Computational aspects of finding Nash Equilibria for 2-player games

Maria Serna

Spring 2023

AGT-MIRI

Computing NE

Spring 2023

< A ▶

3 🕨 🖌 3 🕨

1/24

Linear Algebra formulation

- Zero-sum games
- 3) The complexity of finding a NE
- 4 An exact algorithm to compute NE
- 5 NE algorithms

(日)

э

Nash equilibrium

Consider a 2-player game $\Gamma = (A_1, A_2, u_1, u_2)$. Let $X = \Delta(A_1)$ and $Y = \Delta(A_2)$. $(\Delta(A)$ is the set of probability distributions over A)

3/24

イロト イポト イヨト イヨト 三日

Nash equilibrium

Consider a 2-player game $\Gamma = (A_1, A_2, u_1, u_2)$. Let $X = \Delta(A_1)$ and $Y = \Delta(A_2)$. $(\Delta(A)$ is the set of probability distributions over A)

A Nash equilibrium is a mixed strategy profile $\sigma = (x, y) \in X \times Y$ such that, for every $x' \in X$, $y' \in Y$, it holds

 $U_1(x,y) \ge U_1(x',y) \text{ and } U_2(x,y) \ge U_2(x,y')$

イロト 不得 トイヨト イヨト 二日

Consider a 2-player game $\Gamma = (A_1, A_2, u_1, u_2)$

A	G	Г-	Ν	11	R

イロト イボト イヨト イヨト

3

Consider a 2-player game
$$\Gamma = (A_1, A_2, u_1, u_2)$$

Let $n = |A_1|$ and $m = |A_2|$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

æ

Consider a 2-player game
$$\Gamma = (A_1, A_2, u_1, u_2)$$

Let $n = |A_1|$ and $m = |A_2|$.

 $x \in X$ is a probability distribution:

$$x = (x_1, ..., x_n), x_i \ge 0 \text{ and } x_1 + \dots + x_n = 1$$

э

Consider a 2-player game
$$\Gamma = (A_1, A_2, u_1, u_2)$$

Let $n = |A_1|$ and $m = |A_2|$.

 $x \in X$ is a probability distribution:

$$x = (x_1, ..., x_n), x_i \ge 0 \text{ and } x_1 + \cdots + x_n = 1$$

 $y \in Y$ is a probability distribution:

$$y = (y_1, \dots, y_m), y_j \ge 0 \text{ and } y_1 + \dots + y_m = 1$$

э

4 / 24

イロト イヨト イヨト

Consider a 2-player game
$$\Gamma = (A_1, A_2, u_1, u_2)$$

Let $n = |A_1|$ and $m = |A_2|$.

 $x \in X$ is a probability distribution:

$$x = (x_1, ..., x_n), x_i \ge 0 \text{ and } x_1 + \cdots + x_n = 1$$

 $y \in Y$ is a probability distribution:

$$y = (y_1, ..., y_m), y_j \ge 0 \text{ and } y_1 + \dots + y_m = 1$$

Utilities can be described by a $n \times m$ matrix R, for the row player, and C, for the column player. Then,

Consider a 2-player game
$$\Gamma = (A_1, A_2, u_1, u_2)$$

Let $n = |A_1|$ and $m = |A_2|$.

 $x \in X$ is a probability distribution:

$$x = (x_1, \ldots, x_n), x_i \ge 0$$
 and $x_1 + \cdots + x_n = 1$

 $y \in Y$ is a probability distribution:

$$y = (y_1, ..., y_m), y_j \ge 0 \text{ and } y_1 + \dots + y_m = 1$$

Utilities can be described by a $n \times m$ matrix R, for the row player, and C, for the column player. Then,

$$U_1(x,y) = x^T R y$$
 and $U_2(x,y) = x^T C y$

AGT-MIRI

For a given $x \in X$, we have to solve:

AGT-MIR	

イロト イヨト イヨト

э

For a given $x \in X$, we have to solve:

 $\max \quad x^T R y$ Subject to: $y_1 + \dots + y_m = 1, y_j \ge 0.$

A	G.	Γ-	Μ	IIR

イロト イポト イヨト イヨト 三日

For a given $x \in X$, we have to solve:

 $\max \quad x^T R y$ Subject to: $y_1 + \dots + y_m = 1, y_i \ge 0.$

For a given y, we have to solve:

Λ	G.	-	Λ.	Л	

イロト イポト イヨト イヨト 三日

For a given $x \in X$, we have to solve:

 $\max \quad x^T R y$ Subject to: $y_1 + \dots + y_m = 1, y_j \ge 0.$

For a given y, we have to solve:

 $\max \quad x^T C y$ Subject to: $x_1 + \dots + x_n = 1, x_i \ge 0$

5/24

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

For a given $x \in X$, we have to solve:

 $\max \quad x^T R y$ Subject to: $y_1 + \dots + y_m = 1, y_j \ge 0.$

For a given y, we have to solve:

 $\max \quad x^T C y$ Subject to: $x_1 + \dots + x_n = 1, x_i \ge 0$

Those are linear programming problems, so

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

For a given $x \in X$, we have to solve:

max $x^T R y$ Subject to: $y_1 + \cdots + y_m = 1$, $y_i \ge 0$.

For a given y, we have to solve:

max $x^T C y$ Subject to: $x_1 + \cdots + x_n = 1$, $x_i > 0$

Those are linear programming problems, so A best response can be computed in polynomial time for 2-player games with rational utilities.

G٦		

5/24

The complexity of finding a NE

4 An exact algorithm to compute NE

5 NE algorithms

э

• A zero-sum game is a 2-player game such that, for each pure strategy profile (a, b), $u_1(a, b) + u_2(a, b) = 0$.

イロト イヨト イヨト

э

- A zero-sum game is a 2-player game such that, for each pure strategy profile (a, b), $u_1(a, b) + u_2(a, b) = 0$.
- That is Let $u = u_1$, we have $u_2 = -u$.

イロト イヨト イヨト

3

- A zero-sum game is a 2-player game such that, for each pure strategy profile (a, b), $u_1(a, b) + u_2(a, b) = 0$.
- That is Let $u = u_1$, we have $u_2 = -u$.
- Player 1 is interested in maximizing u and player 2 in minimizing u.

3

- A zero-sum game is a 2-player game such that, for each pure strategy profile (a, b), $u_1(a, b) + u_2(a, b) = 0$.
- That is Let $u = u_1$, we have $u_2 = -u$.
- Player 1 is interested in maximizing *u* and player 2 in minimizing *u*.
- In terms of matrices we have C = -R.

イロト イポト イヨト イヨト 三日

• (*x**, *y**) is a NE

(日)

• (x^*, y^*) is a NE $(x^*)^T R y^* \ge x^T R y^*$, for $x \in X$, $(x^*)^T C y^* \ge (x^*)^T C y$, for $y \in Y$.

イロト イポト イヨト イヨト 三日

•
$$(x^*, y^*)$$
 is a NE
 $(x^*)^T R y^* \ge x^T R y^*$, for $x \in X$,
 $(x^*)^T C y^* \ge (x^*)^T C y$, for $y \in Y$.

• As C = -R the second equation becomes

э

•
$$(x^*, y^*)$$
 is a NE
 $(x^*)^T R y^* \ge x^T R y^*$, for $x \in X$,
 $(x^*)^T C y^* \ge (x^*)^T C y$, for $y \in Y$.
• As $C = -R$ the second equation becomes
 $(x^*)^T R y^* \le (x^*)^T R y$, for $y \in Y$.

AGT-MIRI

(日)

•
$$(x^*, y^*)$$
 is a NE
 $(x^*)^T R y^* \ge x^T R y^*$, for $x \in X$,
 $(x^*)^T C y^* \ge (x^*)^T C y$, for $y \in Y$.
• As $C = -R$ the second equation becomes
 $(x^*)^T R y^* \le (x^*)^T R y$, for $y \in Y$.

Combining both,

 $x^T R y^* \le (x^*)^T R y^* \le (x^*)^T R y$, for $x \in X$, $y \in Y$.

8/24

イロト イポト イヨト イヨト 三日

•
$$(x^*, y^*)$$
 is a NE
 $(x^*)^T R y^* \ge x^T R y^*$, for $x \in X$,
 $(x^*)^T C y^* \ge (x^*)^T C y$, for $y \in Y$.
• As $C = -R$ the second equation becomes
 $(x^*)^T R y^* \le (x^*)^T R y$, for $y \in Y$.

• Combining both,

 $x^T R y^* \le (x^*)^T R y^* \le (x^*)^T R y$, for $x \in X$, $y \in Y$.

i.e., (x^*, y^*) is a saddle point of the function $x^T R y$ defined over $X \times Y$.

