Computational aspects of finding Nash Equilibria for 2-player games

Maria Serna

Spring 2023

(1) Linear Algebra formulation

(2) Zero-sum games

(3) The complexity of finding a NE

(4) An exact algorithm to compute NE
(5) NE algorithms

Nash equilibrium

Consider a 2-player game $\Gamma=\left(A_{1}, A_{2}, u_{1}, u_{2}\right)$.
Let $X=\Delta\left(A_{1}\right)$ and $Y=\Delta\left(A_{2}\right)$.
$(\Delta(A)$ is the set of probability distributions over $A)$

Nash equilibrium

Consider a 2-player game $\Gamma=\left(A_{1}, A_{2}, u_{1}, u_{2}\right)$.
Let $X=\Delta\left(A_{1}\right)$ and $Y=\Delta\left(A_{2}\right)$.
$(\Delta(A)$ is the set of probability distributions over $A)$
A Nash equilibrium is a mixed strategy profile $\sigma=(x, y) \in X \times Y$ such that, for every $x^{\prime} \in X, y^{\prime} \in Y$, it holds

$$
U_{1}(x, y) \geq U_{1}\left(x^{\prime}, y\right) \text { and } U_{2}(x, y) \geq U_{2}\left(x, y^{\prime}\right)
$$

Linear algebra notation

Consider a 2-player game $\Gamma=\left(A_{1}, A_{2}, u_{1}, u_{2}\right)$

Linear algebra notation

Consider a 2-player game $\Gamma=\left(A_{1}, A_{2}, u_{1}, u_{2}\right)$ Let $n=\left|A_{1}\right|$ and $m=\left|A_{2}\right|$.

Linear algebra notation

Consider a 2-player game $\Gamma=\left(A_{1}, A_{2}, u_{1}, u_{2}\right)$
Let $n=\left|A_{1}\right|$ and $m=\left|A_{2}\right|$.
$x \in X$ is a probability distribution:

$$
x=\left(x_{1}, \ldots, x_{n}\right), x_{i} \geq 0 \text { and } x_{1}+\cdots+x_{n}=1
$$

Linear algebra notation

Consider a 2-player game $\Gamma=\left(A_{1}, A_{2}, u_{1}, u_{2}\right)$
Let $n=\left|A_{1}\right|$ and $m=\left|A_{2}\right|$.
$x \in X$ is a probability distribution:

$$
x=\left(x_{1}, \ldots, x_{n}\right), x_{i} \geq 0 \text { and } x_{1}+\cdots+x_{n}=1
$$

$y \in Y$ is a probability distribution:

$$
y=\left(y_{1}, \ldots, y_{m}\right), y_{j} \geq 0 \text { and } y_{1}+\cdots+y_{m}=1
$$

Linear algebra notation

Consider a 2-player game $\Gamma=\left(A_{1}, A_{2}, u_{1}, u_{2}\right)$
Let $n=\left|A_{1}\right|$ and $m=\left|A_{2}\right|$.
$x \in X$ is a probability distribution:

$$
x=\left(x_{1}, \ldots, x_{n}\right), x_{i} \geq 0 \text { and } x_{1}+\cdots+x_{n}=1
$$

$y \in Y$ is a probability distribution:

$$
y=\left(y_{1}, \ldots, y_{m}\right), y_{j} \geq 0 \text { and } y_{1}+\cdots+y_{m}=1
$$

Utilities can be described by a $n \times m$ matrix R, for the row player, and C, for the column player. Then,

Linear algebra notation

Consider a 2-player game $\Gamma=\left(A_{1}, A_{2}, u_{1}, u_{2}\right)$
Let $n=\left|A_{1}\right|$ and $m=\left|A_{2}\right|$.
$x \in X$ is a probability distribution:

$$
x=\left(x_{1}, \ldots, x_{n}\right), x_{i} \geq 0 \text { and } x_{1}+\cdots+x_{n}=1
$$

$y \in Y$ is a probability distribution:

$$
y=\left(y_{1}, \ldots, y_{m}\right), y_{j} \geq 0 \text { and } y_{1}+\cdots+y_{m}=1
$$

Utilities can be described by a $n \times m$ matrix R, for the row player, and C, for the column player. Then,

$$
U_{1}(x, y)=x^{\top} R y \text { and } U_{2}(x, y)=x^{T} C y
$$

Computing a best response

For a given $x \in X$, we have to solve:

Computing a best response

For a given $x \in X$, we have to solve:

$$
\begin{gathered}
\max x^{\top} R y \\
\text { Subject to: } y_{1}+\cdots+y_{m}=1, y_{j} \geq 0 .
\end{gathered}
$$

Computing a best response

For a given $x \in X$, we have to solve:

$$
\begin{gathered}
\max x^{\top} R y \\
\text { Subject to: } y_{1}+\cdots+y_{m}=1, y_{j} \geq 0 .
\end{gathered}
$$

For a given y, we have to solve:

Computing a best response

For a given $x \in X$, we have to solve:

$$
\begin{gathered}
\max x^{\top} R y \\
\text { Subject to: } y_{1}+\cdots+y_{m}=1, y_{j} \geq 0 .
\end{gathered}
$$

For a given y, we have to solve:

$$
\begin{gathered}
\max x^{\top} C y \\
\text { Subject to: } \\
x_{1}+\cdots+x_{n}=1, x_{i} \geq 0
\end{gathered}
$$

Computing a best response

For a given $x \in X$, we have to solve:

$$
\begin{gathered}
\max \quad x^{\top} R y \\
\text { Subject to: } y_{1}+\cdots+y_{m}=1, y_{j} \geq 0 .
\end{gathered}
$$

For a given y, we have to solve:

$$
\begin{gathered}
\max x^{\top} C y \\
\text { Subject to: } \\
x_{1}+\cdots+x_{n}=1, x_{i} \geq 0
\end{gathered}
$$

Those are linear programming problems, so

Computing a best response

For a given $x \in X$, we have to solve:

$$
\begin{gathered}
\max \quad x^{\top} R y \\
\text { Subject to: } y_{1}+\cdots+y_{m}=1, y_{j} \geq 0 .
\end{gathered}
$$

For a given y, we have to solve:

$$
\begin{gathered}
\max x^{\top} C y \\
\text { Subject to: } \\
x_{1}+\cdots+x_{n}=1, x_{i} \geq 0
\end{gathered}
$$

Those are linear programming problems, so
A best response can be computed in polynomial time for 2-player games with rational utilities.

(1) Linear Algebra formulation

(2) Zero-sum games
(3) The complexity of finding a NE

4 An exact algorithm to compute NE
(5) NE algorithms

Zero-sum games

- A zero-sum game is a 2-player game such that, for each pure strategy profile $(a, b), u_{1}(a, b)+u_{2}(a, b)=0$.

Zero-sum games

- A zero-sum game is a 2-player game such that, for each pure strategy profile $(a, b), u_{1}(a, b)+u_{2}(a, b)=0$.
- That is Let $u=u_{1}$, we have $u_{2}=-u$.

Zero-sum games

- A zero-sum game is a 2-player game such that, for each pure strategy profile $(a, b), u_{1}(a, b)+u_{2}(a, b)=0$.
- That is Let $u=u_{1}$, we have $u_{2}=-u$.
- Player 1 is interested in maximizing u and player 2 in minimizing u.

Zero-sum games

- A zero-sum game is a 2-player game such that, for each pure strategy profile $(a, b), u_{1}(a, b)+u_{2}(a, b)=0$.
- That is Let $u=u_{1}$, we have $u_{2}=-u$.
- Player 1 is interested in maximizing u and player 2 in minimizing u.
- In terms of matrices we have $C=-R$.

ZS: Nash conditions

- $\left(x^{*}, y^{*}\right)$ is a NE

ZS: Nash conditions

- $\left(x^{*}, y^{*}\right)$ is a NE

$$
\begin{gathered}
\left(x^{*}\right)^{T} R y^{*} \geq x^{\top} R y^{*}, \text { for } x \in X, \\
\left(x^{*}\right)^{T} C y^{*} \geq\left(x^{*}\right)^{T} C y, \text { for } y \in Y .
\end{gathered}
$$

ZS: Nash conditions

- $\left(x^{*}, y^{*}\right)$ is a NE

$$
\begin{gathered}
\left(x^{*}\right)^{T} R y^{*} \geq x^{T} R y^{*}, \text { for } x \in X \\
\left(x^{*}\right)^{T} C y^{*} \geq\left(x^{*}\right)^{T} C y, \text { for } y \in Y
\end{gathered}
$$

