
Computational aspects of finding Nash Equilibria for
2-player games

Maria Serna

Spring 2023

AGT-MIRI Computing NE Spring 2023 1 / 24

Linear Algebra formulation

1 Linear Algebra formulation

2 Zero-sum games

3 The complexity of finding a NE

4 An exact algorithm to compute NE

5 NE algorithms

AGT-MIRI Computing NE Spring 2023 2 / 24

Linear Algebra formulation

Nash equilibrium

Consider a 2-player game Γ = (A1,A2, u1, u2).
Let X = ∆(A1) and Y = ∆(A2).

(∆(A) is the set of probability distributions over A)

A Nash equilibrium is a mixed strategy profile σ = (x , y) ∈ X × Y such
that, for every x ′ ∈ X , y ′ ∈ Y , it holds

U1(x , y) ≥ U1(x
′, y) and U2(x , y) ≥ U2(x , y

′)

AGT-MIRI Computing NE Spring 2023 3 / 24

Linear Algebra formulation

Nash equilibrium

Consider a 2-player game Γ = (A1,A2, u1, u2).
Let X = ∆(A1) and Y = ∆(A2).

(∆(A) is the set of probability distributions over A)

A Nash equilibrium is a mixed strategy profile σ = (x , y) ∈ X × Y such
that, for every x ′ ∈ X , y ′ ∈ Y , it holds

U1(x , y) ≥ U1(x
′, y) and U2(x , y) ≥ U2(x , y

′)

AGT-MIRI Computing NE Spring 2023 3 / 24

Linear Algebra formulation

Linear algebra notation

Consider a 2-player game Γ = (A1,A2, u1, u2)

Let n = |A1| and m = |A2|.
x ∈ X is a probability distribution:

x = (x1, . . . , xn), xi ≥ 0 and x1 + · · ·+ xn = 1
y ∈ Y is a probability distribution:

y = (y1, . . . , ym), yj ≥ 0 and y1 + · · ·+ ym = 1

Utilities can be described by a n ×m matrix R, for the row player, and C ,
for the column player. Then,

U1(x , y) = xTR y and U2(x , y) = xTC y

AGT-MIRI Computing NE Spring 2023 4 / 24

Linear Algebra formulation

Linear algebra notation

Consider a 2-player game Γ = (A1,A2, u1, u2)
Let n = |A1| and m = |A2|.

x ∈ X is a probability distribution:
x = (x1, . . . , xn), xi ≥ 0 and x1 + · · ·+ xn = 1

y ∈ Y is a probability distribution:
y = (y1, . . . , ym), yj ≥ 0 and y1 + · · ·+ ym = 1

Utilities can be described by a n ×m matrix R, for the row player, and C ,
for the column player. Then,

U1(x , y) = xTR y and U2(x , y) = xTC y

AGT-MIRI Computing NE Spring 2023 4 / 24

Linear Algebra formulation

Linear algebra notation

Consider a 2-player game Γ = (A1,A2, u1, u2)
Let n = |A1| and m = |A2|.
x ∈ X is a probability distribution:

x = (x1, . . . , xn), xi ≥ 0 and x1 + · · ·+ xn = 1

y ∈ Y is a probability distribution:
y = (y1, . . . , ym), yj ≥ 0 and y1 + · · ·+ ym = 1

Utilities can be described by a n ×m matrix R, for the row player, and C ,
for the column player. Then,

U1(x , y) = xTR y and U2(x , y) = xTC y

AGT-MIRI Computing NE Spring 2023 4 / 24

Linear Algebra formulation

Linear algebra notation

Consider a 2-player game Γ = (A1,A2, u1, u2)
Let n = |A1| and m = |A2|.
x ∈ X is a probability distribution:

x = (x1, . . . , xn), xi ≥ 0 and x1 + · · ·+ xn = 1
y ∈ Y is a probability distribution:

y = (y1, . . . , ym), yj ≥ 0 and y1 + · · ·+ ym = 1

Utilities can be described by a n ×m matrix R, for the row player, and C ,
for the column player. Then,

U1(x , y) = xTR y and U2(x , y) = xTC y

AGT-MIRI Computing NE Spring 2023 4 / 24

Linear Algebra formulation

Linear algebra notation

Consider a 2-player game Γ = (A1,A2, u1, u2)
Let n = |A1| and m = |A2|.
x ∈ X is a probability distribution:

x = (x1, . . . , xn), xi ≥ 0 and x1 + · · ·+ xn = 1
y ∈ Y is a probability distribution:

y = (y1, . . . , ym), yj ≥ 0 and y1 + · · ·+ ym = 1

Utilities can be described by a n ×m matrix R, for the row player, and C ,
for the column player. Then,

U1(x , y) = xTR y and U2(x , y) = xTC y

AGT-MIRI Computing NE Spring 2023 4 / 24

Linear Algebra formulation

Linear algebra notation

Consider a 2-player game Γ = (A1,A2, u1, u2)
Let n = |A1| and m = |A2|.
x ∈ X is a probability distribution:

x = (x1, . . . , xn), xi ≥ 0 and x1 + · · ·+ xn = 1
y ∈ Y is a probability distribution:

y = (y1, . . . , ym), yj ≥ 0 and y1 + · · ·+ ym = 1

Utilities can be described by a n ×m matrix R, for the row player, and C ,
for the column player. Then,

U1(x , y) = xTR y and U2(x , y) = xTC y

AGT-MIRI Computing NE Spring 2023 4 / 24

Linear Algebra formulation

Computing a best response

For a given x ∈ X , we have to solve:

max xTR y
Subject to: y1 + · · ·+ ym = 1, yj ≥ 0.

