Network Creation Games

Maria Serna

Spring 2024

AGT-MIRI, FIB-UPC

Network Games

Spring 2024

イロト イボト イヨト イヨト

э

ACT	MIDI	E I D	LIDC.
AGI-	WIRI	, гів-	UPC

・ロト ・四ト ・ヨト ・ヨト

æ

Network creation games

- Creation and maintenance of a network is modeled as a game
- n players, think of them as vertices in an undirected graph
- The players can buy/create edges to other players for a price per edge (usually constant α > 0)
- As a result of a strategy profile s a graph G(s) is created.
- The goal of the player u is to minimize a cost function on G(s)

 $c_u(s) =$ creation cost + usage cost

3/31

User cost

- Assume that G = G(s) and fix a player u
- Creation cost α (number of edges player *u* creates)
- Usage cost:
 - SumGame (Fabrikant et al. PODC 2003)
 Sum over all distances ∑_{v∈V} d_G(u, v)
 This is an average-case approach to the usage cost
 - MaxGame (Demaine et al. PODC 2007) Maximum over all distances max_{v∈V} d_G(u, v) A worst-case approach to the usage cost

Social cost

- Assume that G = G(s)
- Creation cost $\alpha |E(G)|$
- Usage cost:
 - SumGame

Sum over all distances $\sum_{u,v \in V} d_G(u,v)$

• MaxGame (Demaine et al. PODC 2007) Maximum over all distances $\max_{u,v \in V} d_G(u, v)$

э

5/31

<ロト <部ト <きト <きト = 目

$s = (\{3,4\},\{1,3\},\{5\},\{3\},\{3\},\{3\})$

	<u> </u>	N /	IDI.			IDC
Au		- IVI	IRI.	. דו	в-1	UPC
	_					

・ロト ・四ト ・ヨト ・ヨト

3

 $s = \big(\{3,4\},\{1,3\},\{5\},\{3\},\{3\},\{3\}\big)$

An arrow indicates who bought the edge

			E 110		DC.
AG	I – M	IRI.	÷н	B-U	PС

э

7/31

・ 戸 ・ ・ ヨ ・ ・ ヨ ・

$s = (\{3,4\},\{1,3\},\{5\},\{3\},\{3\},\{3\}) \text{ and } G(s)$

э

8/31

イロト イヨト イヨト

An example: SumGame

$$s = (\{3,4\},\{1,3\},\{5\},\{3\},\{3\},\{3\}) \text{ and } G(s)$$

æ

9/31

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

An example: SumGame

$$s = (\{3,4\},\{1,3\},\{5\},\{3\},\{3\},\{3\}) \text{ and } G(s)$$

э

イロト イヨト イヨト

An example: SumGame

 $s = \big(\{3,4\},\{1,3\},\{5\},\{3\},\{3\},\{3\}\big) \text{ and } G(s)$

3

An example: MaxGame

$$s = (\{3,4\},\{1,3\},\{5\},\{3\},\{3\},\{3\}) \text{ and } G(s)$$

æ

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

An example: MaxGame

 $s = \big(\{3,4\},\{1,3\},\{5\},\{3\},\{3\},\{3\}\big) \text{ and } G(s)$

3

イロト イボト イヨト イヨト

An example: MaxGame

$$s = (\{3,4\},\{1,3\},\{5\},\{3\},\{3\},\{3\}) \text{ and } G(s)$$

3

イロト イヨト イヨト

	~	-		-	 _			•	
A	G	- 1	VII	IK I	 - 11	в-	U	P	ι.
	_								

æ.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

• Are there PNE?

ACT		IDI	EID		
AG	- IVI	пкı,	FID-	UPC	

æ.

11/31

- Are there PNE?
- What are the social optima?

э

イロト イボト イヨト イヨト

- Are there PNE?
- What are the social optima?
- What network topologies are formed? What families of equilibrium graphs can one construct for a given α ?

< ロ > < 同 > < 回 > < 回 > < 回 > <

- Are there PNE?
- What are the social optima?
- What network topologies are formed? What families of equilibrium graphs can one construct for a given α?
- How efficient are they? Price of Anarchy/Stability?