		IR

・ロト ・四ト ・ヨト ・ヨト

æ

Theorem

For any function $\Phi : X \times Y :\rightarrow \mathbb{R}$, we have

$$\sup_{x\in X}\inf_{y\in Y}\Phi(x,y)\leq \inf_{y\in Y}\sup_{x\in X}\Phi(x,y).$$

(日)

э

Theorem

For any function $\Phi : X \times Y :\rightarrow \mathbb{R}$, we have

$$\sup_{x\in X}\inf_{y\in Y}\Phi(x,y)\leq \inf_{y\in Y}\sup_{x\in X}\Phi(x,y).$$

Proof.

Theorem

For any function $\Phi : X \times Y :\rightarrow \mathbb{R}$, we have

$$\sup_{x\in X}\inf_{y\in Y}\Phi(x,y)\leq \inf_{y\in Y}\sup_{x\in X}\Phi(x,y).$$

Proof.

For every
$$x' \in X$$
, $\Phi(x', y) \leq \sup_{x \in X} \Phi(x, y)$

э

<ロト < 同ト < ヨト < ヨト

Theorem

For any function $\Phi : X \times Y :\rightarrow \mathbb{R}$, we have

$$\sup_{x\in X}\inf_{y\in Y}\Phi(x,y)\leq \inf_{y\in Y}\sup_{x\in X}\Phi(x,y).$$

Proof.

For every
$$x' \in X$$
, $\Phi(x', y) \leq \sup_{x \in X} \Phi(x, y)$

$$\inf_{y\in Y} \Phi(x',y) \leq \inf_{y\in Y} \sup_{x\in X} \Phi(x,y).$$

AGT-MIRI

э

9/24

<ロト < 同ト < ヨト < ヨト

Theorem

For any function $\Phi : X \times Y :\rightarrow \mathbb{R}$, we have

$$\sup_{x\in X}\inf_{y\in Y}\Phi(x,y)\leq \inf_{y\in Y}\sup_{x\in X}\Phi(x,y).$$

Proof.

For every
$$x' \in X$$
, $\Phi(x', y) \leq \sup_{x \in X} \Phi(x, y)$

$$\inf_{y\in Y} \Phi(x',y) \leq \inf_{y\in Y} \sup_{x\in X} \Phi(x,y).$$

Taking the supremum over $x' \in X$ on the left hand-side we get the inequality.

AGT-MIRI	

- 4 同 ト 4 ヨ ト 4 ヨ ト

We have

		IR

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

æ.

We have

•
$$x^T R y^* \le (x^*)^T R y^* \le (x^*)^T R y$$
, for $x \in X$, $y \in Y$.

Δ	C.	Т-	Ν	11	R

æ.

10/24

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

We have

•
$$x^T R y^* \le (x^*)^T R y^* \le (x^*)^T R y$$
, for $x \in X$, $y \in Y$.
• Thus

$$\sup_{x \in X} x^T R y^* \le (x^*)^T R y^* \le \inf_{y \in Y} (x^*)^T R y$$

æ.

10/24

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

We have

•
$$x^T R y^* \le (x^*)^T R y^* \le (x^*)^T R y$$
, for $x \in X$, $y \in Y$.

$$\sup_{x \in X} x^T R y^* \le (x^*)^T R y^* \le \inf_{y \in Y} (x^*)^T R y$$

$$\inf_{y \in Y} \sup_{x \in X} x^T R y \le \sup_{x \in X} x^T R y^* \le (x^*)^T R y^* \le \inf_{y \in Y} (x^*)^T R y \le \sup_{x \in X} \inf_{y \in Y} x^T R y$$

.

10/24

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

We have

•
$$x^T R y^* \le (x^*)^T R y^* \le (x^*)^T R y$$
, for $x \in X$, $y \in Y$.

• Thus

$$\sup_{x \in X} x^T R y^* \le (x^*)^T R y^* \le \inf_{y \in Y} (x^*)^T R y$$

$$\inf_{y \in Y} \sup_{x \in X} x^T R y \le \sup_{x \in X} x^T R y^* \le (x^*)^T R y^* \le \inf_{y \in Y} (x^*)^T R y \le \sup_{x \in X} \inf_{y \in Y} x^T R y$$

• Using the minimax inequality, we get

э

We have

•
$$x^T R y^* \le (x^*)^T R y^* \le (x^*)^T R y$$
, for $x \in X$, $y \in Y$.

