Efficiency of Nash Equilibria

Maria Serna

Spring 2024

(1) Price of Anarchy/Stability

(2) Load Balancing game

(3) Congestion games and variants

4 Affine Congestion games
(5) References

Efficiency at equilibrium

- We have analyzed existence of PNE and NE
- The players' goals can be different from those of the society.
- Fixing a social goal an optimal situation is possible.
- How good/bad are NE with respect to this goal?does not achieve optimal travel time.

Efficiency at equilibrium

- We have analyzed existence of PNE and NE
- The players' goals can be different from those of the society.
- Fixing a social goal an optimal situation is possible.
- How good/bad are NE with respect to this goal?does not achieve optimal travel time.
- How far are NE for optimal social goal?

Efficiency at equilibrium

- We have analyzed existence of PNE and NE
- The players' goals can be different from those of the society.
- Fixing a social goal an optimal situation is possible.
- How good/bad are NE with respect to this goal?does not achieve optimal travel time.
- How far are NE for optimal social goal?
- To perform such an analysis for strategic games we have first to define a global function to optimize, this function is usually called the social cost or social utility.

Efficiency at equilibrium

- We have analyzed existence of PNE and NE
- The players' goals can be different from those of the society.
- Fixing a social goal an optimal situation is possible.
- How good/bad are NE with respect to this goal?does not achieve optimal travel time.
- How far are NE for optimal social goal?
- To perform such an analysis for strategic games we have first to define a global function to optimize, this function is usually called the social cost or social utility.
- Society is interested in minimizing the social cost or maximizing the social utility.

Social cost

- Consider a n-player game $\Gamma=\left(A_{1}, \ldots, A_{n}, u_{1}, \ldots, u_{n}\right)$.
- Let $A=A_{1} \times \cdots \times A_{n}$.
- Let $\operatorname{PNE}(\Gamma)$ be the set of PNE of Γ.
- Let $N E(\Gamma)$ be the set of NE of Γ.

Social cost

- Consider a n-player game $\Gamma=\left(A_{1}, \ldots, A_{n}, u_{1}, \ldots, u_{n}\right)$.
- Let $A=A_{1} \times \cdots \times A_{n}$.
- Let $P N E(\Gamma)$ be the set of PNE of Γ.
- Let $N E(\Gamma)$ be the set of NE of Γ.
- Let $\mathcal{C}: A \rightarrow \mathbb{R}$ be a social cost function.
C can be extended to mixed strategy profiles by computing the average under the joint product distribution.

Usual social cost functions

Usual social cost functions

- Utilitarian social cost : $C(s)=\sum_{i \in N} c_{i}(s)$.

Usual social cost functions

- Utilitarian social cost: $C(s)=\sum_{i \in N} c_{i}(s)$.
- Egalitarian social cost: $C(s)=\max _{i \in N} c_{i}(s)$.

Usual social cost functions

- Utilitarian social cost : $C(s)=\sum_{i \in N} c_{i}(s)$.
- Egalitarian social cost: $C(s)=\max _{i \in N} c_{i}(s)$.
- Game specific cost/utility defined by the model motivating the game.

Price of Anarchy/Stability

Price of Anarchy/Stability

The Price of anarchy of Γ is defined as

$$
P \circ A(\Gamma)=\frac{\max _{\sigma \in N E(\Gamma)} C(\sigma)}{\min _{s \in A} C(s)}
$$

Price of Anarchy/Stability

The Price of anarchy of Γ is defined as

$$
P \circ A(\Gamma)=\frac{\max _{\sigma \in N E(\Gamma)} C(\sigma)}{\min _{s \in A} C(s)}
$$

The Price of stability of Γ is defined as

$$
\operatorname{PoS}(\Gamma)=\frac{\min _{\sigma \in N E(\Gamma)} C(\sigma)}{\min _{s \in A} C(s)}
$$

Price of Anarchy/Stability

The Price of anarchy of Γ is defined as

$$
P \circ A(\Gamma)=\frac{\max _{\sigma \in N E(\Gamma)} C(\sigma)}{\min _{s \in A} C(s)}
$$

The Price of stability of Γ is defined as

$$
\operatorname{PoS}(\Gamma)=\frac{\min _{\sigma \in N E(\Gamma)} C(\sigma)}{\min _{s \in A} C(s)}
$$

For social utility functions the terms are inverted in the definition.

Price of Anarchy/Stability

Price of Anarchy/Stability

- For games having a PNE, we might be interested in those values over PNE (Г) instead of NE (Г).