We will cover some results on SumGames under some cost variants

11/31

æ.

$$c_u(s) = \alpha |s_u| + \sum_{v \in V} d_G(u, v)$$
$$c(s) = \alpha |E| + \sum_{u, v \in V} d_G(u, v)$$

AGT-IVIERI FIB-LIPU	A C.	T N 4	IDI.	100		DC.
	AG	1 - IVI	IRI.		5-U	PС

3

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

$$c_u(s) = \alpha |s_u| + \sum_{v \in V} d_G(u, v)$$
$$c(s) = \alpha |E| + \sum_{u, v \in V} d_G(u, v)$$

• Can an edge be created by more than two players?

イロト イポト イヨト イヨト 三日

$$c_u(s) = \alpha |s_u| + \sum_{v \in V} d_G(u, v)$$
$$c(s) = \alpha |E| + \sum_{u, v \in V} d_G(u, v)$$

• Can an edge be created by more than two players? NO

ACT			EID.	LID/	~
AGI	-171	IRI,	FIB-	UP	L

э

イロト イヨト イヨト

$$c_u(s) = \alpha |s_u| + \sum_{v \in V} d_G(u, v)$$
$$c(s) = \alpha |E| + \sum_{u, v \in V} d_G(u, v)$$

- Can an edge be created by more than two players? NO
- $\bullet\,$ We have to study them as a function of α

э

イロト イヨト イヨト

$$c_u(s) = \alpha |s_u| + \sum_{v \in V} d_G(u, v)$$
$$c(s) = \alpha |E| + \sum_{u, v \in V} d_G(u, v)$$

- Can an edge be created by more than two players? NO
- \bullet We have to study them as a function of α
- When is it better to add/remove an edge?

э

イロト イポト イヨト イヨト

$$c_u(s) = \alpha |s_u| + \sum_{v \in V} d_G(u, v)$$
$$c(s) = \alpha |E| + \sum_{u, v \in V} d_G(u, v)$$

- Can an edge be created by more than two players? NO
- \bullet We have to study them as a function of α
- When is it better to add/remove an edge?
- Can the graph be disconnected?

13/31

・ロト ・部ト ・ミト ・ミトー

$$c_u(s) = \alpha |s_u| + \sum_{v \in V} d_G(u, v)$$
$$c(s) = \alpha |E| + \sum_{u, v \in V} d_G(u, v)$$

- Can an edge be created by more than two players? NO
- \bullet We have to study them as a function of α
- When is it better to add/remove an edge?
- Can the graph be disconnected? NO

・ロト ・部ト ・ミト ・ミトー

Add an edge?

$$c_u(s) = \alpha |s_u| + \sum_{v \in V} d_G(u, v)$$

			E I D	LIDC
A(.	1 – IV	IIRI.	- ыв	IIPC.

< □ > < □ > < □ > < □ > < □ > < □ > ... □

Add an edge?

$$c_u(s) = lpha |s_u| + \sum_{v \in V} d_G(u, v)$$

• When is it better to add an edge?

æ.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

Add an edge?

$$c_u(s) = \alpha |s_u| + \sum_{v \in V} d_G(u, v)$$

• When is it better to add an edge?

• Set $d = d_G(u, v) > 1$ and let $s'_u = s_u \cup \{v\}$

$$egin{aligned} c_u(s_{-u}, s'_u) - c_u(s) &= lpha + 1 - d + \sum_{w \in V, w
eq u} (d_{G'}(u, w)) - d_G(u, w)) \ &< lpha + 1 - d < 0 \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Add an edge?

$$c_u(s) = \alpha |s_u| + \sum_{v \in V} d_G(u, v)$$

• When is it better to add an edge?

• Set $d = d_G(u, v) > 1$ and let $s'_u = s_u \cup \{v\}$

$$egin{aligned} & c_u(s_{-u}, s'_u) - c_u(s) = lpha + 1 - d + \sum_{w \in V, w
eq u} (d_{G'}(u, w)) - d_G(u, w)) \ & \leq lpha + 1 - d \leq 0 \end{aligned}$$

• $d > \alpha$

イロト 不得 トイヨト イヨト 二日

Add an edge?

$$c_u(s) = \alpha |s_u| + \sum_{v \in V} d_G(u, v)$$

• When is it better to add an edge?