Thus

$$\sup_{x \in X} x^T R y^* \le (x^*)^T R y^* \le \inf_{y \in Y} (x^*)^T R y$$

$$\inf_{y \in Y} \sup_{x \in X} x^T R y \le \sup_{x \in X} x^T R y^* \le (x^*)^T R y^* \le \inf_{y \in Y} (x^*)^T R y \le \sup_{x \in X} \inf_{y \in Y} x^T R y$$

• Using the minimax inequality, we get $\inf_{y \in Y} \sup_{x \in X} x^T R y = (x^*)^T R y^* = \sup_{x \in X} \inf_{y \in Y} x^T R y$

AGT-MIRI

Spring 2023

10/24

イロト イポト イヨト イヨト 三日

We have

•
$$x^T R y^* \le (x^*)^T R y^* \le (x^*)^T R y$$
, for $x \in X$, $y \in Y$.

Thus

$$\sup_{x \in X} x^T R y^* \le (x^*)^T R y^* \le \inf_{y \in Y} (x^*)^T R y$$

$$\inf_{y \in Y} \sup_{x \in X} x^T R y \le \sup_{x \in X} x^T R y^* \le (x^*)^T R y^* \le \inf_{y \in Y} (x^*)^T R y \le \sup_{x \in X} \inf_{y \in Y} x^T R y$$

• Using the minimax inequality, we get $\inf_{y \in Y} \sup_{x \in X} x^T R y = (x^*)^T R y^* = \sup_{x \in X} \inf_{y \in Y} x^T R y$

We refer to $\inf_{y \in Y} \sup_{x \in X} x^T R y$ as the value of the game.

イロト 不得 トイヨト イヨト 三日

• For a fixed y, we have

		IIR	

3

11/24

• For a fixed y, we have

$$\max_{x \in X} x^T R y = \max_{i=1,\dots,n} \{ [Ry]_i \},\$$

Λ	G.	-	Λ.	Л	

3

11/24

• For a fixed y, we have

$$\max_{x \in X} x^T R y = \max_{i=1,\dots,n} \{ [Ry]_i \},\$$

therefore

$$\min_{y \in Y} \max_{x \in X} x^T R y = \min_{y \in Y} \max\{[Ry]_1, \dots [Ry]_n\}$$

AGT-MIRI

3

11/24

• For a fixed y, we have

$$\max_{x \in X} x^T R y = \max_{i=1,\dots,n} \{ [Ry]_i \},\$$

therefore

$$\min_{y \in Y} \max_{x \in X} x^T R y = \min_{y \in Y} \max\{[Ry]_1, \dots [Ry]_n\}$$

• So, both the value of the game and a Nash equilibrium strategy for player 2 can be obtained by solving the linear programming problem:

11/24

くロ と く 同 と く ヨ と 一

• For a fixed y, we have

$$\max_{x\in X} x^T R y = \max_{i=1,\dots,n} \{ [Ry]_i \},\$$

therefore

$$\min_{y \in Y} \max_{x \in X} x^T R y = \min_{y \in Y} \max\{[Ry]_1, \dots [Ry]_n\}$$

• So, both the value of the game and a Nash equilibrium strategy for player 2 can be obtained by solving the linear programming problem:

$\min v$ $v\mathbf{1}_n \geq Ry, y \in Y.$

AGT-MIRI

Computing NE

Spring 2023

• Similarly, we have

$$\max_{x \in X} \min_{y \in Y} x^T R y = \max_{x \in X} \min\{[R^T x]_1, \dots [R^T]_n\}$$

Δ	G.	г.	N	Л	R
~	ч.				

3

• Similarly, we have

$$\max_{x \in X} \min_{y \in Y} x^T R y = \max_{x \in X} \min\{[R^T x]_1, \dots [R^T]_n\}$$

• So, a Nash equilibrium strategy for player 1 can be obtained by solving the linear programming problem:

э

12/24

• Similarly, we have

$$\max_{x \in X} \min_{y \in Y} x^T R y = \max_{x \in X} \min\{[R^T x]_1, \dots [R^T]_n\}$$

• So, a Nash equilibrium strategy for player 1 can be obtained by solving the linear programming problem:

max w

$$w\mathbf{1}_m \leq R^T x, x \in X.$$

	Г-		

э

イロト イポト イヨト イヨト

• Similarly, we have

$$\max_{x \in X} \min_{y \in Y} x^T R y = \max_{x \in X} \min\{[R^T x]_1, \dots [R^T]_n\}$$

• So, a Nash equilibrium strategy for player 1 can be obtained by solving the linear programming problem:

 $\max w$ $w \mathbf{1}_m \leq R^T x, x \in X.$

• LP can be solved efficiently, thus there is a polynomial time algorithm for computing NE for zero-sum games.