Price of Anarchy/Stability

- For games having a PNE, we might be interested in those values over PNE (Г) instead of NE (Г).
- For families of games, we might be interested in analyzing PoA and PoS as a function of some parameter. For example the number of players.

Price of Anarchy/Stability

- For games having a PNE, we might be interested in those values over PNE (Г) instead of NE (Г).
- For families of games, we might be interested in analyzing PoA and PoS as a function of some parameter. For example the number of players.
- PoA measures the worst decentralized equilibrium scenario giving the maximum system degradation.

Price of Anarchy/Stability

- For games having a PNE, we might be interested in those values over PNE (Г) instead of NE (Г).
- For families of games, we might be interested in analyzing PoA and PoS as a function of some parameter. For example the number of players.
- PoA measures the worst decentralized equilibrium scenario giving the maximum system degradation.
- PoS measures the best decentralized equilibrium scenario giving the best possible degradation.

Network

- 4000 drivers drive from A to B on

Network

- 4000 drivers drive from A to B on

- Set the social cost to be the maximum travel time.

Network

- 4000 drivers drive from A to B on

- Set the social cost to be the maximum travel time.
- Optimal social cost is reached when half of the drivers take $A-U-B$ and the other half $A-R-B$ with social cost 65 .

Network

- 4000 drivers drive from A to B on

- Set the social cost to be the maximum travel time.
- Optimal social cost is reached when half of the drivers take $A-U-B$ and the other half $A-R-B$ with social cost 65 .
- In the NE

Network

- 4000 drivers drive from A to B on

- Set the social cost to be the maximum travel time.
- Optimal social cost is reached when half of the drivers take $A-U-B$ and the other half $A-R-B$ with social cost 65 .
- In the NE half of the drivers take $A-U-B$ and the other half $A-R-B$.

Network

- 4000 drivers drive from A to B on

- Set the social cost to be the maximum travel time.
- Optimal social cost is reached when half of the drivers take $A-U-B$ and the other half $A-R-B$ with social cost 65 .
- In the NE half of the drivers take $A-U-B$ and the other half $A-R-B$.
- $P o A=P o S=65 / 65=1$

Braess' Network

- 4000 drivers drive from A to B on

Braess' Network

- 4000 drivers drive from A to B on

- Set the social cost to be the maximum travel time.

Braess' Network

- 4000 drivers drive from A to B on

- Set the social cost to be the maximum travel time.
- Optimal social cost is reached when half of the drivers take $A-U-B$ and the other half $A-R-B$ with social cost 65 .

Braess' Network

- 4000 drivers drive from A to B on

- Set the social cost to be the maximum travel time.
- Optimal social cost is reached when half of the drivers take $A-U-B$ and the other half $A-R-B$ with social cost 65 .
- In the NE

Braess' Network

- 4000 drivers drive from A to B on

- Set the social cost to be the maximum travel time.
- Optimal social cost is reached when half of the drivers take $A-U-B$ and the other half $A-R-B$ with social cost 65 .
- In the NE all drivers take $A-U-R-B$ with social cost 80 .

Braess' Network

- 4000 drivers drive from A to B on

- Set the social cost to be the maximum travel time.
- Optimal social cost is reached when half of the drivers take $A-U-B$ and the other half $A-R-B$ with social cost 65 .
- In the NE all drivers take $A-U-R-B$ with social cost 80 .
- $P o A=P o S=80 / 65=16 / 13$

(1) Price of Anarchy/Stability

(2) Load Balancing game
(3) Congestion games and variants

4 Affine Congestion games
(5) References

Load Balancing game

- There are m servers and n jobs. Job i has load p_{i}.
- The game has n players, corresponding to the n jobs.
- Each player has to decide the server that will process its job. $A_{i}=\{1, \ldots, m\}$
- The response time of server j is proportional to its load

$$
L_{j}(s)=\sum_{i \mid s_{i}=j} p_{i}
$$

- Each job wants to be assigned to the server that minimizes its response time:

$$
c_{i}(s)=L_{s_{i}}(s)
$$

Load Balancing game: PNE?

Consider the best response dynamic

- Start with an arbitrary state.
- A node (or several) chooses a best strategy, one that maximizes its own payoff, given the current choices of the others

Load Balancing game: PNE?

Consider the best response dynamic

- Start with an arbitrary state.
- A node (or several) chooses a best strategy, one that maximizes its own payoff, given the current choices of the others
- How to prove that such a process converges to a PNE?

Load Balancing game: PNE?

Consider the best response dynamic

- Start with an arbitrary state.
- A node (or several) chooses a best strategy, one that maximizes its own payoff, given the current choices of the others
- How to prove that such a process converges to a PNE?
- Seek for an adequate kind of potential function.