- As $C=-R$ the second equation becomes

ZS: Nash conditions

- $\left(x^{*}, y^{*}\right)$ is a NE

$$
\begin{gathered}
\left(x^{*}\right)^{T} R y^{*} \geq x^{T} R y^{*}, \text { for } x \in X \\
\left(x^{*}\right)^{T} C y^{*} \geq\left(x^{*}\right)^{T} C y, \text { for } y \in Y
\end{gathered}
$$

- As $C=-R$ the second equation becomes

$$
\left(x^{*}\right)^{T} R y^{*} \leq\left(x^{*}\right)^{T} R y, \text { for } y \in Y
$$

ZS: Nash conditions

- $\left(x^{*}, y^{*}\right)$ is a NE

$$
\begin{gathered}
\left(x^{*}\right)^{T} R y^{*} \geq x^{T} R y^{*}, \text { for } x \in X \\
\left(x^{*}\right)^{T} C y^{*} \geq\left(x^{*}\right)^{T} C y, \text { for } y \in Y
\end{gathered}
$$

- As $C=-R$ the second equation becomes

$$
\left(x^{*}\right)^{T} R y^{*} \leq\left(x^{*}\right)^{T} R y, \text { for } y \in Y
$$

- Combining both,

$$
x^{T} R y^{*} \leq\left(x^{*}\right)^{T} R y^{*} \leq\left(x^{*}\right)^{T} R y, \text { for } x \in X, y \in Y
$$

ZS: Nash conditions

- $\left(x^{*}, y^{*}\right)$ is a NE

$$
\begin{gathered}
\left(x^{*}\right)^{T} R y^{*} \geq x^{T} R y^{*}, \text { for } x \in X \\
\left(x^{*}\right)^{T} C y^{*} \geq\left(x^{*}\right)^{T} C y, \text { for } y \in Y
\end{gathered}
$$

- As $C=-R$ the second equation becomes

$$
\left(x^{*}\right)^{T} R y^{*} \leq\left(x^{*}\right)^{T} R y, \text { for } y \in Y
$$

- Combining both,

$$
x^{T} R y^{*} \leq\left(x^{*}\right)^{T} R y^{*} \leq\left(x^{*}\right)^{T} R y, \text { for } x \in X, y \in Y
$$

i.e., $\left(x^{*}, y^{*}\right)$ is a saddle point of the function $x^{\top} R y$ defined over $X \times Y$.

Minimax inequality

Minimax inequality

Theorem
For any function $\Phi: X \times Y: \rightarrow \mathbb{R}$, we have

$$
\sup _{x \in X} \inf _{y \in Y} \Phi(x, y) \leq \inf _{y \in Y} \sup _{x \in X} \Phi(x, y)
$$

Minimax inequality

Theorem
For any function $\Phi: X \times Y: \rightarrow \mathbb{R}$, we have

$$
\sup _{x \in X} \inf _{y \in Y} \Phi(x, y) \leq \inf _{y \in Y} \sup _{x \in X} \Phi(x, y)
$$

Proof.

Minimax inequality

Theorem
For any function $\Phi: X \times Y: \rightarrow \mathbb{R}$, we have

$$
\sup _{x \in X} \inf _{y \in Y} \Phi(x, y) \leq \inf _{y \in Y} \sup _{x \in X} \Phi(x, y)
$$

Proof.
For every $x^{\prime} \in X, \Phi\left(x^{\prime}, y\right) \leq \sup _{x \in X} \Phi(x, y)$

Minimax inequality

Theorem
For any function $\Phi: X \times Y: \rightarrow \mathbb{R}$, we have

$$
\sup _{x \in X} \inf _{y \in Y} \Phi(x, y) \leq \inf _{y \in Y} \sup _{x \in X} \Phi(x, y)
$$

Proof.
For every $x^{\prime} \in X, \Phi\left(x^{\prime}, y\right) \leq \sup _{x \in X} \Phi(x, y)$

$$
\inf _{y \in Y} \Phi\left(x^{\prime}, y\right) \leq \inf _{y \in Y} \sup _{x \in X} \Phi(x, y)
$$

Minimax inequality

Theorem
For any function $\Phi: X \times Y: \rightarrow \mathbb{R}$, we have

$$
\sup _{x \in X} \inf _{y \in Y} \Phi(x, y) \leq \inf _{y \in Y} \sup _{x \in X} \Phi(x, y)
$$

Proof.
For every $x^{\prime} \in X, \Phi\left(x^{\prime}, y\right) \leq \sup _{x \in X} \Phi(x, y)$

$$
\inf _{y \in Y} \Phi\left(x^{\prime}, y\right) \leq \inf _{y \in Y} \sup _{x \in X} \Phi(x, y)
$$

Taking the supremum over $x^{\prime} \in X$ on the left hand-side we get the inequality.