	IRI

イロト 不得 トイヨト イヨト 二日

- Zero-sum games
- The complexity of finding a NE
 - 4) An exact algorithm to compute NE
 - 5 NE algorithms

		IR

イロト イボト イヨト イヨト

(Papadimitriou 94) Polynomial Parity Argument on Directed Graphs

3

(Papadimitriou 94)

Polynomial Parity Argument on Directed Graphs

• The class of all problems with guaranteed solution by use of the following graph-theoretic lemma

э

イロト イポト イヨト

(Papadimitriou 94)

Polynomial Parity Argument on Directed Graphs

 The class of all problems with guaranteed solution by use of the following graph-theoretic lemma
 A directed graph with an unbalanced node (node with indegree ≠ outdegree) must have another.

イロト イポト イヨト イヨト

(Papadimitriou 94)

Polynomial Parity Argument on Directed Graphs

- The class of all problems with guaranteed solution by use of the following graph-theoretic lemma
 A directed graph with an unbalanced node (node with indegree ≠ outdegree) must have another.
- Such problems are defined by an implicitly defined directed graph *G* and an unbalanced node *u* of *G*

(Papadimitriou 94)

Polynomial Parity Argument on Directed Graphs

- The class of all problems with guaranteed solution by use of the following graph-theoretic lemma
 A directed graph with an unbalanced node (node with indegree ≠ outdegree) must have another.
- Such problems are defined by an implicitly defined directed graph *G* and an unbalanced node *u* of *G* and the objective is finding another unbalanced node.

(Papadimitriou 94)

Polynomial Parity Argument on Directed Graphs

- The class of all problems with guaranteed solution by use of the following graph-theoretic lemma
 A directed graph with an unbalanced node (node with indegree ≠ outdegree) must have another.
- Such problems are defined by an implicitly defined directed graph *G* and an unbalanced node *u* of *G* and the objective is finding another unbalanced node.
- Usually G is huge but implicitly defined as the graphs defining solutions in local search algorithms.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• The class PPAD contains interesting computational problems not known to be in P

э

 The class PPAD contains interesting computational problems not known to be in P has complete problems.

э

(日)

- The class PPAD contains interesting computational problems not known to be in P has complete problems.
- But not a clear complexity cut.

< ロ > < 同 > < 回 > < 回 > < 回 > <

End-of-Line

AGT-MIRI

э

16 / 24

End-of-Line

Given an implicit representation of a graph G with vertices of degree at most 2 and a vertex $v \in G$, where v has in degree 0. Find a node $v' \neq v$, such that v' has out degree 0.

16/24

くロ と く 同 と く ヨ と 一

End-of-Line

Given an implicit representation of a graph G with vertices of degree at most 2 and a vertex $v \in G$, where v has in degree 0. Find a node $v' \neq v$, such that v' has out degree 0.

• Since every node has degree 2, it is a collection of paths and cycles.

End-of-Line

Given an implicit representation of a graph G with vertices of degree at most 2 and a vertex $v \in G$, where v has in degree 0. Find a node $v' \neq v$, such that v' has out degree 0.

- Since every node has degree 2, it is a collection of paths and cycles.
- We know that

Every directed graph with in/outdegree 1 and a source, has a sink.

End-of-Line

Given an implicit representation of a graph G with vertices of degree at most 2 and a vertex $v \in G$, where v has in degree 0. Find a node $v' \neq v$, such that v' has out degree 0.

- Since every node has degree 2, it is a collection of paths and cycles.
- We know that Every directed graph with in/outdegree 1 and a source, has a sink.
- Which guarantees that the End-of-Line problem has always a solution.

16/24

・ロト ・ 一下 ・ ト ・ ト ・ ト

End-of-Line: graph representation

- G is given implicitly by a circuit C
- C provides a predecessor and successor pair for each given vertex in G, i.e. C(u) = (v, w).
- A special label indicates that a node has no predecessor/successor.