• Set $d = d_G(u, v) > 1$ and let $s'_u = s_u \cup \{v\}$

$$egin{aligned} c_u(s_{-u}, s'_u) - c_u(s) &= lpha + 1 - d + \sum_{w \in V, w
eq u} (d_{G'}(u, w)) - d_G(u, w)) \ &\leq lpha + 1 - d \leq 0 \end{aligned}$$

• $d > \alpha$ which implies Nash topologies have diameter $\leq \alpha$.

AGT-MIRI, FIB-UPC

Network Games

Spring 2024

イロト イポト イヨト イヨト 三日

14/31

Computing a Best Response

• Given a game $(1^n, \alpha)$, a strategy profile s and a player i, compute $s_i \in BR_i(s_{-i})$

イロト 不得 トイヨト イヨト 二日

Computing a Best Response

- Given a game $(1^n, \alpha)$, a strategy profile *s* and a player *i*, compute $s_i \in BR_i(s_{-i})$
- We relate the BR with a graph parameter.

イロト イポト イヨト イヨト 三日

Computing a Best Response

- Given a game $(1^n, \alpha)$, a strategy profile s and a player i, compute $s_i \in BR_i(s_{-i})$
- We relate the BR with a graph parameter.
- Given a graph G, with $V(G) = \{v_1, \dots, v_n\}$, consider the following instance for the BR proble,:

イロト イポト イヨト ・ヨー
- Given a game $(1^n, \alpha)$, a strategy profile *s* and a player *i*, compute $s_i \in BR_i(s_{-i})$
- We relate the BR with a graph parameter.
- Given a graph G, with $V(G) = \{v_1, \dots, v_n\}$, consider the following instance for the BR proble,:
 - The game has n + 1 players, choose α so that 1 < α < 2, the player will be player v₀. The strategy is defined as follows:
 - Compute an orientation of G and define s_{-0} accordingly. Set $s_0 = V(G)$.

イロト (母) (ヨ) (ヨ) (ヨ) ののの

- Given a game $(1^n, \alpha)$, a strategy profile s and a player i, compute $s_i \in BR_i(s_{-i})$
- We relate the BR with a graph parameter.
- Given a graph G, with $V(G) = \{v_1, \ldots, v_n\}$, consider the following instance for the BR proble,:
 - The game has n+1 players, choose α so that $1 < \alpha < 2$, the player will be player v_0 . The strategy is defined as follows:
 - Compute an orientation of G and define s_{-0} accordingly. Set $s_0 = V(G)$.
- As $1 < \alpha < 2$, v_0 will like to buy edges to link to any vertex at distance > 2.
- So, in the BR graphs the radius of v_0 must be ≤ 2 .
- On such graphs, $c_0(s_{-0}, s'_0) = (\alpha + 1)|s'_0| + 2(n |s'_0|)$

- So, in the BR graphs the radius of v_0 must be ≤ 2 .
- On such graphs, $c_0(s_{-0}, s_0') = (\alpha + 1)|s_0'| + 2(n |s_0'|)$

э

- So, in the BR graphs the radius of v_0 must be ≤ 2 .
- On such graphs, $c_0(s_{-0},s_0') = (\alpha+1)|s_0'| + 2(n-|s_0'|)$
- c_0 is minimized when $|s_0'|$ has minimum cardinality, provided radius of v_0 is ≤ 2 .

э

- So, in the BR graphs the radius of v_0 must be ≤ 2 .
- On such graphs, $c_0(s_{-0},s_0') = (\alpha+1)|s_0'| + 2(n-|s_0'|)$
- c_0 is minimized when $|s'_0|$ has minimum cardinality, provided radius of v_0 is ≤ 2 .
- To get radius \leq 2, $|s_0'|$ must be a dominating set.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- So, in the BR graphs the radius of v_0 must be ≤ 2 .
- On such graphs, $c_0(s_{-0},s_0') = (\alpha+1)|s_0'| + 2(n-|s_0'|)$
- c_0 is minimized when $|s'_0|$ has minimum cardinality, provided radius of v_0 is ≤ 2 .
- To get radius \leq 2, $|s_0'|$ must be a dominating set.
- The BR strategies are the dominating sets of G having minimum size.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- So, in the BR graphs the radius of v_0 must be ≤ 2 .
- On such graphs, $c_0(s_{-0},s_0') = (\alpha+1)|s_0'| + 2(n-|s_0'|)$
- c_0 is minimized when $|s'_0|$ has minimum cardinality, provided radius of v_0 is ≤ 2 .
- To get radius \leq 2, $|s_0'|$ must be a dominating set.
- The BR strategies are the dominating sets of G having minimum size.
- Computing a minimum size dominating set is NP-hard, so