ZS: Nash conditions

We have

ZS: Nash conditions

We have

- $x^{T} R y^{*} \leq\left(x^{*}\right)^{T} R y^{*} \leq\left(x^{*}\right)^{T} R y$, for $x \in X, y \in Y$.

ZS: Nash conditions

We have

- $x^{T} R y^{*} \leq\left(x^{*}\right)^{T} R y^{*} \leq\left(x^{*}\right)^{T} R y$, for $x \in X, y \in Y$.
- Thus

$$
\sup _{x \in X} x^{\top} R y^{*} \leq\left(x^{*}\right)^{T} R y^{*} \leq \inf _{y \in Y}\left(x^{*}\right)^{T} R y
$$

ZS: Nash conditions

We have

- $x^{T} R y^{*} \leq\left(x^{*}\right)^{T} R y^{*} \leq\left(x^{*}\right)^{T} R y$, for $x \in X, y \in Y$.
- Thus

$$
\sup _{x \in X} x^{\top} R y^{*} \leq\left(x^{*}\right)^{T} R y^{*} \leq \inf _{y \in Y}\left(x^{*}\right)^{T} R y
$$

$$
\inf _{y \in Y} \sup _{x \in X} x^{\top} R y \leq \sup _{x \in X} x^{T} R y^{*} \leq\left(x^{*}\right)^{T} R y^{*} \leq \inf _{y \in Y}\left(x^{*}\right)^{T} R y \leq \sup _{x \in X} \inf _{y \in Y} x^{T} R y
$$

ZS: Nash conditions

We have

- $x^{T} R y^{*} \leq\left(x^{*}\right)^{T} R y^{*} \leq\left(x^{*}\right)^{T} R y$, for $x \in X, y \in Y$.
- Thus

$$
\sup _{x \in X} x^{\top} R y^{*} \leq\left(x^{*}\right)^{T} R y^{*} \leq \inf _{y \in Y}\left(x^{*}\right)^{T} R y
$$

$$
\inf _{y \in Y} \sup _{x \in X} x^{\top} R y \leq \sup _{x \in X} x^{T} R y^{*} \leq\left(x^{*}\right)^{T} R y^{*} \leq \inf _{y \in Y}\left(x^{*}\right)^{T} R y \leq \sup _{x \in X} \inf _{y \in Y} x^{T} R y
$$

- Using the minimax inequality, we get

ZS: Nash conditions

We have

- $x^{T} R y^{*} \leq\left(x^{*}\right)^{T} R y^{*} \leq\left(x^{*}\right)^{T} R y$, for $x \in X, y \in Y$.
- Thus

$$
\begin{gathered}
\sup _{x \in X} x^{T} R y^{*} \leq\left(x^{*}\right)^{T} R y^{*} \leq \inf _{y \in Y}\left(x^{*}\right)^{T} R y \\
\inf _{y \in Y} \sup _{x \in X} x^{T} R y \leq \sup _{x \in X} x^{T} R y^{*} \leq\left(x^{*}\right)^{T} R y^{*} \leq \inf _{y \in Y}\left(x^{*}\right)^{T} R y \leq \sup _{x \in X} \inf _{y \in Y} x^{T} R y
\end{gathered}
$$

- Using the minimax inequality, we get

$$
\inf _{y \in Y} \sup _{x \in X} x^{T} R y=\left(x^{*}\right)^{T} R y^{*}=\sup _{x \in X} \inf _{y \in Y} x^{T} R y
$$