For a given y , we have to solve:

max xTC y
Subject to: x1 + · · ·+ xn = 1, xi ≥ 0

Those are linear programming problems, so
A best response can be computed in polynomial time for 2-player games
with rational utilities.

AGT-MIRI Computing NE Spring 2023 5 / 24

Linear Algebra formulation

Computing a best response

For a given x ∈ X , we have to solve:

max xTR y
Subject to: y1 + · · ·+ ym = 1, yj ≥ 0.

For a given y , we have to solve:

max xTC y
Subject to: x1 + · · ·+ xn = 1, xi ≥ 0

Those are linear programming problems, so
A best response can be computed in polynomial time for 2-player games
with rational utilities.

AGT-MIRI Computing NE Spring 2023 5 / 24

Linear Algebra formulation

Computing a best response

For a given x ∈ X , we have to solve:

max xTR y
Subject to: y1 + · · ·+ ym = 1, yj ≥ 0.

For a given y , we have to solve:

max xTC y
Subject to: x1 + · · ·+ xn = 1, xi ≥ 0

Those are linear programming problems, so
A best response can be computed in polynomial time for 2-player games
with rational utilities.

AGT-MIRI Computing NE Spring 2023 5 / 24

Linear Algebra formulation

Computing a best response

For a given x ∈ X , we have to solve:

max xTR y
Subject to: y1 + · · ·+ ym = 1, yj ≥ 0.

For a given y , we have to solve:

max xTC y
Subject to: x1 + · · ·+ xn = 1, xi ≥ 0

Those are linear programming problems, so
A best response can be computed in polynomial time for 2-player games
with rational utilities.

AGT-MIRI Computing NE Spring 2023 5 / 24

Linear Algebra formulation

Computing a best response

For a given x ∈ X , we have to solve:

max xTR y
Subject to: y1 + · · ·+ ym = 1, yj ≥ 0.

For a given y , we have to solve:

max xTC y
Subject to: x1 + · · ·+ xn = 1, xi ≥ 0

Those are linear programming problems, so

A best response can be computed in polynomial time for 2-player games
with rational utilities.

AGT-MIRI Computing NE Spring 2023 5 / 24

Linear Algebra formulation

Computing a best response

For a given x ∈ X , we have to solve:

max xTR y
Subject to: y1 + · · ·+ ym = 1, yj ≥ 0.

For a given y , we have to solve:

max xTC y
Subject to: x1 + · · ·+ xn = 1, xi ≥ 0

Those are linear programming problems, so
A best response can be computed in polynomial time for 2-player games
with rational utilities.

AGT-MIRI Computing NE Spring 2023 5 / 24

Zero-sum games

1 Linear Algebra formulation

2 Zero-sum games

3 The complexity of finding a NE

4 An exact algorithm to compute NE

5 NE algorithms

AGT-MIRI Computing NE Spring 2023 6 / 24

Zero-sum games

Zero-sum games

A zero-sum game is a 2-player game such that, for each pure strategy
profile (a, b), u1(a, b) + u2(a, b) = 0.

That is Let u = u1, we have u2 = −u.

Player 1 is interested in maximizing u and player 2 in minimizing u.

In terms of matrices we have C = −R.

AGT-MIRI Computing NE Spring 2023 7 / 24

Zero-sum games

Zero-sum games

A zero-sum game is a 2-player game such that, for each pure strategy
profile (a, b), u1(a, b) + u2(a, b) = 0.

That is Let u = u1, we have u2 = −u.

Player 1 is interested in maximizing u and player 2 in minimizing u.

In terms of matrices we have C = −R.

AGT-MIRI Computing NE Spring 2023 7 / 24

Zero-sum games

Zero-sum games

A zero-sum game is a 2-player game such that, for each pure strategy
profile (a, b), u1(a, b) + u2(a, b) = 0.

That is Let u = u1, we have u2 = −u.

Player 1 is interested in maximizing u and player 2 in minimizing u.

In terms of matrices we have C = −R.

AGT-MIRI Computing NE Spring 2023 7 / 24

Zero-sum games

Zero-sum games

A zero-sum game is a 2-player game such that, for each pure strategy
profile (a, b), u1(a, b) + u2(a, b) = 0.

That is Let u = u1, we have u2 = −u.

Player 1 is interested in maximizing u and player 2 in minimizing u.

In terms of matrices we have C = −R.

AGT-MIRI Computing NE Spring 2023 7 / 24

Zero-sum games

ZS: Nash conditions

(x∗, y∗) is a NE

(x∗)TR y∗ ≥ xTR y∗, for x ∈ X ,
(x∗)TC y∗ ≥ (x∗)TC y , for y ∈ Y .

As C = −R the second equation becomes

(x∗)TR y∗ ≤ (x∗)TR y , for y ∈ Y .

Combining both,

xTR y∗ ≤ (x∗)TR y∗ ≤ (x∗)TR y , for x ∈ X , y ∈ Y .

i.e., (x∗, y∗) is a saddle point
of the function xTR y defined over X × Y .

