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Linear Algebra formulation

Nash equilibrium

Consider a 2-player game [ = (A1, Ay, 11, u2).
Let X = A(A1) and Y = A(A).
(A(A) is the set of probability distributions over A)

A Nash equilibrium is a mixed strategy profile 0 = (x,y) € X X Y such
that, for every X’ € X, y’ € Y/, it holds

Ul(va) > Ul(Xl,_)/) and U2(X7y) > UQ(X7yI)
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Linear Algebra formulation

Computing a best response

For a given x € X, we have to solve:

max x'Ry
Subject to: y1 + -+ ym=1,y >0.

For a given y, we have to solve:

max x'Cy
Subject to: x; +---+x,=1, x;, >0

Those are linear programming problems, so
A best response can be computed in polynomial time for 2-player games
with rational utilities.
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Zero-sum games

Zero-sum games

@ A zero-sum game is a 2-player game such that, for each pure strategy
profile (a, b), ui(a, b) + u2(a, b) = 0.
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Zero-sum games

Zero-sum games

@ A zero-sum game is a 2-player game such that, for each pure strategy
profile (a, b), ui(a, b) + u2(a, b) = 0.

@ That is Let u = vy, we have up, = —u.

@ Player 1 is interested in maximizing u and player 2 in minimizing u.

@ In terms of matrices we have C = —R.
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ZS: Nash conditions

e (x*,y*)isaNE
(x*)TRy* > x"Ry*, for x € X,
(x)TCy*>(x*)TCy, foryey.
@ As C = —R the second equation becomes
(x)TRy* < (x*)TRy, fory € Y.
@ Combining both,
xTRy* < (x)TRy* < (x*)TRy, forxe X,y € Y.

i.e., (x*,y*) is a saddle point
of the function x” R y defined over X x Y .
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Minimax inequality

Theorem
For any function ® : X x Y :— R, we have
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Zero-sum games

Minimax inequality
Theorem
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sup mf d(x,y) < inf sup ®(x,y).
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Proof.
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Zero-sum games

Minimax inequality

Theorem
For any function ® : X x Y :— R, we have

sup mf d(x,y) < inf sup ®(x,y).
xeXYEY YEY xeX

Proof.
For every x’ € X, ®(x',y) <sup,cx ®(x,y)

|nf d(x',y) < inf sup d(x,y).
yey YEY xeXx

Taking the supremum over x’ € X on the left hand-side we get the
inequality. O
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ZS: Nash conditions

We have
o x'Ry* < (x)TRy* < (x*)TRy, forxe X,y €Y.

@ Thus

supxT Ry* < (x*)TRy* < inf (x*)TRy
xeX yey

inf supx’ Ry < suprRy <(x)TRy* < mf(x YRy < sup mfx Ry
YEY xeX

@ Using the minimax inequality, we get

|nf supx' Ry = (x)TRy* = sup mfx Ry
YEY xex xeX YeY

We refer to inf,cy sup,.x x" Ry as the value of the game.
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ZS: algorithm for finding NE

@ For a fixed y, we have

maxx' Ry = max {[Ry]i},
xeX i=1,...,n

therefore

. T .
Ry = R ... [R
;nggz(nea))((x Y }F/Ty{}max{[ Y11, [Ryln}

@ So, both the value of the game and a Nash equilibrium strategy for
player 2 can be obtained by solving the linear programming problem:

min v

vl, > Ry,yeY.
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ZS: algorithm for finding NE

@ Similarly, we have

max min x " Ry = maxmin{[R"x]1,.
xeX yeY xeX

AGT-MIRI Computing NE

AR}

Spring 2023

12/24



ZS: algorithm for finding NE

@ Similarly, we have

T T T
Ry = R ...[R
rpea%}r/glgx y = mea)%(mln{[ X]17 [ ]n}

@ So, a Nash equilibrium strategy for player 1 can be obtained by
solving the linear programming problem:
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ZS: algorithm for finding NE

@ Similarly, we have

T T T
Ry = R ...[R
rpea%}r/glgx y = mea)%(mln{[ X]17 [ ]n}

@ So, a Nash equilibrium strategy for player 1 can be obtained by
solving the linear programming problem:

max w
wl, < RTx,x € X.

@ LP can be solved efficiently, thus there is a polynomial time algorithm
for computing NE for zero-sum games.
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© The complexity of finding a NE
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PPAD

(Papadimitriou 94)
Polynomial Parity Argument on Directed Graphs
@ The class of all problems with guaranteed solution by use of the
following graph-theoretic lemma
A directed graph with an unbalanced node (node with indegree #
outdegree) must have another.

