C|^{2}+|D|^{2}=v(C)+v(D)
$$

Superadditive Games

Superadditive Games

- In superadditive games, two coalitions can always merge without losing money; hence, we can assume in a stable outcome $P=(N, \emptyset)$.

Superadditive Games

- In superadditive games, two coalitions can always merge without losing money; hence, we can assume in a stable outcome $P=(N, \emptyset)$. Players must form the grand coalition

Superadditive Games

- In superadditive games, two coalitions can always merge without losing money; hence, we can assume in a stable outcome $P=(N, \emptyset)$. Players must form the grand coalition
- In superadditive games, we identify outcomes with payoff vectors for the grand coalition

Superadditive Games

- In superadditive games, two coalitions can always merge without losing money; hence, we can assume in a stable outcome $P=(N, \emptyset)$. Players must form the grand coalition
- In superadditive games, we identify outcomes with payoff vectors for the grand coalition
i.e., an outcome is a vector $x=\left(x_{1}, \ldots, x_{n}\right)$ with $x(N)=v(N)$

What Is a Good Outcome?

Charlie: $\$ 4$ Marcie: $\$ 3$ Pattie: $\$ 3$ Ice-cream pots: $w=(500,750,100)$ and $p=(\$ 7, \$ 9, \$ 11)$

What Is a Good Outcome?

Charlie: $\$ 4$ Marcie: $\$ 3$ Pattie: $\$ 3$ Ice-cream pots: $w=(500,750,100)$ and $p=(\$ 7, \$ 9, \$ 11)$

- $v(\emptyset)=v(\{C\})=v(\{M\})=v(\{P\})=0$
- $v(\{C, M\})=500, v(\{C, P\})=500, v(\{M, P\})=0$
- $v(\{C, M, P\})=750$

What Is a Good Outcome?

Charlie: $\$ 4$ Marcie: $\$ 3$ Pattie: $\$ 3$ Ice-cream pots: $w=(500,750,100)$ and $p=(\$ 7, \$ 9, \$ 11)$

- $v(\emptyset)=v(\{C\})=v(\{M\})=v(\{P\})=0$
- $v(\{C, M\})=500, v(\{C, P\})=500, v(\{M, P\})=0$
- $v(\{C, M, P\})=750$

This is a superadditive game, so outcomes are payoff vectors!

What Is a Good Outcome?

Charlie: $\$ 4$ Marcie: $\$ 3$ Pattie: $\$ 3$ Ice-cream pots: $w=(500,750,100)$ and $p=(\$ 7, \$ 9, \$ 11)$

- $v(\emptyset)=v(\{C\})=v(\{M\})=v(\{P\})=0$
- $v(\{C, M\})=500, v(\{C, P\})=500, v(\{M, P\})=0$
- $v(\{C, M, P\})=750$

This is a superadditive game, so outcomes are payoff vectors! How should the players share the ice-cream?

What Is a Good Outcome?

Charlie: $\$ 4$ Marcie: $\$ 3$ Pattie: $\$ 3$ Ice-cream pots: $w=(500,750,100)$ and $p=(\$ 7, \$ 9, \$ 11)$

- $v(\emptyset)=v(\{C\})=v(\{M\})=v(\{P\})=0$
- $v(\{C, M\})=500, v(\{C, P\})=500, v(\{M, P\})=0$
- $v(\{C, M, P\})=750$

This is a superadditive game, so outcomes are payoff vectors! How should the players share the ice-cream? (200, 200, 350)?

What Is a Good Outcome?

Charlie: $\$ 4$ Marcie: $\$ 3$ Pattie: $\$ 3$ Ice-cream pots: $w=(500,750,100)$ and $p=(\$ 7, \$ 9, \$ 11)$

- $v(\emptyset)=v(\{C\})=v(\{M\})=v(\{P\})=0$
- $v(\{C, M\})=500, v(\{C, P\})=500, v(\{M, P\})=0$
- $v(\{C, M, P\})=750$

This is a superadditive game, so outcomes are payoff vectors! How should the players share the ice-cream? (200, 200, 350)?
Charlie and Marcie can get more ice-cream by buying a 500 g tub on their own, and splitting it equally

What Is a Good Outcome?

Charlie: $\$ 4$ Marcie: $\$ 3$ Pattie: $\$ 3$ Ice-cream pots: $w=(500,750,100)$ and $p=(\$ 7, \$ 9, \$ 11)$

- $v(\emptyset)=v(\{C\})=v(\{M\})=v(\{P\})=0$
- $v(\{C, M\})=500, v(\{C, P\})=500, v(\{M, P\})=0$
- $v(\{C, M, P\})=750$

This is a superadditive game, so outcomes are payoff vectors! How should the players share the ice-cream? (200, 200, 350)?
Charlie and Marcie can get more ice-cream by buying a 500 g tub on their own, and splitting it equally
$(200,200,350)$ is not stable!

The core

The core

The core of a game Γ is the set of all stable outcomes, i.e., outcomes that no coalition wants to deviate from

The core

The core of a game Γ is the set of all stable outcomes, i.e., outcomes that no coalition wants to deviate from

$$
\operatorname{core}(\Gamma)=\{(P, x) \mid x(C) \geq v(C) \text { for any } C \subseteq N\}
$$

The core

The core of a game Γ is the set of all stable outcomes, i.e., outcomes that no coalition wants to deviate from

$$
\operatorname{core}(\Gamma)=\{(P, x) \mid x(C) \geq v(C) \text { for any } C \subseteq N\}
$$

each coalition earns, according to x, at least as much as it can make on its own.

The core

The core of a game Γ is the set of all stable outcomes, i.e., outcomes that no coalition wants to deviate from

$$
\operatorname{core}(\Gamma)=\{(P, x) \mid x(C) \geq v(C) \text { for any } C \subseteq N\}
$$

each coalition earns, according to x, at least as much as it can make on its own.

- Example: $v(\{1,2,3\})=9, v(\{4,5\})=4, v(\{2,4\})=7$

The core

The core of a game Γ is the set of all stable outcomes, i.e., outcomes that no coalition wants to deviate from

$$
\operatorname{core}(\Gamma)=\{(P, x) \mid x(C) \geq v(C) \text { for any } C \subseteq N\}
$$

each coalition earns, according to x, at least as much as it can make on its own.

- Example: $v(\{1,2,3\})=9, v(\{4,5\})=4, v(\{2,4\})=7$ $((\{1,2,3\},\{4,5\}),(3,3,3,3,1))$ is NOT in the core

The core

The core of a game Γ is the set of all stable outcomes, i.e., outcomes that no coalition wants to deviate from

$$
\operatorname{core}(\Gamma)=\{(P, x) \mid x(C) \geq v(C) \text { for any } C \subseteq N\}
$$

each coalition earns, according to x, at least as much as it can make on its own.

- Example: $v(\{1,2,3\})=9, v(\{4,5\})=4, v(\{2,4\})=7$ $((\{1,2,3\},\{4,5\}),(3,3,3,3,1))$ is NOT in the core as $x(\{2,4\})=6$ and $v(\{2,4\})=7$

The core

The core of a game Γ is the set of all stable outcomes, i.e., outcomes that no coalition wants to deviate from

$$
\operatorname{core}(\Gamma)=\{(P, x) \mid x(C) \geq v(C) \text { for any } C \subseteq N\}
$$

each coalition earns, according to x, at least as much as it can make on its own.

- Example: $v(\{1,2,3\})=9, v(\{4,5\})=4, v(\{2,4\})=7$ $((\{1,2,3\},\{4,5\}),(3,3,3,3,1))$ is NOT in the core as $x(\{2,4\})=6$ and $v(\{2,4\})=7$
- no subgroup of players can deviate so that each member of the subgroup gets more.