AGT-MIRI Computing NE Spring 2023 8 / 24

Zero-sum games

ZS: Nash conditions

(x∗, y∗) is a NE

(x∗)TR y∗ ≥ xTR y∗, for x ∈ X ,
(x∗)TC y∗ ≥ (x∗)TC y , for y ∈ Y .

As C = −R the second equation becomes

(x∗)TR y∗ ≤ (x∗)TR y , for y ∈ Y .

Combining both,

xTR y∗ ≤ (x∗)TR y∗ ≤ (x∗)TR y , for x ∈ X , y ∈ Y .

i.e., (x∗, y∗) is a saddle point
of the function xTR y defined over X × Y .

AGT-MIRI Computing NE Spring 2023 8 / 24

Zero-sum games

ZS: Nash conditions

(x∗, y∗) is a NE

(x∗)TR y∗ ≥ xTR y∗, for x ∈ X ,
(x∗)TC y∗ ≥ (x∗)TC y , for y ∈ Y .

As C = −R the second equation becomes

(x∗)TR y∗ ≤ (x∗)TR y , for y ∈ Y .

Combining both,

xTR y∗ ≤ (x∗)TR y∗ ≤ (x∗)TR y , for x ∈ X , y ∈ Y .

i.e., (x∗, y∗) is a saddle point
of the function xTR y defined over X × Y .

AGT-MIRI Computing NE Spring 2023 8 / 24

Zero-sum games

ZS: Nash conditions

(x∗, y∗) is a NE

(x∗)TR y∗ ≥ xTR y∗, for x ∈ X ,
(x∗)TC y∗ ≥ (x∗)TC y , for y ∈ Y .

As C = −R the second equation becomes

(x∗)TR y∗ ≤ (x∗)TR y , for y ∈ Y .

Combining both,

xTR y∗ ≤ (x∗)TR y∗ ≤ (x∗)TR y , for x ∈ X , y ∈ Y .

i.e., (x∗, y∗) is a saddle point
of the function xTR y defined over X × Y .

AGT-MIRI Computing NE Spring 2023 8 / 24

Zero-sum games

ZS: Nash conditions

(x∗, y∗) is a NE

(x∗)TR y∗ ≥ xTR y∗, for x ∈ X ,
(x∗)TC y∗ ≥ (x∗)TC y , for y ∈ Y .

As C = −R the second equation becomes

(x∗)TR y∗ ≤ (x∗)TR y , for y ∈ Y .

Combining both,

xTR y∗ ≤ (x∗)TR y∗ ≤ (x∗)TR y , for x ∈ X , y ∈ Y .

i.e., (x∗, y∗) is a saddle point
of the function xTR y defined over X × Y .

AGT-MIRI Computing NE Spring 2023 8 / 24

Zero-sum games

ZS: Nash conditions

(x∗, y∗) is a NE

(x∗)TR y∗ ≥ xTR y∗, for x ∈ X ,
(x∗)TC y∗ ≥ (x∗)TC y , for y ∈ Y .

As C = −R the second equation becomes

(x∗)TR y∗ ≤ (x∗)TR y , for y ∈ Y .

Combining both,

xTR y∗ ≤ (x∗)TR y∗ ≤ (x∗)TR y , for x ∈ X , y ∈ Y .

i.e., (x∗, y∗) is a saddle point
of the function xTR y defined over X × Y .

AGT-MIRI Computing NE Spring 2023 8 / 24

Zero-sum games

Minimax inequality

Theorem

For any function Φ : X × Y :→ R, we have

sup
x∈X

inf
y∈Y

Φ(x , y) ≤ inf
y∈Y

sup
x∈X

Φ(x , y).

Proof.

For every x ′ ∈ X , Φ(x ′, y) ≤ supx∈X Φ(x , y)

inf
y∈Y

Φ(x ′, y) ≤ inf
y∈Y

sup
x∈X

Φ(x , y).

Taking the supremum over x ′ ∈ X on the left hand-side we get the
inequality.

AGT-MIRI Computing NE Spring 2023 9 / 24

Zero-sum games

Minimax inequality

Theorem

For any function Φ : X × Y :→ R, we have

sup
x∈X

inf
y∈Y

Φ(x , y) ≤ inf
y∈Y

sup
x∈X

Φ(x , y).

Proof.

For every x ′ ∈ X , Φ(x ′, y) ≤ supx∈X Φ(x , y)

inf
y∈Y

Φ(x ′, y) ≤ inf
y∈Y

sup
x∈X

Φ(x , y).

Taking the supremum over x ′ ∈ X on the left hand-side we get the
inequality.

AGT-MIRI Computing NE Spring 2023 9 / 24

Zero-sum games

Minimax inequality

Theorem

For any function Φ : X × Y :→ R, we have

sup
x∈X

inf
y∈Y

Φ(x , y) ≤ inf
y∈Y

sup
x∈X

Φ(x , y).

Proof.

For every x ′ ∈ X , Φ(x ′, y) ≤ supx∈X Φ(x , y)

inf
y∈Y

Φ(x ′, y) ≤ inf
y∈Y

sup
x∈X

Φ(x , y).

Taking the supremum over x ′ ∈ X on the left hand-side we get the
inequality.

AGT-MIRI Computing NE Spring 2023 9 / 24

Zero-sum games

Minimax inequality

Theorem

For any function Φ : X × Y :→ R, we have

sup
x∈X

inf
y∈Y

Φ(x , y) ≤ inf
y∈Y

sup
x∈X

Φ(x , y).