Load Balancing game: PNE?

BR-inspired-algorithm analysis

- Order the servers with decreasing load (i.e., the decreasing response time):

$$
L_{1} \geq L_{2} \geq \cdots \geq L_{m}
$$

- Player i moves from server j to k if $L_{k}+p_{i}<L_{j}$.

Load Balancing game: PNE?

BR-inspired-algorithm analysis

- Order the servers with decreasing load (i.e., the decreasing response time):

$$
L_{1} \geq L_{2} \geq \cdots \geq L_{m}
$$

- Player i moves from server j to k if $L_{k}+p_{i}<L_{j}$.
- Reorder the servers by decreasing load and repeat the process until no job can move.

Load Balancing game: PNE?

BR-inspired-algorithm analysis

- Order the servers with decreasing load (i.e., the decreasing response time):

$$
L_{1} \geq L_{2} \geq \cdots \geq L_{m}
$$

- Player i moves from server j to k if $L_{k}+p_{i}<L_{j}$.
- Reorder the servers by decreasing load and repeat the process until no job can move.
- Each step of the $B R$ algorithm defines a sorted sequence of loads.

Load Balancing game: PNE?

- Does the algorithm converge?

Load Balancing game: PNE?

- Does the algorithm converge?
- There are a finite number of (possibly exponential) assignments of jobs to servers.

Load Balancing game: PNE?

- Does the algorithm converge?
- There are a finite number of (possibly exponential) assignments of jobs to servers.
- At each step
- Player i moves from server j to k if $L_{k}+p_{i}<L_{j}$.
- Besides $L_{j}-p_{i}<L_{j}$

Load Balancing game: PNE?

- Does the algorithm converge?
- There are a finite number of (possibly exponential) assignments of jobs to servers.
- At each step
- Player i moves from server j to k if $L_{k}+p_{i}<L_{j}$.
- Besides $L_{j}-p_{i}<L_{j}$

At least two terms of the new sorted load sequence decrease!

Load Balancing game: PNE?

- Does the algorithm converge?
- There are a finite number of (possibly exponential) assignments of jobs to servers.
- At each step
- Player i moves from server j to k if $L_{k}+p_{i}<L_{j}$.
- Besides $L_{j}-p_{i}<L_{j}$

At least two terms of the new sorted load sequence decrease!

- So BR-inspired-algorithm terminates (although it can be rather slow).

Load Balancing game: PNE?

- Does the algorithm converge?
- There are a finite number of (possibly exponential) assignments of jobs to servers.
- At each step
- Player i moves from server j to k if $L_{k}+p_{i}<L_{j}$.
- Besides $L_{j}-p_{i}<L_{j}$

At least two terms of the new sorted load sequence decrease!

- So BR-inspired-algorithm terminates (although it can be rather slow).
- The load balancing game has a PNE.

Load Balancing game: Social cost

- The natural social cost is the total finish time i.e., the maximum of the server's loads

$$
c(s)=\max _{j=1}^{m} L_{j} .
$$

- How bad/good is a PNE?

Load Balancing game: PoS

- Let s be an assignment with optimal cost.
- Is s a PNE?

Load Balancing game: PoS

- Let s be an assignment with optimal cost.
- Is s a PNE?
- not necessarily, no player in the worst server can improve, however other players can get a better benefit.

Load Balancing game: PoS

- Let s be an assignment with optimal cost.
- Is s a PNE?
- not necessarily, no player in the worst server can improve, however other players can get a better benefit.
- However, starting from an optimal solution the BR-inspired-algorithm terminates on a PNE with the same maximum load.

Load Balancing game: PoS

- Let s be an assignment with optimal cost.
- Is s a PNE?
- not necessarily, no player in the worst server can improve, however other players can get a better benefit.
- However, starting from an optimal solution the BR-inspired-algorithm terminates on a PNE with the same maximum load.
- Therefore, $\operatorname{PoS}(\Gamma)=1$.

Load Balancing game: PoA

Theorem
The max load of a Nash equilibrium s is within twice the max load of an optimum assignment, i.e.,.

$$
C(s) \leq 2 \min _{s^{\prime}} C\left(s^{\prime}\right)
$$

Which will give $P \circ A(\Gamma) \leq 2$.

Load Balancing game: PoA bound

Load Balancing game: PoA bound

- Let s be a PNE
- Let i be a job assigned to the max loaded server j.

Load Balancing game: PoA bound

- Let s be a PNE
- Let i be a job assigned to the max loaded server j.
- $L_{j} \leq L_{k}+p_{i}$, for all other server k.