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- So, in the BR graphs the radius of v_0 must be ≤ 2 .
- On such graphs, $c_0(s_{-0},s_0') = (\alpha+1)|s_0'| + 2(n-|s_0'|)$
- c_0 is minimized when $|s'_0|$ has minimum cardinality, provided radius of v_0 is ≤ 2 .
- To get radius ≤ 2 , $|s'_0|$ must be a dominating set.
- The BR strategies are the dominating sets of G having minimum size.
- Computing a minimum size dominating set is NP-hard, so
- Computing a BR in the sum game is NP-hard

16/31

イロト イポト イヨト ・ヨー

$$c(s) = \alpha |E| + \sum_{u,v \in V} d_G(u,v)$$

- When two vertices u, v are not connected $d_G(u, v) \ge 2$.
- When two vertices u, v are connected $d_G(u, v) = 1$.
- Therefore

$$c(s) = \alpha |E| + \sum_{u,v \in V} d_G(u,v) \ge \alpha |E| - 2|E| + \sum_{u,v \in V} 2$$

$$\ge \alpha |E| - 2|E| + 2n(n-1) = 2n(n-1) + (\alpha - 2)|E|$$

3

17/31

$$c(s) = \alpha |E| + \sum_{u,v \in V} d_G(u,v)$$

- When two vertices u, v are not connected $d_G(u, v) \ge 2$.
- When two vertices u, v are connected $d_G(u, v) = 1$.
- Therefore

$$c(s) = \alpha |E| + \sum_{u,v \in V} d_G(u,v) \ge \alpha |E| - 2|E| + \sum_{u,v \in V} 2$$

$$\ge \alpha |E| - 2|E| + 2n(n-1) = 2n(n-1) + (\alpha - 2)|E|$$

• Holds with equality on graphs with diameter ≤ 2 .

• If G(s) has diameter ≤ 2 ,

$$c(s) = 2n(n-1) + (\alpha - 2)|E|$$

3

イロト イヨト イヨト

• If G(s) has diameter ≤ 2 ,

$$c(s) = 2n(n-1) + (\alpha - 2)|E|$$

• This function has different minima depending on whether $(\alpha - 2)$ is positive or negative.

3

イロト イボト イヨト イヨト

• If G(s) has diameter ≤ 2 ,

$$c(s) = 2n(n-1) + (\alpha - 2)|E|$$

- This function has different minima depending on whether $(\alpha 2)$ is positive or negative.
- When $\alpha = 2$, the optimal cost is independent of the number of edges in the graph. So,

3

• If G(s) has diameter ≤ 2 ,

$$c(s) = 2n(n-1) + (\alpha - 2)|E|$$

- This function has different minima depending on whether $(\alpha 2)$ is positive or negative.
- When α = 2, the optimal cost is independent of the number of edges in the graph. So,
- Any graph with diameter ≤ 2 has optimal cost.

イロト イポト イヨト ・ヨ

• If G(s) has diameter ≤ 2 ,

$$c(s) = 2n(n-1) + (\alpha - 2)|E|$$

 When α > 2, to make the cost minimum we have to take the minimum number of edges in G. Of course the graph must be connected. So,

3

イロト イボト イヨト イヨト

• If G(s) has diameter ≤ 2 ,

$$c(s) = 2n(n-1) + (\alpha - 2)|E|$$

- When α > 2, to make the cost minimum we have to take the minimum number of edges in G. Of course the graph must be connected. So,
- Only trees with diameter 2 have optimal cost.