Proof.

For every x ′ ∈ X , Φ(x ′, y) ≤ supx∈X Φ(x , y)

inf
y∈Y

Φ(x ′, y) ≤ inf
y∈Y

sup
x∈X

Φ(x , y).

Taking the supremum over x ′ ∈ X on the left hand-side we get the
inequality.

AGT-MIRI Computing NE Spring 2023 9 / 24

Zero-sum games

Minimax inequality

Theorem

For any function Φ : X × Y :→ R, we have

sup
x∈X

inf
y∈Y

Φ(x , y) ≤ inf
y∈Y

sup
x∈X

Φ(x , y).

Proof.

For every x ′ ∈ X , Φ(x ′, y) ≤ supx∈X Φ(x , y)

inf
y∈Y

Φ(x ′, y) ≤ inf
y∈Y

sup
x∈X

Φ(x , y).

Taking the supremum over x ′ ∈ X on the left hand-side we get the
inequality.

AGT-MIRI Computing NE Spring 2023 9 / 24

Zero-sum games

Minimax inequality

Theorem

For any function Φ : X × Y :→ R, we have

sup
x∈X

inf
y∈Y

Φ(x , y) ≤ inf
y∈Y

sup
x∈X

Φ(x , y).

Proof.

For every x ′ ∈ X , Φ(x ′, y) ≤ supx∈X Φ(x , y)

inf
y∈Y

Φ(x ′, y) ≤ inf
y∈Y

sup
x∈X

Φ(x , y).

Taking the supremum over x ′ ∈ X on the left hand-side we get the
inequality.

AGT-MIRI Computing NE Spring 2023 9 / 24

Zero-sum games

ZS: Nash conditions

We have

xTR y∗ ≤ (x∗)TR y∗ ≤ (x∗)TR y , for x ∈ X , y ∈ Y .

Thus
sup
x∈X

xTR y∗ ≤ (x∗)TR y∗ ≤ inf
y∈Y

(x∗)TR y

inf
y∈Y

sup
x∈X

xTR y ≤ sup
x∈X

xTR y∗ ≤ (x∗)TR y∗ ≤ inf
y∈Y

(x∗)TR y ≤ sup
x∈X

inf
y∈Y

xTR y

Using the minimax inequality, we get

inf
y∈Y

sup
x∈X

xTR y = (x∗)TR y∗ = sup
x∈X

inf
y∈Y

xTR y

We refer to infy∈Y supx∈X xTR y as the value of the game.

AGT-MIRI Computing NE Spring 2023 10 / 24

Zero-sum games

ZS: Nash conditions

We have

xTR y∗ ≤ (x∗)TR y∗ ≤ (x∗)TR y , for x ∈ X , y ∈ Y .

Thus
sup
x∈X

xTR y∗ ≤ (x∗)TR y∗ ≤ inf
y∈Y

(x∗)TR y

inf
y∈Y

sup
x∈X

xTR y ≤ sup
x∈X

xTR y∗ ≤ (x∗)TR y∗ ≤ inf
y∈Y

(x∗)TR y ≤ sup
x∈X

inf
y∈Y

xTR y

Using the minimax inequality, we get

inf
y∈Y

sup
x∈X

xTR y = (x∗)TR y∗ = sup
x∈X

inf
y∈Y

xTR y

We refer to infy∈Y supx∈X xTR y as the value of the game.

AGT-MIRI Computing NE Spring 2023 10 / 24

Zero-sum games

ZS: Nash conditions

We have

xTR y∗ ≤ (x∗)TR y∗ ≤ (x∗)TR y , for x ∈ X , y ∈ Y .

Thus
sup
x∈X

xTR y∗ ≤ (x∗)TR y∗ ≤ inf
y∈Y

(x∗)TR y

inf
y∈Y

sup
x∈X

xTR y ≤ sup
x∈X

xTR y∗ ≤ (x∗)TR y∗ ≤ inf
y∈Y

(x∗)TR y ≤ sup
x∈X

inf
y∈Y

xTR y

Using the minimax inequality, we get

inf
y∈Y

sup
x∈X

xTR y = (x∗)TR y∗ = sup
x∈X

inf
y∈Y

xTR y

We refer to infy∈Y supx∈X xTR y as the value of the game.

AGT-MIRI Computing NE Spring 2023 10 / 24

Zero-sum games

ZS: Nash conditions

We have

xTR y∗ ≤ (x∗)TR y∗ ≤ (x∗)TR y , for x ∈ X , y ∈ Y .

Thus
sup
x∈X

xTR y∗ ≤ (x∗)TR y∗ ≤ inf
y∈Y

(x∗)TR y

inf
y∈Y

sup
x∈X

xTR y ≤ sup
x∈X

xTR y∗ ≤ (x∗)TR y∗ ≤ inf
y∈Y

(x∗)TR y ≤ sup
x∈X

inf
y∈Y

xTR y

Using the minimax inequality, we get

inf
y∈Y

sup
x∈X

xTR y = (x∗)TR y∗ = sup
x∈X

inf
y∈Y

xTR y

We refer to infy∈Y supx∈X xTR y as the value of the game.

AGT-MIRI Computing NE Spring 2023 10 / 24

Zero-sum games

ZS: Nash conditions

We have

xTR y∗ ≤ (x∗)TR y∗ ≤ (x∗)TR y , for x ∈ X , y ∈ Y .