Load Balancing game: PoA bound

- Let s be a PNE
- Let i be a job assigned to the max loaded server j.
- $L_{j} \leq L_{k}+p_{i}$, for all other server k.
- Summing over all servers, we get

Load Balancing game: PoA bound

- Let s be a PNE
- Let i be a job assigned to the max loaded server j.
- $L_{j} \leq L_{k}+p_{i}$, for all other server k.
- Summing over all servers, we get $L_{j} \leq\left(\sum_{k} L_{k}\right) / m+p_{i}$.

Load Balancing game: PoA bound

- Let s be a PNE
- Let i be a job assigned to the max loaded server j.
- $L_{j} \leq L_{k}+p_{i}$, for all other server k.
- Summing over all servers, we get $L_{j} \leq\left(\sum_{k} L_{k}\right) / m+p_{i}$.
- In an opt solution, i is assigned to some server,

Load Balancing game: PoA bound

- Let s be a PNE
- Let i be a job assigned to the max loaded server j.
- $L_{j} \leq L_{k}+p_{i}$, for all other server k.
- Summing over all servers, we get $L_{j} \leq\left(\sum_{k} L_{k}\right) / m+p_{i}$.
- In an opt solution, i is assigned to some server, so $C\left(s^{\prime}\right) \geq p_{i}$.

Load Balancing game: PoA bound

- Let s be a PNE
- Let i be a job assigned to the max loaded server j.
- $L_{j} \leq L_{k}+p_{i}$, for all other server k.
- Summing over all servers, we get $L_{j} \leq\left(\sum_{k} L_{k}\right) / m+p_{i}$.
- In an opt solution, i is assigned to some server, so $C\left(s^{\prime}\right) \geq p_{i}$.
- $\sum_{k} L_{k}$ is the total processing time for an assignment.

Load Balancing game: PoA bound

- Let s be a PNE
- Let i be a job assigned to the max loaded server j.
- $L_{j} \leq L_{k}+p_{i}$, for all other server k.
- Summing over all servers, we get $L_{j} \leq\left(\sum_{k} L_{k}\right) / m+p_{i}$.
- In an opt solution, i is assigned to some server, so $C\left(s^{\prime}\right) \geq p_{i}$.
- $\sum_{k} L_{k}$ is the total processing time for an assignment.

The best possible algorithm is to evenly partition them among m servers (if possible), thus

Load Balancing game: PoA bound

- Let s be a PNE
- Let i be a job assigned to the max loaded server j.
- $L_{j} \leq L_{k}+p_{i}$, for all other server k.
- Summing over all servers, we get $L_{j} \leq\left(\sum_{k} L_{k}\right) / m+p_{i}$.
- In an opt solution, i is assigned to some server, so $C\left(s^{\prime}\right) \geq p_{i}$.
- $\sum_{k} L_{k}$ is the total processing time for an assignment.

The best possible algorithm is to evenly partition them among m servers (if possible), thus $\sum_{k} L_{k} / m \leq\left(\sum_{\ell} p_{\ell}\right) / m$.

Load Balancing game: PoA bound

- Let s be a PNE
- Let i be a job assigned to the max loaded server j.
- $L_{j} \leq L_{k}+p_{i}$, for all other server k.
- Summing over all servers, we get $L_{j} \leq\left(\sum_{k} L_{k}\right) / m+p_{i}$.
- In an opt solution, i is assigned to some server, so $C\left(s^{\prime}\right) \geq p_{i}$.
- $\sum_{k} L_{k}$ is the total processing time for an assignment.

The best possible algorithm is to evenly partition them among m servers (if possible), thus $\sum_{k} L_{k} / m \leq\left(\sum_{\ell} p_{\ell}\right) / m$.

- We get

$$
C(s)=L_{j} \leq\left(\sum_{k} L_{k}\right) / m+p_{i}
$$

Load Balancing game: PoA bound

- Let s be a PNE
- Let i be a job assigned to the max loaded server j.
- $L_{j} \leq L_{k}+p_{i}$, for all other server k.
- Summing over all servers, we get $L_{j} \leq\left(\sum_{k} L_{k}\right) / m+p_{i}$.
- In an opt solution, i is assigned to some server, so $C\left(s^{\prime}\right) \geq p_{i}$.
- $\sum_{k} L_{k}$ is the total processing time for an assignment.

The best possible algorithm is to evenly partition them among m servers (if possible), thus $\sum_{k} L_{k} / m \leq\left(\sum_{\ell} p_{\ell}\right) / m$.