э

• If G(s) has diameter ≤ 2 ,

$$c(s) = 2n(n-1) + (\alpha - 2)|E|$$

- When α > 2, to make the cost minimum we have to take the minimum number of edges in G. Of course the graph must be connected. So,
- Only trees with diameter 2 have optimal cost.
- S_n is the unique optimal topology.

3

• If G(s) has diameter ≤ 2 ,

$$c(s) = 2n(n-1) + (\alpha - 2)|E|$$

 When α < 2, to make the cost minimum we have to take the maximum number of edges in G. So,

3

イロト イボト イヨト イヨト

• If G(s) has diameter ≤ 2 ,

$$c(s) = 2n(n-1) + (\alpha - 2)|E|$$

- When α < 2, to make the cost minimum we have to take the maximum number of edges in G. So,
- K_n is the unique optimal topology.

3

イロト イヨト イヨト

$$c_u(s) = lpha |s_u| + \sum_{v \in V} d_G(u, v)$$

2

・ロト ・四ト ・ヨト ・ヨト

$$c_u(s) = \alpha |s_u| + \sum_{v \in V} d_G(u, v)$$

• The star S_n is a Nash equilibrium?

э.

$$c_u(s) = \alpha |s_u| + \sum_{v \in V} d_G(u, v)$$

- The star S_n is a Nash equilibrium?
- Vertices v_1, \ldots, v_n . Let v_1 be the center of the star.

3

イロト イヨト イヨト

$$c_u(s) = \alpha |s_u| + \sum_{v \in V} d_G(u, v)$$

- The star S_n is a Nash equilibrium?
- Vertices v_1, \ldots, v_n . Let v_1 be the center of the star.
- Consider s: $s_1 = \emptyset$ and $s_i = \{s_1\}$, for i > 1. $(G(s) = S_n)$

イロト 不得 トイヨト イヨト 二日

$$c_u(s) = \alpha |s_u| + \sum_{v \in V} d_G(u, v)$$

- The star S_n is a Nash equilibrium?
- Vertices v_1, \ldots, v_n . Let v_1 be the center of the star.
- Consider s: $s_1 = \emptyset$ and $s_i = \{s_1\}$, for i > 1. $(G(s) = S_n)$
- For *v*₁,

Nash topologies

$$c_u(s) = \alpha |s_u| + \sum_{v \in V} d_G(u, v)$$

- The star S_n is a Nash equilibrium?
- Vertices v_1, \ldots, v_n . Let v_1 be the center of the star.
- Consider s: $s_1 = \emptyset$ and $s_i = \{s_1\}$, for i > 1. $(G(s) = S_n)$
- For *v*₁,

•
$$c_1(s) = n - 1$$
.

Nash topologies

$$c_u(s) = \alpha |s_u| + \sum_{v \in V} d_G(u, v)$$

- The star S_n is a Nash equilibrium?
- Vertices v_1, \ldots, v_n . Let v_1 be the center of the star.
- Consider s: $s_1 = \emptyset$ and $s_i = \{s_1\}$, for i > 1. $(G(s) = S_n)$
- For *v*₁,
 - $c_1(s) = n 1$.
 - v₁ is getting the smallest possible cost.

- The star S_n is a Nash equilibrium?
- Consider s: $s_1 = \emptyset$ and $s_i = \{s_1\}$, for i > 1. $(G(s) = S_n)$
- For v_i , $i \ge 1$

- The star S_n is a Nash equilibrium?
- Consider s: $s_1 = \emptyset$ and $s_i = \{s_1\}$, for i > 1. $(G(s) = S_n)$
- For v_i , $i \ge 1$

•
$$c_i(s) = \alpha + 1 + 2(n-2)$$

- The star S_n is a Nash equilibrium?
- Consider s: $s_1 = \emptyset$ and $s_i = \{s_1\}$, for i > 1. $(G(s) = S_n)$

• For
$$v_i$$
, $i \ge 1$

•
$$c_i(s) = \alpha + 1 + 2(n-2).$$

• If v_i changes $s_i = \{v_1\}$ for $s'_i = A \cup \{v_1\}$, $v_1 \notin A$,

$$c_i(s_{-i}, s'_i) = \alpha + 1 + (\alpha + 1)|A| + 2(n - 2 - |A|)$$

$$c_i(s) - c_i(s_{-i}, s'_i) = (1 - \alpha)|A|$$

- The star S_n is a Nash equilibrium?
- Consider s: $s_1 = \emptyset$ and $s_i = \{s_1\}$, for i > 1. $(G(s) = S_n)$