Thus
sup
x∈X

xTR y∗ ≤ (x∗)TR y∗ ≤ inf
y∈Y

(x∗)TR y

inf
y∈Y

sup
x∈X

xTR y ≤ sup
x∈X

xTR y∗ ≤ (x∗)TR y∗ ≤ inf
y∈Y

(x∗)TR y ≤ sup
x∈X

inf
y∈Y

xTR y

Using the minimax inequality, we get

inf
y∈Y

sup
x∈X

xTR y = (x∗)TR y∗ = sup
x∈X

inf
y∈Y

xTR y

We refer to infy∈Y supx∈X xTR y as the value of the game.

AGT-MIRI Computing NE Spring 2023 10 / 24

Zero-sum games

ZS: Nash conditions

We have

xTR y∗ ≤ (x∗)TR y∗ ≤ (x∗)TR y , for x ∈ X , y ∈ Y .

Thus
sup
x∈X

xTR y∗ ≤ (x∗)TR y∗ ≤ inf
y∈Y

(x∗)TR y

inf
y∈Y

sup
x∈X

xTR y ≤ sup
x∈X

xTR y∗ ≤ (x∗)TR y∗ ≤ inf
y∈Y

(x∗)TR y ≤ sup
x∈X

inf
y∈Y

xTR y

Using the minimax inequality, we get

inf
y∈Y

sup
x∈X

xTR y = (x∗)TR y∗ = sup
x∈X

inf
y∈Y

xTR y

We refer to infy∈Y supx∈X xTR y as the value of the game.

AGT-MIRI Computing NE Spring 2023 10 / 24

Zero-sum games

ZS: Nash conditions

We have

xTR y∗ ≤ (x∗)TR y∗ ≤ (x∗)TR y , for x ∈ X , y ∈ Y .

Thus
sup
x∈X

xTR y∗ ≤ (x∗)TR y∗ ≤ inf
y∈Y

(x∗)TR y

inf
y∈Y

sup
x∈X

xTR y ≤ sup
x∈X

xTR y∗ ≤ (x∗)TR y∗ ≤ inf
y∈Y

(x∗)TR y ≤ sup
x∈X

inf
y∈Y

xTR y

Using the minimax inequality, we get

inf
y∈Y

sup
x∈X

xTR y = (x∗)TR y∗ = sup
x∈X

inf
y∈Y

xTR y

We refer to infy∈Y supx∈X xTR y as the value of the game.

AGT-MIRI Computing NE Spring 2023 10 / 24

Zero-sum games

ZS: algorithm for finding NE

For a fixed y , we have

max
x∈X

xTRy = max
i=1,...,n

{[Ry]i},

therefore

min
y∈Y

max
x∈X

xTRy = min
y∈Y

max{[Ry]1, . . . [Ry]n}

So, both the value of the game and a Nash equilibrium strategy for
player 2 can be obtained by solving the linear programming problem:

min v

v1n ≥ Ry , y ∈ Y .

AGT-MIRI Computing NE Spring 2023 11 / 24

Zero-sum games

ZS: algorithm for finding NE

For a fixed y , we have

max
x∈X

xTRy = max
i=1,...,n

{[Ry]i},

therefore

min
y∈Y

max
x∈X

xTRy = min
y∈Y

max{[Ry]1, . . . [Ry]n}

So, both the value of the game and a Nash equilibrium strategy for
player 2 can be obtained by solving the linear programming problem:

min v

v1n ≥ Ry , y ∈ Y .

AGT-MIRI Computing NE Spring 2023 11 / 24

Zero-sum games

ZS: algorithm for finding NE

For a fixed y , we have

max
x∈X

xTRy = max
i=1,...,n

{[Ry]i},

therefore

min
y∈Y

max
x∈X

xTRy = min
y∈Y

max{[Ry]1, . . . [Ry]n}

So, both the value of the game and a Nash equilibrium strategy for
player 2 can be obtained by solving the linear programming problem:

min v

v1n ≥ Ry , y ∈ Y .

AGT-MIRI Computing NE Spring 2023 11 / 24

Zero-sum games

ZS: algorithm for finding NE

For a fixed y , we have

max
x∈X

xTRy = max
i=1,...,n

{[Ry]i},

therefore

min
y∈Y

max
x∈X

xTRy = min
y∈Y

max{[Ry]1, . . . [Ry]n}

So, both the value of the game and a Nash equilibrium strategy for
player 2 can be obtained by solving the linear programming problem:

min v

v1n ≥ Ry , y ∈ Y .

AGT-MIRI Computing NE Spring 2023 11 / 24

Zero-sum games

ZS: algorithm for finding NE

For a fixed y , we have

max
x∈X

xTRy = max
i=1,...,n

{[Ry]i},

therefore

min
y∈Y

max
x∈X

xTRy = min
y∈Y

max{[Ry]1, . . . [Ry]n}

So, both the value of the game and a Nash equilibrium strategy for
player 2 can be obtained by solving the linear programming problem:

min v

v1n ≥ Ry , y ∈ Y .

AGT-MIRI Computing NE Spring 2023 11 / 24

Zero-sum games

ZS: algorithm for finding NE

Similarly, we have

max
x∈X

min
y∈Y

xTRy = max
x∈X

min{[RT x]1, . . . [R
T]n}

So, a Nash equilibrium strategy for player 1 can be obtained by
solving the linear programming problem:

maxw

w1m ≤ RT x , x ∈ X .