Ice-cream game: Core

Charlie: $\$ 4$ Marcie: $\$ 3$ Pattie:
ots: $w=(500,750,100)$ and $p=(\$ 7, \$ 9, \$ 11)$

- $v(\emptyset)=v(\{C\})=v(\{M\})=v(\{P\})=0$
- $v(\{C, M\})=500, v(\{C, P\})=500, v(\{M, P\})=0$
- $v(\{C, M, P\})=750$

Ice-cream game: Core

Charlie: $\$ 4$ Marcie: $\$ 3$ Pattie:

- $v(\emptyset)=v(\{C\})=v(\{M\})=v(\{P\})=0$
- $v(\{C, M\})=500, v(\{C, P\})=500, v(\{M, P\})=0$
- $v(\{C, M, P\})=750$
- $(200,200,350)$

Ice-cream game: Core

Charlie: $\$ 4$ Marcie: $\$ 3$ Pattie: $\$ 3$ Ice-cream pots: $w=(500,750,100)$ and $p=(\$ 7, \$ 9, \$ 11)$

- $v(\emptyset)=v(\{C\})=v(\{M\})=v(\{P\})=0$
- $v(\{C, M\})=500, v(\{C, P\})=500, v(\{M, P\})=0$
- $v(\{C, M, P\})=750$
- $(200,200,350)$ is not in the core: $v(\{C, M\})>x(\{C, M\})$

Ice-cream game: Core

Charlie: $\$ 4$ Marcie: $\$ 3$ Pattie: $\$ 3$ Ice-cream pots: $w=(500,750,100)$ and $p=(\$ 7, \$ 9, \$ 11)$

- $v(\emptyset)=v(\{C\})=v(\{M\})=v(\{P\})=0$
- $v(\{C, M\})=500, v(\{C, P\})=500, v(\{M, P\})=0$
- $v(\{C, M, P\})=750$
- $(200,200,350)$ is not in the core: $v(\{C, M\})>x(\{C, M\})$
- $(250,250,250)$

Ice-cream game: Core

Charlie: $\$ 4$ Marcie: $\$ 3$ Pattie: $\$ 3$ Ice-cream pots: $w=(500,750,100)$ and $p=(\$ 7, \$ 9, \$ 11)$

- $v(\emptyset)=v(\{C\})=v(\{M\})=v(\{P\})=0$
- $v(\{C, M\})=500, v(\{C, P\})=500, v(\{M, P\})=0$
- $v(\{C, M, P\})=750$
- $(200,200,350)$ is not in the core: $v(\{C, M\})>x(\{C, M\})$
- $(250,250,250)$ is in the core: alone or in pairs do not get more.
- (750, 0, 0)

Ice-cream game: Core

Charlie: \$4

Pattie: \$3 Ice-cream pots: $w=(500,750,100)$ and $p=(\$ 7, \$ 9, \$ 11)$

- $v(\emptyset)=v(\{C\})=v(\{M\})=v(\{P\})=0$
- $v(\{C, M\})=500, v(\{C, P\})=500, v(\{M, P\})=0$
- $v(\{C, M, P\})=750$
- $(200,200,350)$ is not in the core: $v(\{C, M\})>x(\{C, M\})$
- $(250,250,250)$ is in the core: alone or in pairs do not get more.
- $(750,0,0)$ is also in the core:

Ice-cream game: Core

Charlie: $\$ 4$ 远

Pattie: \$3 Ice-cream pots: $w=(500,750,100)$ and $p=(\$ 7, \$ 9, \$ 11)$

- $v(\emptyset)=v(\{C\})=v(\{M\})=v(\{P\})=0$
- $v(\{C, M\})=500, v(\{C, P\})=500, v(\{M, P\})=0$
- $v(\{C, M, P\})=750$
- $(200,200,350)$ is not in the core: $v(\{C, M\})>x(\{C, M\})$
- $(250,250,250)$ is in the core: alone or in pairs do not get more.
- $(750,0,0)$ is also in the core:

Marcie and Pattie cannot get more on their own!

Games with empty core?

Games with empty core?

- Let $\Gamma=(N, v)$, where $N=\{1,2,3\}$ and $v(C)=1$ if $|C|>1$ and $v(C)=0$ otherwise.

Games with empty core?

- Let $\Gamma=(N, v)$, where $N=\{1,2,3\}$ and $v(C)=1$ if $|C|>1$ and $v(C)=0$ otherwise.
- Consider an outcome (P, x).

Games with empty core?

- Let $\Gamma=(N, v)$, where $N=\{1,2,3\}$ and $v(C)=1$ if $|C|>1$ and $v(C)=0$ otherwise.
- Consider an outcome (P, x).
- We have $x_{1}, x_{2}, x_{3} \geq 0, x_{1}+x_{2}+x_{3}=1$, and $x_{i}+x_{j}=1$, for $i \neq j$
- As, $x_{1}+x_{2}+x_{3} \geq 1$, for some $i \in\{1,2,3\}, x_{i} \geq 1 / 3$.
- Assume that $i=1$, we have $x_{2}+x_{3}=1-x_{1} \leq 1-1 / 3 \leq 1$!

Games with empty core?

- Let $\Gamma=(N, v)$, where $N=\{1,2,3\}$ and $v(C)=1$ if $|C|>1$ and $v(C)=0$ otherwise.
- Consider an outcome (P, x).
- We have $x_{1}, x_{2}, x_{3} \geq 0, x_{1}+x_{2}+x_{3}=1$, and $x_{i}+x_{j}=1$, for $i \neq j$
- As, $x_{1}+x_{2}+x_{3} \geq 1$, for some $i \in\{1,2,3\}, x_{i} \geq 1 / 3$.
- Assume that $i=1$, we have $x_{2}+x_{3}=1-x_{1} \leq 1-1 / 3 \leq 1$!
- Thus the core of Γ is empty.

Core on payoff vectors

Core on payoff vectors

- Suppose the game is not necessarily superadditive.

Core on payoff vectors

- Suppose the game is not necessarily superadditive.
- Then the core on payoff vectors may be empty, even if according to the standard definition it is not.

Core on payoff vectors

- Suppose the game is not necessarily superadditive.
- Then the core on payoff vectors may be empty, even if according to the standard definition it is not.
- 「 $=(N, v)$ with $N=\{1,2,3,4\}$ and
$v(C)=1$ if $|C|>1$ and $v(C)=0$ otherwise

Core on payoff vectors

- Suppose the game is not necessarily superadditive.
- Then the core on payoff vectors may be empty, even if according to the standard definition it is not.
- 「 $=(N, v)$ with $N=\{1,2,3,4\}$ and
$v(C)=1$ if $|C|>1$ and $v(C)=0$ otherwise
- not superadditive: $v(\{1,2\})+v(\{3,4\})=2>v(\{1,2,3,4\})$

Core on payoff vectors

- Suppose the game is not necessarily superadditive.
- Then the core on payoff vectors may be empty, even if according to the standard definition it is not.
- 「 $=(N, v)$ with $N=\{1,2,3,4\}$ and
$v(C)=1$ if $|C|>1$ and $v(C)=0$ otherwise
- not superadditive: $v(\{1,2\})+v(\{3,4\})=2>v(\{1,2,3,4\})$
- no payoff vector for the grand coalition is in the core: either $\{1,2\}$ or $\{3,4\}$ get less than 1 , so can deviate

Core on payoff vectors

- Suppose the game is not necessarily superadditive.
- Then the core on payoff vectors may be empty, even if according to the standard definition it is not.
- $\Gamma=(N, v)$ with $N=\{1,2,3,4\}$ and
$v(C)=1$ if $|C|>1$ and $v(C)=0$ otherwise
- not superadditive: $v(\{1,2\})+v(\{3,4\})=2>v(\{1,2,3,4\})$
- no payoff vector for the grand coalition is in the core: either $\{1,2\}$ or $\{3,4\}$ get less than 1 , so can deviate
- But $((\{1,2\},\{3,4\}),(1 / 2,1 / 2,1 / 2,1 / 2))$ is in the core

Least Core

Least Core

- When the core is empty, we may want to find approximately stable outcomes.

Least Core

- When the core is empty, we may want to find approximately stable outcomes.
- We need to relax the notion of the core:

Least Core

- When the core is empty, we may want to find approximately stable outcomes.
- We need to relax the notion of the core: core: $(P, x): x(C) \geq v(C)$, for all $C \subseteq N$

Least Core

- When the core is empty, we may want to find approximately stable outcomes.
- We need to relax the notion of the core:
core: $(P, x): x(C) \geq v(C)$, for all $C \subseteq N$
ϵ-core: $\{(P, x): x(C) \geq v(C)-\epsilon$, for all $C \subseteq N\}$

Least Core

- When the core is empty, we may want to find approximately stable outcomes.
- We need to relax the notion of the core:
core: $(P, x): x(C) \geq v(C)$, for all $C \subseteq N$
ϵ-core: $\{(P, x): x(C) \geq v(C)-\epsilon$, for all $C \subseteq N\}$
- 「 $=(N, v), N=\{1,2,3\}$ and
$v(C)=1$ if $|C|>1$ and $v(C)=0$ otherwise

Least Core

- When the core is empty, we may want to find approximately stable outcomes.
- We need to relax the notion of the core:
core: $(P, x): x(C) \geq v(C)$, for all $C \subseteq N$
ϵ-core: $\{(P, x): x(C) \geq v(C)-\epsilon$, for all $C \subseteq N\}$
- $\Gamma=(N, v), N=\{1,2,3\}$ and
$v(C)=1$ if $|C|>1$ and $v(C)=0$ otherwise
- $1 / 3$-core is non-empty: $(1 / 3,1 / 3,1 / 3) \in 1 / 3$-core
- ϵ-core is empty for any $\epsilon<1 / 3$:
$x_{i} \geq 1 / 3$, for some $i=1,2,3$, so $x(N \backslash\{i\}) \leq 2 / 3, v(N \backslash\{i\})=1$