The complexity of finding a NE

Theorem (Daskalakis, Goldberg, Papadimitriou '06) Finding a Nash equilibrium is PPAD-complete

< ロ > < 同 > < 回 > < 回 > < 回 > <

The complexity of finding a NE

Theorem (Daskalakis, Goldberg, Papadimitriou '06) Finding a Nash equilibrium is PPAD-complete

Theorem (Chen, Deng '06)

Finding a Nash equilibrium is PPAD-complete even in 2-player games.

18/24

・ 同 ト ・ ヨ ト ・ ヨ ト

The complexity of finding a NE

Theorem (Daskalakis, Goldberg, Papadimitriou '06) Finding a Nash equilibrium is PPAD-complete

Theorem (Chen, Deng '06)

Finding a Nash equilibrium is PPAD-complete even in 2-player games.

- C. Daskalakis, P-W. Goldberg, C.H. Papadimitriou: The complexity of computing a Nash equilibrium. SIAM J. Comput. 39(1): 195-259 (2009) first version STOC 2006
- X. Chen, X. Deng, S-H. Teng: Settling the complexity of computing two-player Nash equilibria. J. ACM 56(3) (2009) first version FOCS 2006

- Zero-sum games
- 3) The complexity of finding a NE

An exact algorithm to compute NE

5 NE algorithms

19/24

イロト イボト イヨト イヨト

NE characterization

Theorem

In a strategic game in which each player has finitely many actions a mixed strategy profile σ^* is a NE iff, for each player i,

- the expected payoff, given σ_{-i}, to every action in the support of σ^{*}_i is the same
- the expected payoff, given σ_{-i}, to every action not in the support of σ^{*}_i is at most the expected payoff on an action in the support of σ^{*}_i.

NE conditions given support

Let $A \subseteq \{1, \ldots n\}$ and $B \subseteq \{1, \ldots m\}$.

The conditions for having a NE on this particular support can be written as follows:

 $\max \lambda_1 + \lambda_2$

Subject to:

$$[R y]_i = \lambda_1, \text{ for } i \in A$$

$$[R y]_i \le \lambda_1, \text{ for } i \notin A$$

$$j[C x] = \lambda_2, \text{ for } j \in B$$

$$j[C x] \le \lambda_2, \text{ for } j \notin B$$

AGT-MIRI

Spring 2023

イロト イボト イヨト イヨト

21/24

Iterating over all supports

 For every possible combination of supports A ⊆ {1,...n} and B ⊆ {1,...m}.
 Solve the set of simultaneous equations using linear programming.

22 / 24

イロト イポト イヨト イヨト 三日

Iterating over all supports

- For every possible combination of supports A ⊆ {1,...n} and B ⊆ {1,...m}.
 Solve the set of simultaneous equations using linear programming.
- This is an exact exponential time algorithm as the number of supports can be exponential.

22 / 24

Iterating over all supports

- For every possible combination of supports A ⊆ {1,...n} and B ⊆ {1,...m}.
 Solve the set of simultaneous equations using linear programming.
- This is an exact exponential time algorithm as the number of supports can be exponential.
- The same algorithm can be applied to a multiplayer game. We would be able to compute a NE on rationals if such a NE exists.

・ロト ・ 一下 ・ ト ・ ト ・ ト

- Zero-sum games
- 3) The complexity of finding a NE
- 4 An exact algorithm to compute NE
- In the second second

э

23/24

(日)

NE algorithms

 Lemke-Howson (1964) algorithm defines a polytope based on best response conditions and membership to the support and uses ideas similar to Simplex with a ad-hoc pivoting rule. (See slides by Philippe Bich)

Lemke-Howson requires exponential time [Savani, von Stengel, 2004]).

くロ と く 同 と く ヨ と 一

NE algorithms

 Lemke-Howson (1964) algorithm defines a polytope based on best response conditions and membership to the support and uses ideas similar to Simplex with a ad-hoc pivoting rule. (See slides by Philippe Bich)

Lemke-Howson requires exponential time [Savani, von Stengel, 2004]).

• Iterating over suppo rts [Porter, Nudelman and Shoham, AAAI-04]

NE algorithms

 Lemke-Howson (1964) algorithm defines a polytope based on best response conditions and membership to the support and uses ideas similar to Simplex with a ad-hoc pivoting rule. (See slides by Philippe Bich)

Lemke-Howson requires exponential time [Savani, von Stengel, 2004]).

- Iterating over suppo rts [Porter, Nudelman and Shoham, AAAI-04]
- Mixed-Integer Programming formulations [Sandholm, Gilpin and Conitzer, AAAI-05]

3

24 / 24