LP can be solved efficiently, thus there is a polynomial time algorithm
for computing NE for zero-sum games.

AGT-MIRI Computing NE Spring 2023 12 / 24

Zero-sum games

ZS: algorithm for finding NE

Similarly, we have

max
x∈X

min
y∈Y

xTRy = max
x∈X

min{[RT x]1, . . . [R
T]n}

So, a Nash equilibrium strategy for player 1 can be obtained by
solving the linear programming problem:

maxw

w1m ≤ RT x , x ∈ X .

LP can be solved efficiently, thus there is a polynomial time algorithm
for computing NE for zero-sum games.

AGT-MIRI Computing NE Spring 2023 12 / 24

Zero-sum games

ZS: algorithm for finding NE

Similarly, we have

max
x∈X

min
y∈Y

xTRy = max
x∈X

min{[RT x]1, . . . [R
T]n}

So, a Nash equilibrium strategy for player 1 can be obtained by
solving the linear programming problem:

maxw

w1m ≤ RT x , x ∈ X .

LP can be solved efficiently, thus there is a polynomial time algorithm
for computing NE for zero-sum games.

AGT-MIRI Computing NE Spring 2023 12 / 24

Zero-sum games

ZS: algorithm for finding NE

Similarly, we have

max
x∈X

min
y∈Y

xTRy = max
x∈X

min{[RT x]1, . . . [R
T]n}

So, a Nash equilibrium strategy for player 1 can be obtained by
solving the linear programming problem:

maxw

w1m ≤ RT x , x ∈ X .

LP can be solved efficiently, thus there is a polynomial time algorithm
for computing NE for zero-sum games.

AGT-MIRI Computing NE Spring 2023 12 / 24

The complexity of finding a NE

1 Linear Algebra formulation

2 Zero-sum games

3 The complexity of finding a NE

4 An exact algorithm to compute NE

5 NE algorithms

AGT-MIRI Computing NE Spring 2023 13 / 24

The complexity of finding a NE

PPAD

(Papadimitriou 94)
Polynomial Parity Argument on Directed Graphs

The class of all problems with guaranteed solution by use of the
following graph-theoretic lemma
A directed graph with an unbalanced node (node with indegree ̸=
outdegree) must have another.

Such problems are defined by an implicitly defined directed graph G
and an unbalanced node u of G
and the objective is finding another unbalanced node.

Usually G is huge but implicitly defined as the graphs defining
solutions in local search algorithms.

AGT-MIRI Computing NE Spring 2023 14 / 24

The complexity of finding a NE

PPAD

(Papadimitriou 94)
Polynomial Parity Argument on Directed Graphs

The class of all problems with guaranteed solution by use of the
following graph-theoretic lemma

A directed graph with an unbalanced node (node with indegree ̸=
outdegree) must have another.

Such problems are defined by an implicitly defined directed graph G
and an unbalanced node u of G
and the objective is finding another unbalanced node.

Usually G is huge but implicitly defined as the graphs defining
solutions in local search algorithms.

AGT-MIRI Computing NE Spring 2023 14 / 24

The complexity of finding a NE

PPAD

(Papadimitriou 94)
Polynomial Parity Argument on Directed Graphs

The class of all problems with guaranteed solution by use of the
following graph-theoretic lemma
A directed graph with an unbalanced node (node with indegree ̸=
outdegree) must have another.

Such problems are defined by an implicitly defined directed graph G
and an unbalanced node u of G
and the objective is finding another unbalanced node.

Usually G is huge but implicitly defined as the graphs defining
solutions in local search algorithms.

AGT-MIRI Computing NE Spring 2023 14 / 24

The complexity of finding a NE

PPAD

(Papadimitriou 94)
Polynomial Parity Argument on Directed Graphs

The class of all problems with guaranteed solution by use of the
following graph-theoretic lemma
A directed graph with an unbalanced node (node with indegree ̸=
outdegree) must have another.

Such problems are defined by an implicitly defined directed graph G
and an unbalanced node u of G

and the objective is finding another unbalanced node.

Usually G is huge but implicitly defined as the graphs defining
solutions in local search algorithms.

AGT-MIRI Computing NE Spring 2023 14 / 24

The complexity of finding a NE

PPAD

(Papadimitriou 94)
Polynomial Parity Argument on Directed Graphs

The class of all problems with guaranteed solution by use of the
following graph-theoretic lemma
A directed graph with an unbalanced node (node with indegree ̸=
outdegree) must have another.

Such problems are defined by an implicitly defined directed graph G
and an unbalanced node u of G
and the objective is finding another unbalanced node.

Usually G is huge but implicitly defined as the graphs defining
solutions in local search algorithms.

AGT-MIRI Computing NE Spring 2023 14 / 24

The complexity of finding a NE

PPAD

(Papadimitriou 94)
Polynomial Parity Argument on Directed Graphs

The class of all problems with guaranteed solution by use of the
following graph-theoretic lemma
A directed graph with an unbalanced node (node with indegree ̸=
outdegree) must have another.

Such problems are defined by an implicitly defined directed graph G
and an unbalanced node u of G
and the objective is finding another unbalanced node.

Usually G is huge but implicitly defined as the graphs defining
solutions in local search algorithms.