Least Core

- When the core is empty, we may want to find approximately stable outcomes.
- We need to relax the notion of the core:
core: $(P, x): x(C) \geq v(C)$, for all $C \subseteq N$
ϵ-core: $\{(P, x): x(C) \geq v(C)-\epsilon$, for all $C \subseteq N\}$
- $\Gamma=(N, v), N=\{1,2,3\}$ and
$v(C)=1$ if $|C|>1$ and $v(C)=0$ otherwise
- $1 / 3$-core is non-empty: $(1 / 3,1 / 3,1 / 3) \in 1 / 3$-core
- ϵ-core is empty for any $\epsilon<1 / 3$:
$x_{i} \geq 1 / 3$, for some $i=1,2,3$, so $x(N \backslash\{i\}) \leq 2 / 3, v(N \backslash\{i\})=1$
- We are interested in outcomes that minimize the worst-case deficit

Least Core

- When the core is empty, we may want to find approximately stable outcomes.
- We need to relax the notion of the core:
core: $(P, x): x(C) \geq v(C)$, for all $C \subseteq N$
ϵ-core: $\{(P, x): x(C) \geq v(C)-\epsilon$, for all $C \subseteq N\}$
- $\Gamma=(N, v), N=\{1,2,3\}$ and
$v(C)=1$ if $|C|>1$ and $v(C)=0$ otherwise
- $1 / 3$-core is non-empty: $(1 / 3,1 / 3,1 / 3) \in 1 / 3$-core
- ϵ-core is empty for any $\epsilon<1 / 3$:
$x_{i} \geq 1 / 3$, for some $i=1,2,3$, so $x(N \backslash\{i\}) \leq 2 / 3, v(N \backslash\{i\})=1$
- We are interested in outcomes that minimize the worst-case deficit
- Let $\epsilon^{*}(\Gamma)=\inf \{\epsilon \mid \epsilon$-core of Γ is not empty $\}$.

Least Core

- When the core is empty, we may want to find approximately stable outcomes.
- We need to relax the notion of the core:
core: $(P, x): x(C) \geq v(C)$, for all $C \subseteq N$
ϵ-core: $\{(P, x): x(C) \geq v(C)-\epsilon$, for all $C \subseteq N\}$
- $\Gamma=(N, v), N=\{1,2,3\}$ and
$v(C)=1$ if $|C|>1$ and $v(C)=0$ otherwise
- $1 / 3$-core is non-empty: $(1 / 3,1 / 3,1 / 3) \in 1 / 3$-core
- ϵ-core is empty for any $\epsilon<1 / 3$:
$x_{i} \geq 1 / 3$, for some $i=1,2,3$, so $x(N \backslash\{i\}) \leq 2 / 3, v(N \backslash\{i\})=1$
- We are interested in outcomes that minimize the worst-case deficit
- Let $\epsilon^{*}(\Gamma)=\inf \{\epsilon \mid \epsilon$-core of Γ is not empty $\}$.
- The $\epsilon^{*}(\Gamma)$-core is called the least core of Γ and $\epsilon^{*}(\Gamma)$ is called the value of the least core

Least Core

- When the core is empty, we may want to find approximately stable outcomes.
- We need to relax the notion of the core:
core: $(P, x): x(C) \geq v(C)$, for all $C \subseteq N$
ϵ-core: $\{(P, x): x(C) \geq v(C)-\epsilon$, for all $C \subseteq N\}$
- $\Gamma=(N, v), N=\{1,2,3\}$ and
$v(C)=1$ if $|C|>1$ and $v(C)=0$ otherwise
- $1 / 3$-core is non-empty: $(1 / 3,1 / 3,1 / 3) \in 1 / 3$-core
- ϵ-core is empty for any $\epsilon<1 / 3$:
$x_{i} \geq 1 / 3$, for some $i=1,2,3$, so $x(N \backslash\{i\}) \leq 2 / 3, v(N \backslash\{i\})=1$
- We are interested in outcomes that minimize the worst-case deficit
- Let $\epsilon^{*}(\Gamma)=\inf \{\epsilon \mid \epsilon$-core of Γ is not empty $\}$.
- The $\epsilon^{*}(\Gamma)$-core is called the least core of Γ and $\epsilon^{*}(\Gamma)$ is called the value of the least core
- For the example, the least core is the $1 / 3$-core.

Stability vs. Fairness

- Outcomes in the core may be unfair.

Stability vs. Fairness

- Outcomes in the core may be unfair.
- $\Gamma=(\{1,2\}, v)$ with
$v(\emptyset)=0, v(\{1\})=v(\{2\})=5, v(\{1,2\})=20$
- $(15,5)$ is in the core: player 2 cannot benefit by deviating.

Stability vs. Fairness

- Outcomes in the core may be unfair.
- $\Gamma=(\{1,2\}, v)$ with
$v(\emptyset)=0, v(\{1\})=v(\{2\})=5, v(\{1,2\})=20$
- $(15,5)$ is in the core: player 2 cannot benefit by deviating.
- However, this is unfair since 1 and 2 are symmetric

Stability vs. Fairness

- Outcomes in the core may be unfair.
- $\Gamma=(\{1,2\}, v)$ with
$v(\emptyset)=0, v(\{1\})=v(\{2\})=5, v(\{1,2\})=20$
- $(15,5)$ is in the core: player 2 cannot benefit by deviating.
- However, this is unfair since 1 and 2 are symmetric
- How do we divide payoffs in a fair way?

Marginal Contribution

- A fair payment scheme rewards each agent according to his contribution.

Marginal Contribution

- A fair payment scheme rewards each agent according to his contribution.
- Attempt:

Marginal Contribution

- A fair payment scheme rewards each agent according to his contribution.
- Attempt: given a game $\Gamma=(N, v)$, set

$$
x_{i}=v(\{1, \ldots, i-1, i\})-v(\{1, \ldots, i-1\}) .
$$

Marginal Contribution

- A fair payment scheme rewards each agent according to his contribution.
- Attempt: given a game $\Gamma=(N, v)$, set

$$
x_{i}=v(\{1, \ldots, i-1, i\})-v(\{1, \ldots, i-1\}) .
$$

The payoff to each player is his marginal contribution to the coalition of his predecessors

Marginal Contribution

- A fair payment scheme rewards each agent according to his contribution.
- Attempt: given a game $\Gamma=(N, v)$, set

$$
x_{i}=v(\{1, \ldots, i-1, i\})-v(\{1, \ldots, i-1\}) .
$$

The payoff to each player is his marginal contribution to the coalition of his predecessors

- We have $x_{1}+\ldots+x_{n}=v(N)$ thus x is a payoff vector

Marginal Contribution

- A fair payment scheme rewards each agent according to his contribution.
- Attempt: given a game $\Gamma=(N, v)$, set

$$
x_{i}=v(\{1, \ldots, i-1, i\})-v(\{1, \ldots, i-1\}) .
$$

The payoff to each player is his marginal contribution to the coalition of his predecessors

- We have $x_{1}+\ldots+x_{n}=v(N)$ thus x is a payoff vector
- However, payoff to each player depends on the order

Marginal Contribution

- A fair payment scheme rewards each agent according to his contribution.
- Attempt: given a game $\Gamma=(N, v)$, set

$$
x_{i}=v(\{1, \ldots, i-1, i\})-v(\{1, \ldots, i-1\}) .
$$

The payoff to each player is his marginal contribution to the coalition of his predecessors

- We have $x_{1}+\ldots+x_{n}=v(N)$ thus x is a payoff vector
- However, payoff to each player depends on the order
- $\Gamma=(\{1,2\}, v)$ with
$v(\emptyset)=0, v(\{1\})=v(\{2\})=5, v(\{1,2\})=20$
$x_{1}=v(\{1\})-v(\emptyset)=5, x_{2}=v(\{1,2\})-v(\{1\})=15$

Average Marginal Contribution

- Idea: Remove the dependence on ordering taking the average over all possible orderings.

Average Marginal Contribution

- Idea: Remove the dependence on ordering taking the average over all possible orderings.
- $\Gamma=(\{1,2\}, v)$ with
$v(\emptyset)=0, v(\{1\})=v(\{2\})=5, v(\{1,2\})=20$

Average Marginal Contribution

- Idea: Remove the dependence on ordering taking the average over all possible orderings.
- $\Gamma=(\{1,2\}, v)$ with
$v(\emptyset)=0, v(\{1\})=v(\{2\})=5, v(\{1,2\})=20$
- 1, 2: $x_{1}=v(\{1\})-v(\emptyset)=5, x_{2}=v(\{1,2\})-v(\{1\})=15$
- 2, 1: $y_{2}=v(\{2\})-v(\emptyset)=5, y_{1}=v(\{1,2\})-v(\{2\})=15$

Average Marginal Contribution

- Idea: Remove the dependence on ordering taking the average over all possible orderings.
- $\Gamma=(\{1,2\}, v)$ with
$v(\emptyset)=0, v(\{1\})=v(\{2\})=5, v(\{1,2\})=20$
- 1, 2: $x_{1}=v(\{1\})-v(\emptyset)=5, x_{2}=v(\{1,2\})-v(\{1\})=15$
- 2, 1: $y_{2}=v(\{2\})-v(\emptyset)=5, y_{1}=v(\{1,2\})-v(\{2\})=15$
- $\mathrm{z} 1=(\mathrm{x} 1+\mathrm{y} 1) / 2=10, \mathrm{z} 2=(\mathrm{x} 2+\mathrm{y} 2) / 2=10$ the resulting outcome is fair!