- We get

$$
C(s)=L_{j} \leq\left(\sum_{k} L_{k}\right) / m+p_{i} \leq\left(\sum_{\ell} p_{\ell}\right) / m+p_{i}
$$

Load Balancing game: PoA bound

- Let s be a PNE
- Let i be a job assigned to the max loaded server j.
- $L_{j} \leq L_{k}+p_{i}$, for all other server k.
- Summing over all servers, we get $L_{j} \leq\left(\sum_{k} L_{k}\right) / m+p_{i}$.
- In an opt solution, i is assigned to some server, so $C\left(s^{\prime}\right) \geq p_{i}$.
- $\sum_{k} L_{k}$ is the total processing time for an assignment.

The best possible algorithm is to evenly partition them among m servers (if possible), thus $\sum_{k} L_{k} / m \leq\left(\sum_{\ell} p_{\ell}\right) / m$.

- We get

$$
\begin{aligned}
C(s) & =L_{j} \leq\left(\sum_{k} L_{k}\right) / m+p_{i} \leq\left(\sum_{\ell} p_{\ell}\right) / m+p_{i} \\
& \leq C\left(s^{\prime}\right)+C\left(s^{\prime}\right) .
\end{aligned}
$$

(1) Price of Anarchy/Stability

(2) Load Balancing game
(3) Congestion games and variants

4 Affine Congestion games
(5) References

Congestion games

Congestion games

A congestion game $\left(E, N,\left(d_{e}\right)_{e \in E}\right)$

- is defined on a finite set E of resources and
- has n players and,
- for each resource e, a delay function d_{e} mapping \mathbb{N} to the integers.
- The actions for each player are subsets of E.
- The cost functions are the following:

$$
c_{i}\left(a_{1}, \ldots, a_{n}\right)=\left(\sum_{e \in a_{i}} d\left(e, f\left(a_{1}, \ldots, a_{n}, e\right)\right)\right)
$$

being $f_{e}\left(a_{1}, \ldots, a_{n}, e\right)=\left|\left\{i \mid e \in a_{i}\right\}\right|$.

Weighted congestion games

Weighted congestion games

A weighted congestion game $\left(E, N,\left(d_{e}\right)_{e \in E},\left(w_{i}\right)_{i \in N}\right)$

- is defined on a finite set E of resources and
- has n players. Player i has an associated positive integer weight w_{i}.
- Each resource e has a delay function d_{e} mapping \mathbb{N} to the integers.
- The actions for each player are subsets of E.
- The cost functions are the following:

$$
c_{i}\left(a_{1}, \ldots, a_{n}\right)=\left(\sum_{e \in a_{i}} d\left(e, f\left(a_{1}, \ldots, a_{n}, e\right)\right)\right)
$$

being $f_{e}\left(a_{1}, \ldots, a_{n}, e\right)=\sum_{i \mid e \in a_{i}} w_{i}$.

Network weighted congestion games

Network weighted congestion games

A network weighted congestion game $\left(N, G=(V, E),\left(d_{e}\right)_{e \in E},\left(w_{i}\right)_{i \in N},\left(s_{i}\right)_{i \in N},\left(t_{i}\right)_{i \in N}\right)$

- Is defined on a directed graph $G=(V, E)$, the resources are the arcs (E)
- The game has n players, player i has an associated positive integer weight w_{i} and two vertices $s_{i}, t_{i} \in V$.
- For each arc e a delay function d_{e} mapping \mathbb{N} to the integers.
- The action set for player i is the set of $\left(s_{i}-t_{i}\right)$-paths in G.
- The cost functions are the following:

$$
c_{i}\left(a_{1}, \ldots, a_{n}\right)=\left(\sum_{e \in a_{i}} d\left(e, f\left(a_{1}, \ldots, a_{n}, e\right)\right)\right)
$$

being $f\left(a_{1}, \ldots, a_{n}, e\right)=\sum_{i \mid e \in a_{i}} w_{i}$.

Another family: Fair Cost Sharing Games

Another family: Fair Cost Sharing Games

A fair cost sharing game $\left(E, N,\left(c_{e}\right)_{e \in E}\right)$

- is defined on a finite set E of resources and
- has n players
- a fixed cost c_{e}, for each resource e.
- The actions for each player are subsets of E.
- The cost functions are the following:

$$
c_{i}\left(a_{1}, \ldots, a_{n}\right)=\sum_{e \in a_{i}} \frac{c_{e}}{f_{e}\left(a_{1}, \ldots, a_{n}\right)}
$$

being $f_{e}\left(a_{1}, \ldots, a_{n}\right)=\left|\left\{i \mid e \in a_{i}\right\}\right|$.