AGT-MIRI Computing NE Spring 2023 14 / 24

The complexity of finding a NE

PPAD

The class PPAD contains interesting computational problems not
known to be in P

has complete problems.

But not a clear complexity cut.

AGT-MIRI Computing NE Spring 2023 15 / 24

The complexity of finding a NE

PPAD

The class PPAD contains interesting computational problems not
known to be in P
has complete problems.

But not a clear complexity cut.

AGT-MIRI Computing NE Spring 2023 15 / 24

The complexity of finding a NE

PPAD

The class PPAD contains interesting computational problems not
known to be in P
has complete problems.

But not a clear complexity cut.

AGT-MIRI Computing NE Spring 2023 15 / 24

The complexity of finding a NE

A PPAD-complete problem

End-of-Line

Given an implicit representation of a graph G with vertices of degree at
most 2 and a vertex v ∈ G , where v has in degree 0.
Find a node v ′ ̸= v , such that v ′ has out degree 0.

Since every node has degree 2, it is a collection of paths and cycles.

We know that
Every directed graph with in/outdegree 1 and a source, has a sink.

Which guarantees that
the End-of-Line problem has always a solution.

AGT-MIRI Computing NE Spring 2023 16 / 24

The complexity of finding a NE

A PPAD-complete problem

End-of-Line
Given an implicit representation of a graph G with vertices of degree at
most 2 and a vertex v ∈ G , where v has in degree 0.
Find a node v ′ ̸= v , such that v ′ has out degree 0.

Since every node has degree 2, it is a collection of paths and cycles.

We know that
Every directed graph with in/outdegree 1 and a source, has a sink.

Which guarantees that
the End-of-Line problem has always a solution.

AGT-MIRI Computing NE Spring 2023 16 / 24

The complexity of finding a NE

A PPAD-complete problem

End-of-Line
Given an implicit representation of a graph G with vertices of degree at
most 2 and a vertex v ∈ G , where v has in degree 0.
Find a node v ′ ̸= v , such that v ′ has out degree 0.

Since every node has degree 2, it is a collection of paths and cycles.

We know that
Every directed graph with in/outdegree 1 and a source, has a sink.

Which guarantees that
the End-of-Line problem has always a solution.

AGT-MIRI Computing NE Spring 2023 16 / 24

The complexity of finding a NE

A PPAD-complete problem

End-of-Line
Given an implicit representation of a graph G with vertices of degree at
most 2 and a vertex v ∈ G , where v has in degree 0.
Find a node v ′ ̸= v , such that v ′ has out degree 0.

Since every node has degree 2, it is a collection of paths and cycles.

We know that
Every directed graph with in/outdegree 1 and a source, has a sink.

Which guarantees that
the End-of-Line problem has always a solution.

AGT-MIRI Computing NE Spring 2023 16 / 24

The complexity of finding a NE

A PPAD-complete problem

End-of-Line
Given an implicit representation of a graph G with vertices of degree at
most 2 and a vertex v ∈ G , where v has in degree 0.
Find a node v ′ ̸= v , such that v ′ has out degree 0.

Since every node has degree 2, it is a collection of paths and cycles.

We know that
Every directed graph with in/outdegree 1 and a source, has a sink.

Which guarantees that
the End-of-Line problem has always a solution.

AGT-MIRI Computing NE Spring 2023 16 / 24

The complexity of finding a NE

End-of-Line: graph representation

G is given implicitly by a circuit C

C provides a predecessor and successor pair for each given vertex in
G , i.e. C (u) = (v ,w).

A special label indicates that a node has no predecessor/successor.

AGT-MIRI Computing NE Spring 2023 17 / 24

The complexity of finding a NE

The complexity of finding a NE

Theorem (Daskalakis, Goldberg, Papadimitriou ’06)

Finding a Nash equilibrium is PPAD-complete

Theorem (Chen, Deng ’06)

Finding a Nash equilibrium is PPAD-complete even in 2-player games.

C. Daskalakis, P-W. Goldberg, C.H. Papadimitriou: The complexity
of computing a Nash equilibrium. SIAM J. Comput. 39(1): 195-259
(2009) first version STOC 2006

X. Chen, X. Deng, S-H. Teng: Settling the complexity of computing
two-player Nash equilibria. J. ACM 56(3) (2009) first version FOCS
2006

AGT-MIRI Computing NE Spring 2023 18 / 24

The complexity of finding a NE

The complexity of finding a NE

Theorem (Daskalakis, Goldberg, Papadimitriou ’06)

Finding a Nash equilibrium is PPAD-complete

Theorem (Chen, Deng ’06)

Finding a Nash equilibrium is PPAD-complete even in 2-player games.

C. Daskalakis, P-W. Goldberg, C.H. Papadimitriou: The complexity
of computing a Nash equilibrium. SIAM J. Comput. 39(1): 195-259
(2009) first version STOC 2006

X. Chen, X. Deng, S-H. Teng: Settling the complexity of computing
two-player Nash equilibria. J. ACM 56(3) (2009) first version FOCS
2006

AGT-MIRI Computing NE Spring 2023 18 / 24

The complexity of finding a NE

The complexity of finding a NE

Theorem (Daskalakis, Goldberg, Papadimitriou ’06)

Finding a Nash equilibrium is PPAD-complete

Theorem (Chen, Deng ’06)

Finding a Nash equilibrium is PPAD-complete even in 2-player games.