ZS: Nash conditions

We have

- $x^{T} R y^{*} \leq\left(x^{*}\right)^{T} R y^{*} \leq\left(x^{*}\right)^{T} R y$, for $x \in X, y \in Y$.
- Thus

$$
\begin{gathered}
\sup _{x \in X} x^{T} R y^{*} \leq\left(x^{*}\right)^{T} R y^{*} \leq \inf _{y \in Y}\left(x^{*}\right)^{T} R y \\
\inf _{y \in Y} \sup _{x \in X} x^{T} R y \leq \sup _{x \in X} x^{T} R y^{*} \leq\left(x^{*}\right)^{T} R y^{*} \leq \inf _{y \in Y}\left(x^{*}\right)^{T} R y \leq \sup _{x \in X} \inf _{y \in Y} x^{T} R y
\end{gathered}
$$

- Using the minimax inequality, we get

$$
\inf _{y \in Y} \sup _{x \in X} x^{T} R y=\left(x^{*}\right)^{T} R y^{*}=\sup _{x \in X} \inf _{y \in Y} x^{T} R y
$$

We refer to $\inf _{y \in Y} \sup _{x \in X} X^{T} R y$ as the value of the game.

ZS: algorithm for finding NE

- For a fixed y, we have

ZS: algorithm for finding NE

- For a fixed y, we have

$$
\max _{x \in X} x^{T} R y=\max _{i=1, \ldots, n}\left\{[R y]_{i}\right\}
$$

ZS: algorithm for finding NE

- For a fixed y, we have

$$
\max _{x \in X} x^{T} R y=\max _{i=1, \ldots, n}\left\{[R y]_{i}\right\}
$$

therefore

$$
\min _{y \in Y} \max _{x \in X} x^{T} R y=\min _{y \in Y} \max \left\{[R y]_{1}, \ldots[R y]_{n}\right\}
$$

ZS: algorithm for finding NE

- For a fixed y, we have

$$
\max _{x \in X} x^{T} R y=\max _{i=1, \ldots, n}\left\{[R y]_{i}\right\}
$$

therefore

$$
\min _{y \in Y} \max _{x \in X} x^{T} R y=\min _{y \in Y} \max \left\{[R y]_{1}, \ldots[R y]_{n}\right\}
$$

- So, both the value of the game and a Nash equilibrium strategy for player 2 can be obtained by solving the linear programming problem:

ZS: algorithm for finding NE

- For a fixed y, we have

$$
\max _{x \in X} x^{T} R y=\max _{i=1, \ldots, n}\left\{[R y]_{i}\right\}
$$

therefore

$$
\min _{y \in Y} \max _{x \in X} x^{T} R y=\min _{y \in Y} \max \left\{[R y]_{1}, \ldots[R y]_{n}\right\}
$$

- So, both the value of the game and a Nash equilibrium strategy for player 2 can be obtained by solving the linear programming problem:

$$
\begin{gathered}
\quad \min v \\
v \mathbf{1}_{n} \geq R y, y \in Y .
\end{gathered}
$$

ZS: algorithm for finding NE

- Similarly, we have

$$
\max _{x \in X} \min _{y \in Y} x^{T} R y=\max _{x \in X} \min \left\{\left[R^{T} x\right]_{1}, \ldots\left[R^{T}\right]_{n}\right\}
$$

ZS: algorithm for finding NE

- Similarly, we have

$$
\max _{x \in X} \min _{y \in Y} x^{T} R y=\max _{x \in X} \min \left\{\left[R^{T} x\right]_{1}, \ldots\left[R^{T}\right]_{n}\right\}
$$

- So, a Nash equilibrium strategy for player 1 can be obtained by solving the linear programming problem:

ZS: algorithm for finding NE

- Similarly, we have

$$
\max _{x \in X} \min _{y \in Y} x^{T} R y=\max _{x \in X} \min \left\{\left[R^{T} x\right]_{1}, \ldots\left[R^{T}\right]_{n}\right\}
$$

- So, a Nash equilibrium strategy for player 1 can be obtained by solving the linear programming problem:

$$
\begin{gathered}
\quad \max w \\
w \mathbf{1}_{m} \leq R^{T} x, x \in X
\end{gathered}
$$

ZS: algorithm for finding NE

- Similarly, we have

$$
\max _{x \in X} \min _{y \in Y} x^{T} R y=\max _{x \in X} \min \left\{\left[R^{T} x\right]_{1}, \ldots\left[R^{T}\right]_{n}\right\}
$$

- So, a Nash equilibrium strategy for player 1 can be obtained by solving the linear programming problem:

$$
\begin{gathered}
\max w \\
w \mathbf{1}_{m} \leq R^{T} x, x \in X
\end{gathered}
$$

- LP can be solved efficiently, thus there is a polynomial time algorithm for computing NE for zero-sum games.