Congestion games terminology

Congestion games terminology

- unweighted (vs. weighted)

Congestion games terminology

- unweighted (vs. weighted): $w_{i}=1$.

Congestion games terminology

- unweighted (vs. weighted): $w_{i}=1$.
- symmetric (vs. non-symmetric) strategies:

Congestion games terminology

- unweighted (vs. weighted): $w_{i}=1$.
- symmetric (vs. non-symmetric) strategies: all the players have the same set of actions.

Congestion games terminology

- unweighted (vs. weighted): $w_{i}=1$.
- symmetric (vs. non-symmetric) strategies: all the players have the same set of actions.
- symmetric congestion games:

Congestion games terminology

- unweighted (vs. weighted): $w_{i}=1$.
- symmetric (vs. non-symmetric) strategies: all the players have the same set of actions.
- symmetric congestion games: unweighted with symmetric strategies.

Congestion games terminology

- unweighted (vs. weighted): $w_{i}=1$.
- symmetric (vs. non-symmetric) strategies: all the players have the same set of actions.
- symmetric congestion games: unweighted with symmetric strategies.
- singleton congestion games:

Congestion games terminology

- unweighted (vs. weighted): $w_{i}=1$.
- symmetric (vs. non-symmetric) strategies: all the players have the same set of actions.
- symmetric congestion games: unweighted with symmetric strategies.
- singleton congestion games: all possible actions have only one resource.

Congestion games terminology

- unweighted (vs. weighted): $w_{i}=1$.
- symmetric (vs. non-symmetric) strategies: all the players have the same set of actions.
- symmetric congestion games: unweighted with symmetric strategies.
- singleton congestion games: all possible actions have only one resource.
- nonatomic network congestion games (vs. atomic)

Congestion games terminology

- unweighted (vs. weighted): $w_{i}=1$.
- symmetric (vs. non-symmetric) strategies: all the players have the same set of actions.
- symmetric congestion games: unweighted with symmetric strategies.
- singleton congestion games: all possible actions have only one resource.
- nonatomic network congestion games (vs. atomic) In nonatomic congestion games the number of players is infinite and each player controls an infinitesimal weight of the total traffic.

Congestion games terminology

- unweighted (vs. weighted): $w_{i}=1$.
- symmetric (vs. non-symmetric) strategies: all the players have the same set of actions.
- symmetric congestion games: unweighted with symmetric strategies.
- singleton congestion games: all possible actions have only one resource.
- nonatomic network congestion games (vs. atomic) In nonatomic congestion games the number of players is infinite and each player controls an infinitesimal weight of the total traffic. Named also Selfish routing games.

PNE in weighted congestion games

- There are weighted network congestion games without PNE

PNE in weighted congestion games

- There are weighted network congestion games without PNE
- Consider the following network with 2 players having weights $w_{1}=1$ and $w_{2}=2$.

Not always PNE in weighted congestion games

Not always PNE in weighted congestion games

s_{-i}	$B R_{1}$	$B R_{2}$
$P_{1}: s \rightarrow t$	P_{4}	P_{2}
$P_{2}: s \rightarrow v \rightarrow t$	P_{4}	P_{4}
$P_{3}: s \rightarrow w \rightarrow t$	P_{1}	P_{2}
$P_{3}: s \rightarrow v \rightarrow w \rightarrow t$	P_{1}	P_{3}

Not always PNE in weighted congestion games

s_{-i}	$B R_{1}$	$B R_{2}$
$P_{1}: s \rightarrow t$	P_{4}	P_{2}
$P_{2}: s \rightarrow v \rightarrow t$	P_{4}	P_{4}
$P_{3}: s \rightarrow w \rightarrow t$	P_{1}	P_{2}
$P_{3}: s \rightarrow v \rightarrow w \rightarrow t$	P_{1}	P_{3}

Therefore the game has no PNE

(1) Price of Anarchy/Stability

(2) Load Balancing game

(3) Congestion games and variants

4 Affine Congestion games
(5) References

PoA for affine congestion games

Consider unweighted congestion games such that the delay functions are affine functions, i.e., for each resource e,

$$
d_{e}(x)=a_{e} x+b_{e}
$$

for some $a_{e}, b_{e}>0$.