C. Daskalakis, P-W. Goldberg, C.H. Papadimitriou: The complexity
of computing a Nash equilibrium. SIAM J. Comput. 39(1): 195-259
(2009) first version STOC 2006

X. Chen, X. Deng, S-H. Teng: Settling the complexity of computing
two-player Nash equilibria. J. ACM 56(3) (2009) first version FOCS
2006

AGT-MIRI Computing NE Spring 2023 18 / 24

An exact algorithm to compute NE

1 Linear Algebra formulation

2 Zero-sum games

3 The complexity of finding a NE

4 An exact algorithm to compute NE

5 NE algorithms

AGT-MIRI Computing NE Spring 2023 19 / 24

An exact algorithm to compute NE

NE characterization

Theorem

In a strategic game in which each player has finitely many actions a mixed
strategy profile σ∗ is a NE iff, for each player i ,

the expected payoff, given σ−i , to every action in the support of σ∗
i is

the same

the expected payoff, given σ−i , to every action not in the support of
σ∗
i is at most the expected payoff on an action in the support of σ∗

i .

AGT-MIRI Computing NE Spring 2023 20 / 24

An exact algorithm to compute NE

NE conditions given support

Let A ⊆ {1, . . . n} and B ⊆ {1, . . .m}.
The conditions for having a NE on this particular support can be written
as follows:

maxλ1 + λ2

Subject to:

[R y]i = λ1, for i ∈ A

[R y]i ≤ λ1, for i /∈ A

j [C x] = λ2, for j ∈ B

j [C x] ≤ λ2, for j /∈ B

AGT-MIRI Computing NE Spring 2023 21 / 24

An exact algorithm to compute NE

Iterating over all supports

For every possible combination of supports A ⊆ {1, . . . n} and
B ⊆ {1, . . .m}.
Solve the set of simultaneous equations using linear programming.

This is an exact exponential time algorithm as the number of
supports can be exponential.

The same algorithm can be applied to a multiplayer game. We would
be able to compute a NE on rationals if such a NE exists.

AGT-MIRI Computing NE Spring 2023 22 / 24

An exact algorithm to compute NE

Iterating over all supports

For every possible combination of supports A ⊆ {1, . . . n} and
B ⊆ {1, . . .m}.
Solve the set of simultaneous equations using linear programming.

This is an exact exponential time algorithm as the number of
supports can be exponential.

The same algorithm can be applied to a multiplayer game. We would
be able to compute a NE on rationals if such a NE exists.

AGT-MIRI Computing NE Spring 2023 22 / 24

An exact algorithm to compute NE

Iterating over all supports

For every possible combination of supports A ⊆ {1, . . . n} and
B ⊆ {1, . . .m}.
Solve the set of simultaneous equations using linear programming.

This is an exact exponential time algorithm as the number of
supports can be exponential.

The same algorithm can be applied to a multiplayer game. We would
be able to compute a NE on rationals if such a NE exists.

AGT-MIRI Computing NE Spring 2023 22 / 24

NE algorithms

1 Linear Algebra formulation

2 Zero-sum games

3 The complexity of finding a NE

4 An exact algorithm to compute NE

5 NE algorithms

AGT-MIRI Computing NE Spring 2023 23 / 24

NE algorithms

NE algorithms

Lemke-Howson (1964) algorithm defines a polytope based on best
response conditions and membership to the support and uses ideas
similar to Simplex with a ad-hoc pivoting rule.
(See slides by Philippe Bich)

Lemke-Howson requires exponential time [Savani, von Stengel, 2004]).

Iterating over suppo rts [Porter, Nudelman and Shoham, AAAI-04]

Mixed-Integer Programming formulations [Sandholm, Gilpin and
Conitzer, AAAI-05]

AGT-MIRI Computing NE Spring 2023 24 / 24

https://bichgame.files.wordpress.com/2017/01/lemke-howson.pdf

NE algorithms

NE algorithms

Lemke-Howson (1964) algorithm defines a polytope based on best
response conditions and membership to the support and uses ideas
similar to Simplex with a ad-hoc pivoting rule.
(See slides by Philippe Bich)

Lemke-Howson requires exponential time [Savani, von Stengel, 2004]).

Iterating over suppo rts [Porter, Nudelman and Shoham, AAAI-04]

Mixed-Integer Programming formulations [Sandholm, Gilpin and
Conitzer, AAAI-05]

AGT-MIRI Computing NE Spring 2023 24 / 24

https://bichgame.files.wordpress.com/2017/01/lemke-howson.pdf

NE algorithms

NE algorithms

Lemke-Howson (1964) algorithm defines a polytope based on best
response conditions and membership to the support and uses ideas
similar to Simplex with a ad-hoc pivoting rule.
(See slides by Philippe Bich)

Lemke-Howson requires exponential time [Savani, von Stengel, 2004]).

Iterating over suppo rts [Porter, Nudelman and Shoham, AAAI-04]

Mixed-Integer Programming formulations [Sandholm, Gilpin and
Conitzer, AAAI-05]

AGT-MIRI Computing NE Spring 2023 24 / 24

https://bichgame.files.wordpress.com/2017/01/lemke-howson.pdf

	Contents
	Linear Algebra formulation
	Zero-sum games
	The complexity of finding a NE
	An exact algorithm to compute NE
	NE algorithms