(1) Linear Algebra formulation

(2) Zero-sum games
(3) The complexity of finding a NE

4 An exact algorithm to compute NE

(5) NE algorithms

PPAD

(Papadimitriou 94)

Polynomial Parity Argument on Directed Graphs

PPAD

(Papadimitriou 94)
Polynomial Parity Argument on Directed Graphs

- The class of all problems with guaranteed solution by use of the following graph-theoretic lemma

PPAD

(Papadimitriou 94)
Polynomial Parity Argument on Directed Graphs

- The class of all problems with guaranteed solution by use of the following graph-theoretic lemma
A directed graph with an unbalanced node (node with indegree \neq outdegree) must have another.

PPAD

(Papadimitriou 94)
Polynomial Parity Argument on Directed Graphs

- The class of all problems with guaranteed solution by use of the following graph-theoretic lemma
A directed graph with an unbalanced node (node with indegree \neq outdegree) must have another.
- Such problems are defined by an implicitly defined directed graph G and an unbalanced node u of G

PPAD

(Papadimitriou 94)
Polynomial Parity Argument on Directed Graphs

- The class of all problems with guaranteed solution by use of the following graph-theoretic lemma
A directed graph with an unbalanced node (node with indegree \neq outdegree) must have another.
- Such problems are defined by an implicitly defined directed graph G and an unbalanced node u of G and the objective is finding another unbalanced node.

PPAD

(Papadimitriou 94)
Polynomial Parity Argument on Directed Graphs

- The class of all problems with guaranteed solution by use of the following graph-theoretic lemma
A directed graph with an unbalanced node (node with indegree \neq outdegree) must have another.
- Such problems are defined by an implicitly defined directed graph G and an unbalanced node u of G and the objective is finding another unbalanced node.
- Usually G is huge but implicitly defined as the graphs defining solutions in local search algorithms.

PPAD

- The class PPAD contains interesting computational problems not known to be in P

PPAD

- The class PPAD contains interesting computational problems not known to be in P has complete problems.

PPAD

- The class PPAD contains interesting computational problems not known to be in P has complete problems.
- But not a clear complexity cut.

A PPAD-complete problem

End-of-Line

A PPAD-complete problem

End-of-Line

Given an implicit representation of a graph G with vertices of degree at most 2 and a vertex $v \in G$, where v has in degree 0 .
Find a node $v^{\prime} \neq v$, such that v^{\prime} has out degree 0 .

A PPAD-complete problem

End-of-Line

Given an implicit representation of a graph G with vertices of degree at most 2 and a vertex $v \in G$, where v has in degree 0 .
Find a node $v^{\prime} \neq v$, such that v^{\prime} has out degree 0 .

- Since every node has degree 2 , it is a collection of paths and cycles.

A PPAD-complete problem

End-of-Line

Given an implicit representation of a graph G with vertices of degree at most 2 and a vertex $v \in G$, where v has in degree 0 .
Find a node $v^{\prime} \neq v$, such that v^{\prime} has out degree 0 .

- Since every node has degree 2 , it is a collection of paths and cycles.
- We know that

Every directed graph with in/outdegree 1 and a source, has a sink.

A PPAD-complete problem

End-of-Line

Given an implicit representation of a graph G with vertices of degree at most 2 and a vertex $v \in G$, where v has in degree 0 .
Find a node $v^{\prime} \neq v$, such that v^{\prime} has out degree 0 .

- Since every node has degree 2 , it is a collection of paths and cycles.
- We know that

Every directed graph with in/outdegree 1 and a source, has a sink.

- Which guarantees that the End-of-Line problem has always a solution.

End-of-Line: graph representation

- G is given implicitly by a circuit C
- C provides a predecessor and successor pair for each given vertex in G, i.e. $C(u)=(v, w)$.
- A special label indicates that a node has no predecessor/successor.