Average Marginal Contribution

- Idea: Remove the dependence on ordering taking the average over all possible orderings.
- $\Gamma=(\{1,2\}, v)$ with
$v(\emptyset)=0, v(\{1\})=v(\{2\})=5, v(\{1,2\})=20$
- 1, 2: $x_{1}=v(\{1\})-v(\emptyset)=5, x_{2}=v(\{1,2\})-v(\{1\})=15$
- 2, 1: $y_{2}=v(\{2\})-v(\emptyset)=5, y_{1}=v(\{1,2\})-v(\{2\})=15$
- $\mathrm{z} 1=(\mathrm{x} 1+\mathrm{y} 1) / 2=10, \mathrm{z} 2=(\mathrm{x} 2+\mathrm{y} 2) / 2=10$ the resulting outcome is fair!
- Can we generalize this idea?

Shapley Value

- A permutation of $\{1, \ldots, n\}$ is a one-to-one mapping from $\{1, \ldots, n\}$ to itself
$\Pi(N)$ denotes the set of all permutations of N

Shapley Value

- A permutation of $\{1, \ldots, n\}$ is a one-to-one mapping from $\{1, \ldots, n\}$ to itself
$\Pi(N)$ denotes the set of all permutations of N
- Let $S_{\pi}(i)$ denote the set of predecessors of i in $\pi \in \Pi(N)$

Shapley Value

- A permutation of $\{1, \ldots, n\}$ is a one-to-one mapping from $\{1, \ldots, n\}$ to itself
$\Pi(N)$ denotes the set of all permutations of N
- Let $S_{\pi}(i)$ denote the set of predecessors of i in $\pi \in \Pi(N)$
- For $C \subseteq N$, let $\delta_{i}(C)=v(C \cup\{i\})-v(C)$

Shapley Value

- A permutation of $\{1, \ldots, n\}$ is a one-to-one mapping from $\{1, \ldots, n\}$ to itself
$\Pi(N)$ denotes the set of all permutations of N
- Let $S_{\pi}(i)$ denote the set of predecessors of i in $\pi \in \Pi(N)$
- For $C \subseteq N$, let $\delta_{i}(C)=v(C \cup\{i\})-v(C)$
- The Shapley value of player i in a game $\Gamma=(N, v)$ with n players is

$$
\Phi_{i}(\Gamma)=\frac{1}{n!} \sum_{\pi \in \Pi(N)} \delta_{i}\left(S_{\pi}(i)\right)
$$

Shapley Value

- A permutation of $\{1, \ldots, n\}$ is a one-to-one mapping from $\{1, \ldots, n\}$ to itself
$\Pi(N)$ denotes the set of all permutations of N
- Let $S_{\pi}(i)$ denote the set of predecessors of i in $\pi \in \Pi(N)$
- For $C \subseteq N$, let $\delta_{i}(C)=v(C \cup\{i\})-v(C)$
- The Shapley value of player i in a game $\Gamma=(N, v)$ with n players is

$$
\Phi_{i}(\Gamma)=\frac{1}{n!} \sum_{\pi \in \Pi(N)} \delta_{i}\left(S_{\pi}(i)\right)
$$

- In the previous slide we have $\Phi_{1}=\Phi_{2}=10$

Shapley Value: Probabilistic Interpretation

Shapley Value: Probabilistic Interpretation

- Φ_{i} is i 's average marginal contribution to the coalition of its predecessors, over all permutations

Shapley Value: Probabilistic Interpretation

- Φ_{i} is i 's average marginal contribution to the coalition of its predecessors, over all permutations
- Suppose that we choose a permutation of players uniformly at random, then Φ_{i} is the expected marginal contribution of player i to the coalition of his predecessors

Player's properties

Player's properties

Given a game $\Gamma=(N, v)$

Player's properties

Given a game $\Gamma=(N, v)$

- A player i is a dummy in Γ if

$$
v(C)=v(C \cup\{i\}), \text { for any } C \subseteq N
$$

Player's properties

Given a game $\Gamma=(N, v)$

- A player i is a dummy in Γ if

$$
v(C)=v(C \cup\{i\}), \text { for any } C \subseteq N
$$

- Two players i and j are said to be symmetric in Γ if

$$
v(C \cup\{i\})=v(C \cup\{j\}), \text { for any } C \subseteq N \backslash\{i, j\}
$$

Shapley value: Axiomatic Characterization

Properties of the Shapley value:

- Efficiency: $\Phi_{1}+\ldots+\Phi_{n}=v(N)$
- Dummy: if i is a dummy, $\Phi_{i}=0$
- Symmetry: if i and j are symmetric, $\Phi_{i}=\Phi_{j}$
- Additivity: $\Phi_{i}\left(\Gamma_{1}+\Gamma_{2}\right)=\Phi_{i}\left(\left(\Gamma_{1}\right)+\Phi_{i}\left(\Gamma_{2}\right)\right.$

Shapley value: Axiomatic Characterization

Properties of the Shapley value:

- Efficiency: $\Phi_{1}+\ldots+\Phi_{n}=v(N)$
- Dummy: if i is a dummy, $\Phi_{i}=0$
- Symmetry: if i and j are symmetric, $\Phi_{i}=\Phi_{j}$
- Additivity: $\Phi_{i}\left(\Gamma_{1}+\Gamma_{2}\right)=\Phi_{i}\left(\left(\Gamma_{1}\right)+\Phi_{i}\left(\Gamma_{2}\right)\right.$

Theorem

The Shapley value is the only payoff distribution scheme that has properties (1) - (4)

$$
\Gamma=\Gamma_{1}+\Gamma_{2} \text { is the game }(N, v) \text { with } v(C)=v_{1}(C)+v_{2}(C)
$$

Banzhaf index

The Banzhaf index of player i in game $\Gamma=(N, v)$ is

$$
\beta_{i}(\Gamma)=\frac{1}{2^{n-1}} \sum_{C \subseteq N}[v(C \cup\{i\})-v(C)]
$$

Banzhaf index

The Banzhaf index of player i in game $\Gamma=(N, v)$ is

$$
\beta_{i}(\Gamma)=\frac{1}{2^{n-1}} \sum_{C \subseteq N}[v(C \cup\{i\})-v(C)]
$$

Dummy player, symmetry, additivity, but not efficiency.

Computational Issues

- We have defined some solution concepts can we compute them efficiently?

Computational Issues

- We have defined some solution concepts
can we compute them efficiently?
- We need to determine how to represent a coalitional game $\Gamma=(N, v) ?$

Computational Issues

- We have defined some solution concepts
can we compute them efficiently?
- We need to determine how to represent a coalitional game $\Gamma=(N, v)$?
- Extensive list values of all coalitions exponential in the number of players n
- Succinct a TM describing the function v some undecidable questions might arise

Computational Issues

- We have defined some solution concepts
can we compute them efficiently?
- We need to determine how to represent a coalitional game $\Gamma=(N, v)$?
- Extensive list values of all coalitions exponential in the number of players n
- Succinct a TM describing the function v some undecidable questions might arise
- We are usually interested in algorithms whose running time is polynomial in n
- So what can we do?