PoA for affine congestion games

Consider unweighted congestion games such that the delay functions are affine functions, i.e., for each resource e,

$$
d_{e}(x)=a_{e} x+b_{e}
$$

for some $a_{e}, b_{e}>0$.
Let C be the usual social cost:

$$
C(s)=\sum_{e \in E} d_{e}\left(f_{e}(s)\right)
$$

PNE in affine congestion games

PNE in affine congestion games

PNE in affine congestion games

- For affine delay functions PNE always exist

PNE in affine congestion games

- For affine delay functions PNE always exist Show that the following $\Phi(s)$ is a weighted potential function

PNE in affine congestion games

- For affine delay functions PNE always exist Show that the following $\Phi(s)$ is a weighted potential function

$$
\begin{aligned}
& U(s)=\sum_{i \in N} w_{i} \sum_{e \in s_{i}}\left(a_{e} w_{i}+b_{e}\right) \quad C(s)=\sum_{i \in N} w_{i} c_{i}(s) \\
& \Phi(s)=(C(s)+U(s)) / 2 .
\end{aligned}
$$

PNE in affine congestion games

- For affine delay functions PNE always exist Show that the following $\Phi(s)$ is a weighted potential function

$$
\begin{aligned}
& U(s)=\sum_{i \in N} w_{i} \sum_{e \in s_{i}}\left(a_{e} w_{i}+b_{e}\right) \quad C(s)=\sum_{i \in N} w_{i} c_{i}(s) \\
& \Phi(s)=(C(s)+U(s)) / 2 .
\end{aligned}
$$

You should be able to show that

$$
\Phi\left(s^{\prime}\right)-\Phi(s)=w_{i}\left(c_{i}\left(s^{\prime}\right)-c_{i}(s)\right) .
$$

Smoothness

A game is called (λ, μ)-smooth, for $\lambda>0$ and $\mu \leq 1$ if, for every pair of strategy profiles s and s^{\prime}, we have

$$
\sum_{i \in N} c_{i}\left(s_{-i}, s_{i}^{\prime}\right) \leq \lambda C\left(s^{\prime}\right)+\mu C(s)
$$

Smoothness

A game is called (λ, μ)-smooth, for $\lambda>0$ and $\mu \leq 1$ if, for every pair of strategy profiles s and s^{\prime}, we have

$$
\sum_{i \in N} c_{i}\left(s_{-i}, s_{i}^{\prime}\right) \leq \lambda C\left(s^{\prime}\right)+\mu C(s)
$$

Smoothness directly gives a bound for the PoA:

Smoothness

A game is called (λ, μ)-smooth, for $\lambda>0$ and $\mu \leq 1$ if, for every pair of strategy profiles s and s^{\prime}, we have

$$
\sum_{i \in N} c_{i}\left(s_{-i}, s_{i}^{\prime}\right) \leq \lambda C\left(s^{\prime}\right)+\mu C(s)
$$

Smoothness directly gives a bound for the PoA:
Theorem
In a (λ, μ)-smooth game, the PoA for PNE is at most $\frac{\lambda}{1-\mu}$.

Proof of smoothness bound on PoA

Let s be the worst PNE and s^{*} be an optimum solution.

$$
\begin{aligned}
C(s) & =\sum_{i \in N} c_{i}(s) \leq \sum_{i \in N} c_{i}\left(s_{-i}, s_{i}^{*}\right) \\
& \leq \lambda C\left(s^{*}\right)+\mu C(s)
\end{aligned}
$$

Substracting $\mu C(s)$ on both sides gives

$$
(1-\mu) C(s) \leq \lambda C\left(s^{*}\right)
$$

Theorem

Every congestion game with affine delay functions is (5/3,1/3)-smooth. Thus, $P o A \leq 5 / 2$.

Theorem
Every congestion game with affine delay functions is (5/3,1/3)-smooth. Thus, $P o A \leq 5 / 2$.

The proof uses a technical lemma:
Lemma (Christodoulou, Koutsoupias, 2005)
For all integers y, z we have

$$
y(z+1) \leq \frac{5}{3} y^{2}+\frac{1}{3} z^{2}
$$

Proof of smoothness for affine functions

Recall that $d_{e}(x)=a_{e} x+b_{e}$. Note that using the Lemma

$$
a_{e} y(z+1)+b_{e} y \leq a_{e}\left(\frac{5}{3} y^{2}+\frac{1}{3} z^{2}\right)+b_{e} y=\frac{5}{3}\left(a_{e} y^{2}+b_{e} y\right)+\frac{1}{3}\left(a_{e} z^{2}+b_{e} z\right)
$$

Proof of smoothness for affine functions

Recall that $d_{e}(x)=a_{e} x+b_{e}$. Note that using the Lemma
$a_{e} y(z+1)+b_{e} y \leq a_{e}\left(\frac{5}{3} y^{2}+\frac{1}{3} z^{2}\right)+b_{e} y=\frac{5}{3}\left(a_{e} y^{2}+b_{e} y\right)+\frac{1}{3}\left(a_{e} z^{2}+b_{e} z\right)$.
Taking $y=f_{e}\left(s^{*}\right)$ and $z=f_{e}(s)$ we get
$\left.\left.\left(a_{e}\left(f_{e}(s)+1\right)+b_{e}\right) f_{e}\left(s^{*}\right) \leq \frac{5}{3}\left(a_{e} f_{e}\left(s^{*}\right)+b_{e}\right) f_{e}\left(s^{*}\right)\right)+\frac{1}{3}\left(a_{e} f_{e}(s)+b_{e}\right) f_{e}(s)\right)$.