@ Such problems are defined by an implicitly defined directed graph G
and an unbalanced node u of G
and the objective is finding another unbalanced node.

@ Usually G is huge but implicitly defined as the graphs defining
solutions in local search algorithms.
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PPAD

@ The class PPAD contains interesting computational problems not
known to be in P
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PPAD

@ The class PPAD contains interesting computational problems not
known to be in P

has complete problems.

@ But not a clear complexity cut.
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A PPAD-complete problem

End-of-Line
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A PPAD-complete problem

End-of-Line
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most 2 and a vertex v € G, where v has in degree 0.

Find a node v/ # v, such that v/ has out degree 0.
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A PPAD-complete problem

End-of-Line

Given an implicit representation of a graph G with vertices of degree at
most 2 and a vertex v € G, where v has in degree 0.

Find a node v/ # v, such that v/ has out degree 0.

@ Since every node has degree 2, it is a collection of paths and cycles.

o We know that
Every directed graph with in/outdegree 1 and a source, has a sink.

@ Which guarantees that
the End-of-Line problem has always a solution.
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The complexity of finding a NE

End-of-Line: graph representation

@ G is given implicitly by a circuit C

@ C provides a predecessor and successor pair for each given vertex in
G,ie C(u)=(v,w).

@ A special label indicates that a node has no predecessor/successor.
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The complexity of finding a NE

Theorem (Daskalakis, Goldberg, Papadimitriou '06)
Finding a Nash equilibrium is PPAD-complete
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The complexity of finding a NE

Theorem (Daskalakis, Goldberg, Papadimitriou '06)
Finding a Nash equilibrium is PPAD-complete J

Theorem (Chen, Deng '06)
Finding a Nash equilibrium is PPAD-complete even in 2-player games. J

o C. Daskalakis, P-W. Goldberg, C.H. Papadimitriou: The complexity
of computing a Nash equilibrium. SIAM J. Comput. 39(1): 195-259
(2009) first version STOC 2006

@ X. Chen, X. Deng, S-H. Teng: Settling the complexity of computing

two-player Nash equilibria. J. ACM 56(3) (2009) first version FOCS
2006
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An exact algorithm to compute NE

NE characterization

Theorem

In a strategic game in which each player has finitely many actions a mixed
strategy profile o* is a NE iff, for each player i,

o the expected payoff, given o_;, to every action in the support of o7 is
the same

@ the expected payoff, given o_;, to every action not in the support of
*

o7 is at most the expected payoff on an action in the support of o} .
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An exact algorithm to compute NE

NE conditions given support

Let AC{1,...n} and B C {1,...m}.
The conditions for having a NE on this particular support can be written
as follows:

max A1 + Ao
Subject to:
[Ryli= M1, forie A
[Ry],- § )\1, for i §‘é A

j[CX] =X, forjeB
J[Cx] < Ao, forj¢ B
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An exact algorithm to compute NE

lterating over all supports

@ For every possible combination of supports A C {1,...n} and
BC{1,...m}.
Solve the set of simultaneous equations using linear programming.
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Solve the set of simultaneous equations using linear programming.
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supports can be exponential.
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An exact algorithm to compute NE

lterating over all supports

@ For every possible combination of supports A C {1,...n} and
BC{1,...m}.
Solve the set of simultaneous equations using linear programming.

@ This is an exact exponential time algorithm as the number of
supports can be exponential.

@ The same algorithm can be applied to a multiplayer game. We would
be able to compute a NE on rationals if such a NE exists.
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NE algorithms

@ Lemke-Howson (1964) algorithm defines a polytope based on best
response conditions and membership to the support and uses ideas
similar to Simplex with a ad-hoc pivoting rule.

(See slides by Philippe Bich)

Lemke-Howson requires exponential time [Savani, von Stengel, 2004]).
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NE algorithms

@ Lemke-Howson (1964) algorithm defines a polytope based on best
response conditions and membership to the support and uses ideas
similar to Simplex with a ad-hoc pivoting rule.

(See slides by Philippe Bich)

Lemke-Howson requires exponential time [Savani, von Stengel, 2004]).
o lterating over suppo rts [Porter, Nudelman and Shoham, AAAI-04]

@ Mixed-Integer Programming formulations [Sandholm, Gilpin and
Conitzer, AAAI-05]
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