Checking Non-emptiness of the Core: Superadditive Games

- An outcome in the core of a superadditive game satisfies the following constraints:

$$
\begin{aligned}
& x_{i} \geq 0 \text { for all } i \in N \\
& \sum_{i \in N} x_{i}=v(N) \\
& \sum_{i \in C} x_{i} \geq v(C), \text { for any } C \subseteq N
\end{aligned}
$$

Checking Non-emptiness of the Core: Superadditive Games

- An outcome in the core of a superadditive game satisfies the following constraints:

$$
\begin{aligned}
& x_{i} \geq 0 \text { for all } i \in N \\
& \sum_{i \in N} x_{i}=v(N) \\
& \sum_{i \in C} x_{i} \geq v(C), \text { for any } C \subseteq N
\end{aligned}
$$

- A linear feasibility program, with one constraint for each coalition: $2^{n}+n+1$ constraints

Superadditive Games: Computing the Least Core

- Starting from the linear feasibility problem for the core

$$
\begin{aligned}
& \min \epsilon \\
& x_{i} \geq 0 \text { for all } i \in N \\
& \sum_{i \in N} x_{i}=v(N) \\
& \sum_{i \in C} x_{i} \geq v(C)-\epsilon, \text { for any } C \subseteq N
\end{aligned}
$$

Superadditive Games: Computing the Least Core

- Starting from the linear feasibility problem for the core

$$
\begin{aligned}
& \min \epsilon \\
& x_{i} \geq 0 \text { for all } i \in N \\
& \sum_{i \in N} x_{i}=v(N) \\
& \sum_{i \in C} x_{i} \geq v(C)-\epsilon, \text { for any } C \subseteq N
\end{aligned}
$$

- A minimization program, rather than a feasibility program

Computing Shapley Value

- $\Phi_{i}(\Gamma)=\sum_{\pi \in \Pi(N)} \delta_{i}\left(S_{\pi}(i)\right)$
- $\Phi_{i}(\Gamma)$ is the expected marginal contribution of player i to the coalition of his predecessors

Computing Shapley Value

- $\Phi_{i}(\Gamma)=\sum_{\pi \in \Pi(N)} \delta_{i}\left(S_{\pi}(i)\right)$
- $\Phi_{i}(\Gamma)$ is the expected marginal contribution of player i to the coalition of his predecessors
- Quick and dirty way:

Computing Shapley Value

- $\Phi_{i}(\Gamma)=\sum_{\pi \in \Pi(N)} \delta_{i}\left(S_{\pi}(i)\right)$
- $\Phi_{i}(\Gamma)$ is the expected marginal contribution of player i to the coalition of his predecessors
- Quick and dirty way:

Use Monte-Carlo method to compute $\Phi_{i}(\Gamma)$

Computing Shapley Value

- $\Phi_{i}(\Gamma)=\sum_{\pi \in \Pi(N)} \delta_{i}\left(S_{\pi}(i)\right)$
- $\Phi_{i}(\Gamma)$ is the expected marginal contribution of player i to the coalition of his predecessors
- Quick and dirty way:

Use Monte-Carlo method to compute $\Phi_{i}(\Gamma)$
Convergence guaranteed by Law of Large Numbers

(1) Definitions

(2) Stability notions

(3) Induced subgraph games
4) Minimum cost spanning tree games
(5) References

Induced subgraph games

Induced subgraph games

- A game is described by an undirected, weighted graph $G=(N, E)$ with $|N|=n$ and $|E|=m$ and an integer edge weight function w .

Induced subgraph games

- A game is described by an undirected, weighted graph $G=(N, E)$ with $|N|=n$ and $|E|=m$ and an integer edge weight function w .
- The weight of edge $(i, j) \in E$ is denoted by $w_{i, j}$.

Induced subgraph games

- A game is described by an undirected, weighted graph $G=(N, E)$ with $|N|=n$ and $|E|=m$ and an integer edge weight function w .
- The weight of edge $(i, j) \in E$ is denoted by $w_{i, j}$.
- In the game $\Gamma(G, w)=(N, v)$ the set of players is N, and the value v of a coalition $C \subseteq N$ is

$$
v(C)=\sum_{e \in E(G[C])} w_{e}
$$

Induced subgraph games

- A game is described by an undirected, weighted graph $G=(N, E)$ with $|N|=n$ and $|E|=m$ and an integer edge weight function w.
- The weight of edge $(i, j) \in E$ is denoted by $w_{i, j}$.
- In the game $\Gamma(G, w)=(N, v)$ the set of players is N, and the value v of a coalition $C \subseteq N$ is

$$
v(C)=\sum_{e \in E(G[C])} w_{e}
$$

- Usually self-loops are allowed when we want that the value of a singleton is different from 0 .

Induced subgraph games

- A game is described by an undirected, weighted graph $G=(N, E)$ with $|N|=n$ and $|E|=m$ and an integer edge weight function w.
- The weight of edge $(i, j) \in E$ is denoted by $w_{i, j}$.
- In the game $\Gamma(G, w)=(N, v)$ the set of players is N, and the value v of a coalition $C \subseteq N$ is

$$
v(C)=\sum_{e \in E(G[C])} w_{e}
$$

- Usually self-loops are allowed when we want that the value of a singleton is different from 0 .
- Observe that $v(\emptyset)=0$ and $v(N)=w(E)$.

Induced subgraph games

Induced subgraph games

- Induced subgraph games model aspects of social networks.

Induced subgraph games

- Induced subgraph games model aspects of social networks.
- The value of each coalition (team, club) is determined by the relationships among its members: a player assigns a positive utility to being in a coalition with his friends and a negative utility to being in a coalition with his enemies.

Induced subgraph games

- Induced subgraph games model aspects of social networks.
- The value of each coalition (team, club) is determined by the relationships among its members: a player assigns a positive utility to being in a coalition with his friends and a negative utility to being in a coalition with his enemies.
- The representation is succinct as long as the number of bits required to encode edge weights is polynomial in $|N|$: using an adjacency matrix to represent the graph requires only n^{2} entries.

Induced subgraph games

- Induced subgraph games model aspects of social networks.
- The value of each coalition (team, club) is determined by the relationships among its members: a player assigns a positive utility to being in a coalition with his friends and a negative utility to being in a coalition with his enemies.
- The representation is succinct as long as the number of bits required to encode edge weights is polynomial in $|N|$: using an adjacency matrix to represent the graph requires only n^{2} entries.
- Weights can be exponential in n and still have polynomial size.

Completeness?

Completeness?

- Is this is a complete representation?

Completeness?

- Is this is a complete representation?

All coalitional games can be represented as induced subgraph games?

Completeness?

- Is this is a complete representation?

All coalitional games can be represented as induced subgraph games? NO

Completeness?

- Is this is a complete representation?

All coalitional games can be represented as induced subgraph games? NO
Consider the game $\Gamma=(N, v)$, where $n=\{1,2,3\}$ and

$$
v(C)= \begin{cases}0 & \text { if }|C| \leq 1 \\ 1 & \text { if }|C|=2 \\ 6 & \text { if }|C|=3\end{cases}
$$

Completeness?

- Is this is a complete representation?

All coalitional games can be represented as induced subgraph games? NO
Consider the game $\Gamma=(N, v)$, where $n=\{1,2,3\}$ and

$$
v(C)= \begin{cases}0 & \text { if }|C| \leq 1 \\ 1 & \text { if }|C|=2 \\ 6 & \text { if }|C|=3\end{cases}
$$

- Assume that $\Gamma(G, w)$ realizes Γ.

Completeness?

- Is this is a complete representation?

All coalitional games can be represented as induced subgraph games?
NO
Consider the game $\Gamma=(N, v)$, where $n=\{1,2,3\}$ and

$$
v(C)= \begin{cases}0 & \text { if }|C| \leq 1 \\ 1 & \text { if }|C|=2 \\ 6 & \text { if }|C|=3\end{cases}
$$

- Assume that $\Gamma(G, w)$ realizes Γ.
- By the first condition all self-loops must have weight 0 .

Completeness?

- Is this is a complete representation?

All coalitional games can be represented as induced subgraph games?
NO
Consider the game $\Gamma=(N, v)$, where $n=\{1,2,3\}$ and

$$
v(C)= \begin{cases}0 & \text { if }|C| \leq 1 \\ 1 & i f|C|=2 \\ 6 & i f|C|=3\end{cases}
$$

- Assume that $\Gamma(G, w)$ realizes Γ.
- By the first condition all self-loops must have weight 0 .
- By the second condition any pair of different vertices must be connected by an edge with weight 1 . So G must be a triangle.

Completeness?

- Is this is a complete representation?

All coalitional games can be represented as induced subgraph games?
NO
Consider the game $\Gamma=(N, v)$, where $n=\{1,2,3\}$ and

$$
v(C)= \begin{cases}0 & \text { if }|C| \leq 1 \\ 1 & \text { if }|C|=2 \\ 6 & \text { if }|C|=3\end{cases}
$$

- Assume that $\Gamma(G, w)$ realizes Γ.
- By the first condition all self-loops must have weight 0 .
- By the second condition any pair of different vertices must be connected by an edge with weight 1 . So G must be a triangle.
- But then $v(\{1,2,3\})=3 \neq 6$.

Properties of valuations

- monotone if $v(C) \leq v(D)$ for $C \subseteq D \subseteq N$.
- superadditive if $v(C \cup D) \geq v(C)+v(D)$, for every pair of disjoint coalitions $C, D \subseteq N$.
- supermodular $v(C \cup D)+v(C \cap D) \geq v(C)+v(D)$.

Properties of valuations

- monotone if $v(C) \leq v(D)$ for $C \subseteq D \subseteq N$.
- superadditive if $v(C \cup D) \geq v(C)+v(D)$, for every pair of disjoint coalitions $C, D \subseteq N$.
- supermodular $v(C \cup D)+v(C \cap D) \geq v(C)+v(D)$.
- A game (N, v) is convex iff v is supermodular.