• For
$$v_i, i \ge 1$$

•
$$c_i(s) = \alpha + 1 + 2(n - 2)$$
.
• If v_i changes $s_i = \{v_1\}$ for $s'_i = A \cup \{v_1\}$, $v_1 \notin A$,

$$c_i(s_{-i}, s'_i) = \alpha + 1 + (\alpha + 1)|A| + 2(n - 2 - |A|)$$

$$c_i(s) - c_i(s_{-i}, s'_i) = (1 - \alpha)|A|$$

The cost do not decrease for $\alpha \geq 1$

22 / 31

イロト 不得 トイヨト イヨト 二日

- The star S_n is a Nash equilibrium?
- Consider s: $s_1 = \emptyset$ and $s_i = \{s_1\}$, for i > 1. $(G(s) = S_n)$

• For
$$v_i$$
, $i \ge 1$

•
$$c_i(s) = \alpha + 1 + 2(n-2)$$

イロト 不得 トイヨト イヨト 二日

- The star S_n is a Nash equilibrium?
- Consider s: $s_1 = \emptyset$ and $s_i = \{s_1\}$, for i > 1. $(G(s) = S_n)$

• For
$$v_i$$
, $i \ge 1$
• $c_i(s) = \alpha + 1 + 2(n-2)$.
• If v_i changes $s_i = \{v_1\}$ for $s'_i = A$, $v_1 \notin A$,

$$c_i(s_{-i}, s'_i) = (\alpha + 1)|A| + 2 + 3(n - 2 - |A|))$$

$$c_i(s) - c_i(s_{-i}, s'_i) = (\alpha + 1)(1 - |A|) - n - 3|A|$$

- The star S_n is a Nash equilibrium?
- Consider s: $s_1 = \emptyset$ and $s_i = \{s_1\}$, for i > 1. $(G(s) = S_n)$

• For
$$v_i$$
, $i \ge 1$
• $c_i(s) = \alpha + 1 + 2(n-2)$.
• If v_i changes $s_i = \{v_1\}$ for $s'_i = A$, $v_1 \notin A$,

$$c_i(s_{-i}, s'_i) = (\alpha + 1)|A| + 2 + 3(n - 2 - |A|))$$

$$c_i(s) - c_i(s_{-i}, s'_i) = (\alpha + 1)(1 - |A|) - n - 3|A|$$

Which never increases.

23/31

イロト 不得 トイヨト イヨト 二日

2

・ロト ・四ト ・ヨト ・ヨト

• K_n is the unique Nash topology for $\alpha < 1$

э.

イロト イボト イヨト イヨト

- K_n is the unique Nash topology for $\alpha < 1$
- S_n is a Nash topology for $\alpha \ge 1$ although they might be other PNE

3

イロト イヨト イヨト
PoA: $\alpha < 1$

- K_n is the unique Nash topology
- K_n is also an optimal topology

э.

イロト イヨト イヨト

PoA: $\alpha < 1$

- K_n is the unique Nash topology
- K_n is also an optimal topology
- PoA = PoS = 1

PoA: $1 \le \alpha < 2$

- *K_n* is an optimal topology
- Any Nash equilibrium must have diameter ≤ 2 , so S_n is a Nash topology with the worst social cost.

PoA: $1 \le \alpha < 2$

- *K_n* is an optimal topology
- Any Nash equilibrium must have diameter ≤ 2, so S_n is a Nash topology with the worst social cost.

$$PoA = \frac{c(S_n)}{c(K_n)} = \frac{(n-1)(\alpha - 2 + 2n)}{n(n-1)\frac{\alpha - 2}{2} + 2}$$
$$= \frac{4}{2 + \alpha} - \frac{4 - 2\alpha}{n(2 + \alpha)} < \frac{4}{2 + \alpha} \le \frac{4}{3}$$

26 / 31

$$c_u(s) = lpha |s_u| + \sum_{v \in V} d_G(u, v)$$

AGT	-MIRI	FIR	
A0 I	-101111	, דיי	-01 C

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● □ ● ● ●

$$c_u(s) = \alpha |s_u| + \sum_{v \in V} d_G(u, v)$$

• When $\alpha > n^2$, unless the distance is infinity, no player has incentive to buy an edge.