The complexity of finding a NE

Theorem (Daskalakis, Goldberg, Papadimitriou '06)
Finding a Nash equilibrium is PPAD-complete

The complexity of finding a NE

Theorem (Daskalakis, Goldberg, Papadimitriou '06)
Finding a Nash equilibrium is PPAD-complete

Theorem (Chen, Deng '06)
Finding a Nash equilibrium is PPAD-complete even in 2-player games.

The complexity of finding a NE

Theorem (Daskalakis, Goldberg, Papadimitriou '06)
Finding a Nash equilibrium is PPAD-complete

Theorem (Chen, Deng '06)
Finding a Nash equilibrium is PPAD-complete even in 2-player games.

- C. Daskalakis, P-W. Goldberg, C.H. Papadimitriou: The complexity of computing a Nash equilibrium. SIAM J. Comput. 39(1): 195-259 (2009) first version STOC 2006
- X. Chen, X. Deng, S-H. Teng: Settling the complexity of computing two-player Nash equilibria. J. ACM 56(3) (2009) first version FOCS 2006

(1) Linear Algebra formulation

(2) Zero-sum games

(3) The complexity of finding a NE

4 An exact algorithm to compute NE

(5) NE algorithms

NE characterization

Theorem

In a strategic game in which each player has finitely many actions a mixed strategy profile σ^{*} is a NE iff, for each player i,

- the expected payoff, given σ_{-i}, to every action in the support of σ_{i}^{*} is the same
- the expected payoff, given σ_{-i}, to every action not in the support of σ_{i}^{*} is at most the expected payoff on an action in the support of σ_{i}^{*}.

NE conditions given support

Let $A \subseteq\{1, \ldots n\}$ and $B \subseteq\{1, \ldots m\}$.
The conditions for having a NE on this particular support can be written as follows:

$$
\max \lambda_{1}+\lambda_{2}
$$

Subject to:

$$
\begin{aligned}
& {[R y]_{i}=\lambda_{1}, \text { for } i \in A} \\
& {[R y]_{i} \leq \lambda_{1}, \text { for } i \notin A} \\
& j[C x]=\lambda_{2}, \text { for } j \in B \\
& j[C x] \leq \lambda_{2}, \text { for } j \notin B
\end{aligned}
$$

Iterating over all supports

- For every possible combination of supports $A \subseteq\{1, \ldots n\}$ and $B \subseteq\{1, \ldots m\}$. Solve the set of simultaneous equations using linear programming.

Iterating over all supports

- For every possible combination of supports $A \subseteq\{1, \ldots n\}$ and $B \subseteq\{1, \ldots m\}$. Solve the set of simultaneous equations using linear programming.
- This is an exact exponential time algorithm as the number of supports can be exponential.

Iterating over all supports

- For every possible combination of supports $A \subseteq\{1, \ldots n\}$ and $B \subseteq\{1, \ldots m\}$. Solve the set of simultaneous equations using linear programming.
- This is an exact exponential time algorithm as the number of supports can be exponential.
- The same algorithm can be applied to a multiplayer game. We would be able to compute a NE on rationals if such a NE exists.

(1) Linear Algebra formulation

(2) Zero-sum games
(3) The complexity of finding a NE

4 An exact algorithm to compute NE
(5) NE algorithms

NE algorithms

- Lemke-Howson (1964) algorithm defines a polytope based on best response conditions and membership to the support and uses ideas similar to Simplex with a ad-hoc pivoting rule.
(See slides by Philippe Bich)
Lemke-Howson requires exponential time [Savani, von Stengel, 2004]).

NE algorithms

- Lemke-Howson (1964) algorithm defines a polytope based on best response conditions and membership to the support and uses ideas similar to Simplex with a ad-hoc pivoting rule.
(See slides by Philippe Bich)
Lemke-Howson requires exponential time [Savani, von Stengel, 2004]).
- Iterating over suppo rts [Porter, Nudelman and Shoham, AAAI-04]

NE algorithms

- Lemke-Howson (1964) algorithm defines a polytope based on best response conditions and membership to the support and uses ideas similar to Simplex with a ad-hoc pivoting rule.
(See slides by Philippe Bich)
Lemke-Howson requires exponential time [Savani, von Stengel, 2004]).
- Iterating over suppo rts [Porter, Nudelman and Shoham, AAAI-04]
- Mixed-Integer Programming formulations [Sandholm, Gilpin and Conitzer, AAAI-05]