Properties of valuations

- monotone if $v(C) \leq v(D)$ for $C \subseteq D \subseteq N$.
- superadditive if $v(C \cup D) \geq v(C)+v(D)$, for every pair of disjoint coalitions $C, D \subseteq N$.
- supermodular $v(C \cup D)+v(C \cap D) \geq v(C)+v(D)$.
- A game (N, v) is convex iff v is supermodular.
- Since we allow for negative edge weights, induced subgraph games are not necessarily monotone.

Properties of valuations

- monotone if $v(C) \leq v(D)$ for $C \subseteq D \subseteq N$.
- superadditive if $v(C \cup D) \geq v(C)+v(D)$, for every pair of disjoint coalitions $C, D \subseteq N$.
- supermodular $v(C \cup D)+v(C \cap D) \geq v(C)+v(D)$.
- A game (N, v) is convex iff v is supermodular.
- Since we allow for negative edge weights, induced subgraph games are not necessarily monotone.
- However, when all edge weights are non-negative, induced subgraph games are convex.

Can the core be empty?

Can the core be empty?

The core of $\Gamma(N, v)$ is the set of all imputations x such that $v(S) \leq x(S)$, for each coalition $S \subseteq N$.

Can the core be empty?

Can the core be empty?

Theorem
If $\Gamma=(N, v)$ is a convex game, then Γ has a non-empty core.

Can the core be empty?

Theorem
If $\Gamma=(N, v)$ is a convex game, then Γ has a non-empty core.

- Fix an arbitrary permutation π, and let x_{i} be the marginal contribution of i with respect to π.

Can the core be empty?

Theorem
If $\Gamma=(N, v)$ is a convex game, then Γ has a non-empty core.

- Fix an arbitrary permutation π, and let x_{i} be the marginal contribution of i with respect to π.
- Let us show that $\left(x_{1}, \ldots, x_{n}\right)$ is in the core of Γ.

Can the core be empty?

Theorem

If $\Gamma=(N, v)$ is a convex game, then Γ has a non-empty core.

- Fix an arbitrary permutation π, and let x_{i} be the marginal contribution of i with respect to π.
- Let us show that $\left(x_{1}, \ldots, x_{n}\right)$ is in the core of Γ.
- For $C \subseteq N$, we can assume that $C=\left\{i_{1}, \ldots, i_{s}\right\}$ where $\pi\left(i_{1}\right)<\cdots<\pi\left(i_{s}\right)$.
- So,

$$
v(C)=v\left(\left\{i_{1}\right\}\right)-v(\emptyset)+v\left(\left\{i_{1}, i_{2}\right\}\right)-v\left(\left\{i_{1}\right\}\right)+\cdots+v(C)-v\left(C \backslash\left\{i_{s}\right\}\right) .
$$

- By supermodularity we have,

$$
v\left(\left\{i_{1}, \ldots, i_{j-1}, i_{j}\right\}\right)-v\left(\left\{i_{1}, \ldots, i_{j-1}\right\}\right) \leq v\left(\left\{1, \ldots, i_{j}\right\}\right)-v\left(\left\{1, \ldots, i_{j-1}\right\}\right) .
$$

- Therefore $v(C) \leq x(C)$ and $v(N)=x(N)$.

Can the core be empty?

Theorem

If $\Gamma=(N, v)$ is a convex game, then Γ has a non-empty core.

- Fix an arbitrary permutation π, and let x_{i} be the marginal contribution of i with respect to π.
- Let us show that $\left(x_{1}, \ldots, x_{n}\right)$ is in the core of Γ.
- For $C \subseteq N$, we can assume that $C=\left\{i_{1}, \ldots, i_{s}\right\}$ where

$$
\pi\left(i_{1}\right)<\cdots<\pi\left(i_{s}\right) .
$$

- So,

$$
v(C)=v\left(\left\{i_{1}\right\}\right)-v(\emptyset)+v\left(\left\{i_{1}, i_{2}\right\}\right)-v\left(\left\{i_{1}\right\}\right)+\cdots+v(C)-v\left(C \backslash\left\{i_{s}\right\}\right) .
$$

- By supermodularity we have,

$$
v\left(\left\{i_{1}, \ldots, i_{j-1}, i_{j}\right\}\right)-v\left(\left\{i_{1}, \ldots, i_{j-1}\right\}\right) \leq v\left(\left\{1, \ldots, i_{j}\right\}\right)-v\left(\left\{1, \ldots, i_{j-1}\right\}\right) .
$$

- Therefore $v(C) \leq x(C)$ and $v(N)=x(N)$.
- Observe that we have shown that the vector formed by the Shapley value is in the core of a convex game.

Computing the Shapley value

- For $C \subseteq N$, let $\delta_{i}(C)=v(C \cup\{i\})-v(C)$
- The Shapley value of player i in a game $\Gamma=(N, v)$ with n players is

$$
\Phi_{i}(\Gamma)=\frac{1}{n!} \sum_{\pi \in \Pi(N)} \delta_{i}\left(S_{\pi}(i)\right)
$$

Properties of the Shapley value:

- Efficiency: $\Phi_{1}+\ldots+\Phi_{n}=v(N)$
- Dummy: if i is a dummy, $\Phi_{i}=0$
- Symmetry: if i and j are symmetric, $\Phi_{i}=\Phi_{j}$
- Additivity: $\Phi_{i}\left(\Gamma_{1}+\Gamma_{2}\right)=\Phi_{i}\left(\left(\Gamma_{1}\right)+\Phi_{i}\left(\Gamma_{2}\right)\right.$

Theorem

The Shapley value is the only payoff distribution scheme that has properties (1) - (4)

Computing the Shapley value

Computing the Shapley value

Theorem
The Shapley value of player i in $\Gamma(G, w)$ is

$$
\Phi(i)=\frac{1}{2} \sum_{(i, j) \in E} w_{i, j} .
$$

Computing the Shapley value

Computing the Shapley value

- Let $\left\{e_{1}, \ldots, e_{m}\right\}$ be the set of edges in G.

Computing the Shapley value

- Let $\left\{e_{1}, \ldots, e_{m}\right\}$ be the set of edges in G.
- We can decompose the graph G into m graphs G_{1}, \ldots, G_{m}, where for $1 \leq j \leq m$ the graph $G_{j}=\left(V,\left\{e_{j}\right\}\right)$.

Computing the Shapley value

- Let $\left\{e_{1}, \ldots, e_{m}\right\}$ be the set of edges in G.
- We can decompose the graph G into m graphs G_{1}, \ldots, G_{m}, where for $1 \leq j \leq m$ the graph $G_{j}=\left(V,\left\{e_{j}\right\}\right)$.
- Considering the same weight as in the original graph, let $\Gamma_{j}=\Gamma\left(G_{j}, w\right)$.

Computing the Shapley value

- Let $\left\{e_{1}, \ldots, e_{m}\right\}$ be the set of edges in G.
- We can decompose the graph G into m graphs G_{1}, \ldots, G_{m}, where for $1 \leq j \leq m$ the graph $G_{j}=\left(V,\left\{e_{j}\right\}\right)$.
- Considering the same weight as in the original graph, let $\Gamma_{j}=\Gamma\left(G_{j}, w\right)$.
- According to the definitions:

$$
\Gamma=\Gamma(G, w)=\Gamma_{1}+\cdots+\Gamma_{m} .
$$

Computing the Shapley value

- Let $\left\{e_{1}, \ldots, e_{m}\right\}$ be the set of edges in G.
- We can decompose the graph G into m graphs G_{1}, \ldots, G_{m}, where for $1 \leq j \leq m$ the graph $G_{j}=\left(V,\left\{e_{j}\right\}\right)$.
- Considering the same weight as in the original graph, let $\Gamma_{j}=\Gamma\left(G_{j}, w\right)$.
- According to the definitions:

$$
\Gamma=\Gamma(G, w)=\Gamma_{1}+\cdots+\Gamma_{m} .
$$

- By the additivity axiom, for each player $i \in N$ we have

Computing the Shapley value

- Let $\left\{e_{1}, \ldots, e_{m}\right\}$ be the set of edges in G.
- We can decompose the graph G into m graphs G_{1}, \ldots, G_{m}, where for $1 \leq j \leq m$ the graph $G_{j}=\left(V,\left\{e_{j}\right\}\right)$.
- Considering the same weight as in the original graph, let $\Gamma_{j}=\Gamma\left(G_{j}, w\right)$.
- According to the definitions:

$$
\Gamma=\Gamma(G, w)=\Gamma_{1}+\cdots+\Gamma_{m} .
$$

- By the additivity axiom, for each player $i \in N$ we have

$$
\Phi_{i}(\Gamma)=\sum_{j=1}^{m} \Phi_{i}\left(\Gamma_{j}\right)
$$

Shapley value: Computation

Shapley value: Computation

- We have to compute $\Phi_{i}\left(\Gamma_{j}\right)$.