3

イロト イヨト イヨト

$$c_u(s) = \alpha |s_u| + \sum_{v \in V} d_G(u, v)$$

- When $\alpha > n^2$, unless the distance is infinity, no player has incentive to buy an edge.
- The NE topologies are spanning trees

3

イロト イヨト イヨト

$$c_u(s) = \alpha |s_u| + \sum_{v \in V} d_G(u, v)$$

- When $\alpha > n^2$, unless the distance is infinity, no player has incentive to buy an edge.
- The NE topologies are spanning trees
- The optimal topology is S_n

3

イロト イボト イヨト イヨト

$$c_u(s) = \alpha |s_u| + \sum_{v \in V} d_G(u, v)$$

- When $\alpha > n^2$, unless the distance is infinity, no player has incentive to buy an edge.
- The NE topologies are spanning trees
- The optimal topology is S_n

$$PoA = \frac{c(T_n)}{c(S_n)} = \frac{\alpha(n-1) + \ldots}{\alpha(n-1) + 1 + 2n(n-1)} = O(1)$$

3

27 / 31

イロト イボト イヨト イヨト

• for a worst NE topology G

$$PoA = \left(\frac{\alpha |E| + \sum_{u, v \in V} d_G(u, v)}{\alpha n + n^2}\right)$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

• for a worst NE topology G

$$PoA = \left(\frac{\alpha |E| + \sum_{u,v \in V} d_G(u,v)}{\alpha n + n^2}\right)$$

 d_G(u, v) < 2√α, otherwise u will be willing to connect to the node in the center of the shortest path from u to v to be closer by -√α to √α nodes.

3

• for a worst NE topology G

$$PoA = \left(\frac{\alpha |E| + \sum_{u,v \in V} d_G(u,v)}{\alpha n + n^2}\right)$$

- d_G(u, v) < 2√α, otherwise u will be willing to connect to the node in the center of the shortest path from u to v to be closer by -√α to √α nodes.
- Furthermore, $|E| = O(\frac{n^2}{\sqrt{\alpha}})$ (see [Fabrikant et al. 2003])

28/31

イロト イポト イヨト イヨト 三日

• for a worst NE topology G

$$PoA = \left(\frac{\alpha |E| + \sum_{u,v \in V} d_G(u,v)}{\alpha n + n^2}\right)$$

- d_G(u, v) < 2√α, otherwise u will be willing to connect to the node in the center of the shortest path from u to v to be closer by -√α to √α nodes.
- Furthermore, $|E| = O(\frac{n^2}{\sqrt{\alpha}})$ (see [Fabrikant et al. 2003])
- Thus $PoA = O(\sqrt{\alpha})$

28/31

PoA: Conjectures

- PoA on trees \leq 5 [Fabrikant et al. 2003] Constant PoA conjecture: For all α , PoA = O(1).
- Tree conjecture: for all $\alpha > n$, all NE are trees.

3

O(1) PoA conjecture: large α

PoA = O(1)	
$\alpha > n^{\frac{3}{2}}$	[Lin 2003]
$\alpha > 12 n \log n$	[Albers et al. 2014]
lpha> 273 n	[Mihalak, Schlegel, 2013]
lpha > 65 n	[Mamageishivii et al. 2015]
lpha > 17n	[Alvarez, Messegue 2017]
lpha > 4n - 13	[Bilo, Lezner 2018]
$\alpha > (1 + \epsilon)n$	[Alvarez, Messegue 2019 (2024)]

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

3

O(1) PoA conjecture: small α

$$PoA = O(1)$$
[Fabrikant et al. 2003] $\alpha = O(\sqrt{n})$ [Lin 2003] $\alpha = O(n^{1-\delta}), \ \delta \ge 1/\log n$ [Demaine et al. 2007]

3

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・