Proof of smoothness for affine functions

Recall that $d_{e}(x)=a_{e} x+b_{e}$. Note that using the Lemma
$a_{e} y(z+1)+b_{e} y \leq a_{e}\left(\frac{5}{3} y^{2}+\frac{1}{3} z^{2}\right)+b_{e} y=\frac{5}{3}\left(a_{e} y^{2}+b_{e} y\right)+\frac{1}{3}\left(a_{e} z^{2}+b_{e} z\right)$.
Taking $y=f_{e}\left(s^{*}\right)$ and $z=f_{e}(s)$ we get
$\left.\left.\left(a_{e}\left(f_{e}(s)+1\right)+b_{e}\right) f_{e}\left(s^{*}\right) \leq \frac{5}{3}\left(a_{e} f_{e}\left(s^{*}\right)+b_{e}\right) f_{e}\left(s^{*}\right)\right)+\frac{1}{3}\left(a_{e} f_{e}(s)+b_{e}\right) f_{e}(s)\right)$.
Summing up all the inequalities

$$
\sum_{e \in E}\left(a_{e}\left(f_{e}(s)+1\right)+b_{e}\right) f_{e}\left(s^{*}\right) \leq \frac{5}{3} C\left(s^{*}\right)+\frac{1}{3} C(s)
$$

Proof of smoothness for affine functions

$$
\sum_{e \in E}\left(a_{e}\left(f_{e}(s)+1\right)+b_{e}\right) f_{e}\left(s^{*}\right) \leq \frac{5}{3} C\left(s^{*}\right)+\frac{1}{3} C(s) .
$$

Proof of smoothness for affine functions

$$
\sum_{e \in E}\left(a_{e}\left(f_{e}(s)+1\right)+b_{e}\right) f_{e}\left(s^{*}\right) \leq \frac{5}{3} C\left(s^{*}\right)+\frac{1}{3} C(s)
$$

But,

$$
\sum_{i \in N} c_{i}\left(s_{-i}, s_{i}^{*}\right) \leq \sum_{e \in E}\left(a_{e}\left(f_{e}(s)+1\right)+b_{e}\right) f_{e}\left(s^{*}\right)
$$

as there are at most $f_{e}\left(s^{*}\right)$ players that might move to resource r. Each of them by unilaterally deviating incur a delay of $\left(a_{e}\left(f_{e}(s)+1\right)+b_{e}\right.$.

Proof of smoothness for affine functions

$$
\sum_{e \in E}\left(a_{e}\left(f_{e}(s)+1\right)+b_{e}\right) f_{e}\left(s^{*}\right) \leq \frac{5}{3} C\left(s^{*}\right)+\frac{1}{3} C(s)
$$

But,

$$
\sum_{i \in N} c_{i}\left(s_{-i}, s_{i}^{*}\right) \leq \sum_{e \in E}\left(a_{e}\left(f_{e}(s)+1\right)+b_{e}\right) f_{e}\left(s^{*}\right)
$$

as there are at most $f_{e}\left(s^{*}\right)$ players that might move to resource r. Each of them by unilaterally deviating incur a delay of $\left(a_{e}\left(f_{e}(s)+1\right)+b_{e}\right.$. This gives the (5/3, 1/3)-smoothness.

(1) Price of Anarchy/Stability

2 Load Balancing game

(3) Congestion games and variants

4 Affine Congestion games
(5) References

References

- Chapters 18 and 19.3 in the AGT book. (PoA and PoS bounds).
- B. Awerbuch, Y. Azar, A. Epstein. The Price of Routing Unsplittable Flow. STOC 2005. (PoA for pure NE in congestion games).
- G. Christodoulou, E. Koutsoupias. The Price of Anarchy of finite Congestion Games. STOC 2005. (PoA for pure NE in congestion games)
- T. Roughgarden. Intrinsic Robustness of the Price of Anarchy. STOC 2009. (Smoothness Framework and Unification of Previous Results)
- D. Fotakis. A Selective Tour Through Congestion Games, LNCS 2015.