Shapley value: Computation

- We have to compute $\Phi_{i}\left(\Gamma_{j}\right)$.
- When i is not incident to e_{j}, i is a dummy in Γ_{j} and $\Phi_{i}\left(\Gamma_{j}\right)=0$.

Shapley value: Computation

- We have to compute $\Phi_{i}\left(\Gamma_{j}\right)$.
- When i is not incident to e_{j}, i is a dummy in Γ_{j} and $\Phi_{i}\left(\Gamma_{j}\right)=0$.
- When $e_{j}=(i, \ell)$ for some $\ell \in N$, players i and ℓ are symmetric in Γ_{j}.

Shapley value: Computation

- We have to compute $\Phi_{i}\left(\Gamma_{j}\right)$.
- When i is not incident to e_{j}, i is a dummy in Γ_{j} and $\Phi_{i}\left(\Gamma_{j}\right)=0$.
- When $e_{j}=(i, \ell)$ for some $\ell \in N$, players i and ℓ are symmetric in Γ_{j}.
- Since the value of the grand coalition in Γ_{j} equals $w(i, \ell)$, by efficiency and symmetry we get $\Phi_{i}\left(\Gamma_{j}\right)=w(i, \ell) / 2$.

Shapley value

Shapley value

Theorem
The Shapley value of player i in $\Gamma(G, w)$, when w is positive, is

$$
\Phi_{i}=\frac{1}{2} \sum_{(i, j) \in E} w_{i, j}
$$

Shapley value

Theorem

The Shapley value of player i in $\Gamma(G, w)$, when w is positive, is

$$
\Phi_{i}=\frac{1}{2} \sum_{(i, j) \in E} w_{i, j} .
$$

Corollary

The Shapley values of induced subgraph games can be computed in polynomial time.
Checking if the core is non-empoty for positive induced subgraph games can be done in polynomial time

Complexity of core related problems

Theorem
The following problems are NP-hard:

- Given (G, w) and an imputation x, is it not in the core of $\Gamma(G, w)$?
- Given (G, w), is the vector of Shapley values of $\Gamma(G, w)$ not in the core of $\Gamma(G, w)$?
- Given (G, w), is the core of $\Gamma(G, w)$ empty?

Complexity of core related problems

Theorem
Given (G, w), when all weights are non-negative, we can test in polynomial time

- whether the core is non-empty.
- whether an imputation x is in the core of $\Gamma(G, w)$.

Complexity of core related problems

Theorem
Given (G, w), when all weights are non-negative, we can test in polynomial time

- whether the core is non-empty.
- whether an imputation x is in the core of $\Gamma(G, w)$.

The first question is trivial as the vector of Shapley values belong to the core. The second problem can be solved by a reduction to MAX-FLOW.

(1) Definitions

(2) Stability notions

(3) Induced subgraph games

4 Minimum cost spanning tree games

(5) References

MST Games

Minimum cost spanning tree games

MST Games

Minimum cost spanning tree games

- A game is described by a weighted complete graph (G, w) with $n+1$ vertices.

MST Games

Minimum cost spanning tree games

- A game is described by a weighted complete graph (G, w) with $n+1$ vertices.
- $V(G)=\left\{v_{0}, \ldots, v_{n}\right\}$.

MST Games

Minimum cost spanning tree games

- A game is described by a weighted complete graph (G, w) with $n+1$ vertices.
- $V(G)=\left\{v_{0}, \ldots, v_{n}\right\}$.
- The weight of edge $(i, j) \in E$ is denoted by $w_{i, j}$. We assume $w_{i, j} \geq 0$

MST Games

Minimum cost spanning tree games

- A game is described by a weighted complete graph (G, w) with $n+1$ vertices.
- $V(G)=\left\{v_{0}, \ldots, v_{n}\right\}$.
- The weight of edge $(i, j) \in E$ is denoted by $w_{i, j}$. We assume $w_{i, j} \geq 0$
- In the game $\Gamma(G, w)=(N, c)$ the set of players is $N=\left\{v_{1}, \ldots, v_{n}\right\}$, and the cost c of a coalition $C \subseteq N$ is

$$
c(C)=\text { the weight of a minimum spanning tree of } G\left[S \cup\left\{v_{0}\right\}\right]
$$

MST Games

Minimum cost spanning tree games

- A game is described by a weighted complete graph (G, w) with $n+1$ vertices.
- $V(G)=\left\{v_{0}, \ldots, v_{n}\right\}$.
- The weight of edge $(i, j) \in E$ is denoted by $w_{i, j}$. We assume $w_{i, j} \geq 0$
- In the game $\Gamma(G, w)=(N, c)$ the set of players is $N=\left\{v_{1}, \ldots, v_{n}\right\}$, and the cost c of a coalition $C \subseteq N$ is

$$
c(C)=\text { the weight of a minimum spanning tree of } G\left[S \cup\left\{v_{0}\right\}\right]
$$

- Self-loops are not allowed.

MST Games

Minimum cost spanning tree games

- A game is described by a weighted complete graph (G, w) with $n+1$ vertices.
- $V(G)=\left\{v_{0}, \ldots, v_{n}\right\}$.
- The weight of edge $(i, j) \in E$ is denoted by $w_{i, j}$. We assume $w_{i, j} \geq 0$
- In the game $\Gamma(G, w)=(N, c)$ the set of players is $N=\left\{v_{1}, \ldots, v_{n}\right\}$, and the cost c of a coalition $C \subseteq N$ is

$$
c(C)=\text { the weight of a minimum spanning tree of } G\left[S \cup\left\{v_{0}\right\}\right]
$$

- Self-loops are not allowed.
- The cost of a singleton coalition $\{i\}$ is $c(\{i\})=w_{0, i}$.

MST Games

Minimum cost spanning tree games

- A game is described by a weighted complete graph (G, w) with $n+1$ vertices.
- $V(G)=\left\{v_{0}, \ldots, v_{n}\right\}$.
- The weight of edge $(i, j) \in E$ is denoted by $w_{i, j}$. We assume $w_{i, j} \geq 0$
- In the game $\Gamma(G, w)=(N, c)$ the set of players is $N=\left\{v_{1}, \ldots, v_{n}\right\}$, and the cost c of a coalition $C \subseteq N$ is

$$
c(C)=\text { the weight of a minimum spanning tree of } G\left[S \cup\left\{v_{0}\right\}\right]
$$

- Self-loops are not allowed.
- The cost of a singleton coalition $\{i\}$ is $c(\{i\})=w_{0, i}$.
- Observe that $v(\emptyset)=0$ and $v(N)=w(T)$ where T is a MST of G.

MST Games

MST Games

- MST games model situations where a number of users must be connected to a common supplier, and the cost of such connection can be modeled as a minimum spanning tree problem.

MST Games

- MST games model situations where a number of users must be connected to a common supplier, and the cost of such connection can be modeled as a minimum spanning tree problem.
- The representation is succinct as long as the number of bits required to encode edge weights is polynomial in $|N|$: using an adjacency matrix to represent the graph requires only n^{2} entries.

Completeness?

Completeness?

- Is this is a complete representation?

Completeness?

- Is this is a complete representation? All coalitional games can be represented as MST games?

Completeness?

- Is this is a complete representation? All coalitional games can be represented as MST games? NO

Completeness?

- Is this is a complete representation? All coalitional games can be represented as MST games? NO
Consider the game $\Gamma=(N, c)$, where $n=\{1,2,3\}$ and

$$
c(C)= \begin{cases}0 & \text { if }|C| \leq 1 \\ 1 & \text { if }|C|=2 \\ 6 & \text { if }|C|=3\end{cases}
$$

Completeness?

- Is this is a complete representation? All coalitional games can be represented as MST games? NO
Consider the game $\Gamma=(N, c)$, where $n=\{1,2,3\}$ and

$$
c(C)= \begin{cases}0 & \text { if }|C| \leq 1 \\ 1 & \text { if }|C|=2 \\ 6 & \text { if }|C|=3\end{cases}
$$

- Assume that $\Gamma(G, w)$ realizes $\Gamma . V(G)=\{0,1,2,3\}$

Completeness?

- Is this is a complete representation? All coalitional games can be represented as MST games? NO
Consider the game $\Gamma=(N, c)$, where $n=\{1,2,3\}$ and

$$
c(C)= \begin{cases}0 & \text { if }|C| \leq 1 \\ 1 & \text { if }|C|=2 \\ 6 & \text { if }|C|=3\end{cases}
$$

- Assume that $\Gamma(G, w)$ realizes $\Gamma . V(G)=\{0,1,2,3\}$
- By the first condition $w_{0, i}=0$, for $i \in\{1,2,3\}$.

Completeness?

- Is this is a complete representation? All coalitional games can be represented as MST games? NO
Consider the game $\Gamma=(N, c)$, where $n=\{1,2,3\}$ and

$$
c(C)= \begin{cases}0 & \text { if }|C| \leq 1 \\ 1 & \text { if }|C|=2 \\ 6 & \text { if }|C|=3\end{cases}
$$

- Assume that $\Gamma(G, w)$ realizes $\Gamma . V(G)=\{0,1,2,3\}$
- By the first condition $w_{0, i}=0$, for $i \in\{1,2,3\}$.
- Thus, a coalition with $|C|=2$ has a MST with zero cost and the second condition cannot be met.

Properties of valuations

- monotone if $v(C) \leq v(D)$ for $C \subseteq D \subseteq N$.
- superadditive if $v(C \cup D) \geq v(C)+v(D)$, for every pair of disjoint coalitions $C, D \subseteq N$.
- subadditive $v(C \cup D) \leq v(C)+v(D)$, for every pair of disjoint coalitions $C, D \subseteq N$.
- supermodular $v(C \cup D)+v(C \cap D) \geq v(C)+v(D)$.
- A game (N, v) is convex iff v is supermodular.

Properties of valuations

- monotone if $v(C) \leq v(D)$ for $C \subseteq D \subseteq N$.
- superadditive if $v(C \cup D) \geq v(C)+v(D)$, for every pair of disjoint coalitions $C, D \subseteq N$.
- subadditive $v(C \cup D) \leq v(C)+v(D)$, for every pair of disjoint coalitions $C, D \subseteq N$.
- supermodular $v(C \cup D)+v(C \cap D) \geq v(C)+v(D)$.
- A game (N, v) is convex iff v is supermodular.
- MST games are not necessarily monotone.

Properties of valuations

- monotone if $v(C) \leq v(D)$ for $C \subseteq D \subseteq N$.
- superadditive if $v(C \cup D) \geq v(C)+v(D)$, for every pair of disjoint coalitions $C, D \subseteq N$.
- subadditive $v(C \cup D) \leq v(C)+v(D)$, for every pair of disjoint coalitions $C, D \subseteq N$.
- supermodular $v(C \cup D)+v(C \cap D) \geq v(C)+v(D)$.
- A game (N, v) is convex iff v is supermodular.
- MST games are not necessarily monotone. Consider a triangle on $V=\{0,1,2\}$ and weights $w_{0,1}=1, w_{0,2}=10$ and $w_{1,2}=1$ $c(N)=2$ and $c(\{1\})=1$ and $c(\{2\})=10$

Properties of valuations

- monotone if $v(C) \leq v(D)$ for $C \subseteq D \subseteq N$.
- superadditive if $v(C \cup D) \geq v(C)+v(D)$, for every pair of disjoint coalitions $C, D \subseteq N$.
- subadditive $v(C \cup D) \leq v(C)+v(D)$, for every pair of disjoint coalitions $C, D \subseteq N$.
- supermodular $v(C \cup D)+v(C \cap D) \geq v(C)+v(D)$.
- A game (N, v) is convex iff v is supermodular.
- MST games are not necessarily monotone. Consider a triangle on $V=\{0,1,2\}$ and weights $w_{0,1}=1, w_{0,2}=10$ and $w_{1,2}=1$ $c(N)=2$ and $c(\{1\})=1$ and $c(\{2\})=10$
- c is subadditive.

Can the core be empty?

```
Theorem
Consider a MST game 「(G,w). Let \(T^{*}\) be a MST of (G,w) obtained using Prim's algorithm. The vector \(x=\left(x_{1}, \ldots, x_{n}\right)\) that allocates to player \(i \in N\) the weight of the first edge \(i\) encounters on the (unique path) from \(v_{i}\) to \(v_{0}\) in \(T^{*}\) belongs to the core of \(\Gamma\).
```

Such an allocation is called standard core allocation

Can the core be empty?

A standard allocation x belongs to the core

Can the core be empty?

A standard allocation x belongs to the core

- Clearly $\sum_{i=1}^{n} x_{i}=w\left(T^{*}\right)=c(N)$.

Can the core be empty?

A standard allocation x belongs to the core

- Clearly $\sum_{i=1}^{n} x_{i}=w\left(T^{*}\right)=c(N)$.
- We need to show that $\sum_{i=1}^{n} x_{i} \leq c(S)$.

Can the core be empty?

A standard allocation x belongs to the core

- Clearly $\sum_{i=1}^{n} x_{i}=w\left(T^{*}\right)=c(N)$.
- We need to show that $\sum_{i=1}^{n} x_{i} \leq c(S)$.
- Consider a coalition S and let T be a MST obtained using Prim's algorithm of $G\left[S \cup\left\{v_{0}\right\}\right]$.

Can the core be empty?

A standard allocation x belongs to the core

- Clearly $\sum_{i=1}^{n} x_{i}=w\left(T^{*}\right)=c(N)$.
- We need to show that $\sum_{i=1}^{n} x_{i} \leq c(S)$.
- Consider a coalition S and let T be a MST obtained using Prim's algorithm of $G\left[S \cup\left\{v_{0}\right\}\right]$.
- For j in S, let e_{j} be the first edge j encounters on the path from v_{j} to v_{0} in T and let $y_{j}=w\left(e_{j}\right)$.

Can the core be empty?

A standard allocation x belongs to the core

- Clearly $\sum_{i=1}^{n} x_{i}=w\left(T^{*}\right)=c(N)$.
- We need to show that $\sum_{i=1}^{n} x_{i} \leq c(S)$.
- Consider a coalition S and let T be a MST obtained using Prim's algorithm of $G\left[S \cup\left\{v_{0}\right\}\right]$.
- For j in S, let e_{j} be the first edge j encounters on the path from v_{j} to v_{0} in T and let $y_{j}=w\left(e_{j}\right)$.
- The selected edge corresponds to the point in which Prim's algorithm connects the vertex to the component including v_{0}, i.e., it is a minimum weight edge in the allowed cut.

Can the core be empty?

A standard allocation x belongs to the core

- Clearly $\sum_{i=1}^{n} x_{i}=w\left(T^{*}\right)=c(N)$.
- We need to show that $\sum_{i=1}^{n} x_{i} \leq c(S)$.
- Consider a coalition S and let T be a MST obtained using Prim's algorithm of $G\left[S \cup\left\{v_{0}\right\}\right]$.
- For j in S, let e_{j} be the first edge j encounters on the path from v_{j} to v_{0} in T and let $y_{j}=w\left(e_{j}\right)$.
- The selected edge corresponds to the point in which Prim's algorithm connects the vertex to the component including v_{0}, i.e., it is a minimum weight edge in the allowed cut.
- Analyzing carefully both executions it can be shown that $x_{j} \leq y_{j}$ as the edges considered in one partition are a subset of the other.

How fair are standard core allocations?

$x_{1}=10$
$x_{2}=1$
$x_{3}=1$

- Most of the cost is charged to player 1.
- How to find more appropriate core allocations?

More appropriate core allocations?

- There are many proposals to try to get more appropriate core allocations.

More appropriate core allocations?

- There are many proposals to try to get more appropriate core allocations.
- Granot and Huberman [1984] prose the weak demand allocation and strong demand allocation procedures. Which rectify standard allocations by transfering cost (whenever possible) from one node to their children.

More appropriate core allocations?

- There are many proposals to try to get more appropriate core allocations.
- Granot and Huberman [1984] prose the weak demand allocation and strong demand allocation procedures. Which rectify standard allocations by transfering cost (whenever possible) from one node to their children.
- Norde, Moretti and Tijs [2001] show how to find a population monotonic allocation scheme (PMAS), which is an allocation scheme that provides a core element for the game and all its subgames and which, moreover, satisfies a monotonicity condition in the sense that players have to pay less in larger coalitions.

Complexity of core related problems

Complexity of core related problems

Theorem
The following problem is NP-complete:

- Given (G, w) and an imputation x, is it not in the core of $\Gamma(G, w)$?

Complexity of core related problems

Theorem
The following problem is NP-complete:

- Given (G, w) and an imputation x, is it not in the core of $\Gamma(G, w)$?

The proof follows by a reduction from EXACT COVER BY 3-SETS [Faigle et al., Int. J. Game Theory 1997]

(1) Definitions

(2) Stability notions

(3) Induced subgraph games
4) Minimum cost spanning tree games
(5) References

References

- X. Deng and C. Papadimitriou. On the complexity of cooperative solution concepts. Mathematics of Operations Research, 19(2):257-266, 1994.
- C. G. Bird. On cost allocation for a spanning tree: A game theory approach. Networks, 6:335-350, 1976.
- U. Faigle, W. Kern, S. P. Fekete, and W. Hochstättler. On the complexity of testing membership in the core of min-cost spanning tree games. International Journal of Game Theory, 26:361-366, 1997.

References

- G. Chalkiadakis, E. Elkind, M. Wooldridge. Computational Aspects of Cooperative Game Theory Synthesis Lectures on Artificial Intelligence and Machine Learning, Morgan \& Claypool, October 2011.

