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Weighted voting games

Weighted voting games

A Weighted voting game (WVG) is a simple game for which there
exists a quota q and it is possible to assign to each i ∈ N a weight
wi , so that

X ∈ W iff
∑
i∈X

wi ≥ q.

A explicit representation as [q;w ] for a WVG Γ is called a realization
of Γ.
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Weighted voting games equivalence

Weighted voting games: equivalent realizations

Two realizations with different weights and quotas, might encode the
same WVG i.e., have exactly the same set of winning coalitions.

For instance, this is the case if one game is obtained from the other
by scaling up all weights and the quota by the same factor.

But Γ1 = [5; 3, 3] and Γ2 = [2; 1, 1] also describe the same game.

Two realizations [q1;w1] and [q2;w2] on the same set N players are
equivalent if, for S ⊆ N, w1(S) ≥ q1 iff w2(S) ≥ q2.

The notion of equivalence naturally extends to other representations
forms for simple games.
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Weighted voting games equivalence

Integrality of Weights and Quota

Theorem

For any weighted voting game Γ = [q;w ] with |N| = n, there exists an
equivalent weighted voting game Γ′ = [q′;w ′] such that

Γ and Γ′ are equivalents,

w ′ ∈ (Z+)n and q′ ∈ Z+, and

w ′
max = O(2n log n).

[Carreras and Freixas, Math. Soc.Sci., 1996]
It can be deduced from
[S. Muroga. Threshold Logic and its Applications, 1971].
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Weighted voting games equivalence

Representation

WVG by [q;w ]

We can assume without loss of generality that all weights and the
quota are integers given in binary.

Even though the entries of the weight vector w are exponential in n,
they can be represented using O(nlogn) bits

Thus, a weighted voting game with n players can be described using
poly(n) bits.

We write w(C ) to denote the total weight of a coalition C , i.e., we
set w(C ) =

∑
i∈C wi

We set wmax = maxi∈N wi
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Weighted voting games IsSimple and IsStrong

IsSimple and IsStrong

A simple game (N,W) is

strong if S /∈ W implies N \ S ∈ W.

proper if S ∈ W implies N \ S /∈ W.
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Weighted voting games IsSimple and IsStrong

IsSimple and IsStrong

We analyze the complexity of the IsProper and IsStrong problems
when the input game is an integer realization [q;w ] of a WVG Γ.

Some of the hardness proofs are based on reductions from the
NP-complete problem:
Name: Partition
Input: n integer values, x1, . . . , xn
Question: Is there S ⊆ {1, . . . , n} for which∑

i∈S
xi =

∑
i /∈S

xi .

Observe that, for any instance of the Partition problem in which
the sum of the n input numbers is odd, the answer must be no.
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Weighted voting games IsSimple and IsStrong

IsSimple and IsStrong

Theorem

The IsStrong and the IsProper problems, when the input is described
by an integer realization of a weighted game [q;w ], are coNP-complete.

From the definitions of strong, proper it is straightforward to show
that both problems belong to coNP.

Observe that the weighted game with integer representation
(2; 1, 1, 1) is both proper and strong.
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Weighted voting games IsSimple and IsStrong

Hardness

We transform an instance x = (x1, . . . , xn) of Partition into a
realization of a weighted game according to the following schema

f (x) =

{
(q(x); x) when x1 + · · ·+ xn is even,

(2; 1, 1, 1) otherwise.

Function f can be computed in polynomial time provided q does.

Independently of q, when x1 + · · ·+ xn is odd, x is a no input for
partition, but f (x) is a yes instance of IsStrong or IsProper.
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Weighted voting games IsSimple and IsStrong

IsStrong

Assume that x1 + · · ·+ xn is even.
Let s = (x1 + · · ·+ xn)/2 and N = {1, . . . , n}.
Set q(x) = s + 1.

If there is S ⊂ N such that
∑

i∈S xi = s, then
∑

i /∈S xi = s, thus both
S and N \ S are losing coalitions and f (x) is not strong.

If S and N \ S are losing coalitions in f (x).
If
∑

i∈S xi < s then
∑

i /∈S xi ≥ s + 1, N \ S should be winning.
Thus

∑
i∈S xi =

∑
i ̸∈S xi = s, and there exists a partition of x .
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Weighted voting games IsSimple and IsStrong

IsProper

Assume that x1 + · · ·+ xn is even.
Let s = (x1 + · · ·+ xn)/2 and N = {1, . . . , n}.
Set q(x) = s.

If there is S ⊂ N such that
∑

i∈S xi = s, then
∑

i /∈S xi = s, thus both
S and N \ S are winning coalitions and f (x) is not proper.

When f (x) is not proper

∃S ⊆ N :
∑
i∈S

xi ≥ s ∧
∑
i /∈S

xi ≥ s,

and thus
∑

i∈S xi = s.
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Weighted voting games Power and weight

Power and weight

We have argued that the power of player i in a coalitional game can
be measured by the Shapley value ϕi or Banzhaf index βi .

If the game in question is a WVG, one may expect that ϕi is closely
related to wi .

It is not hard to show that power is monotone in weight, i.e., for any
weighted voting game Γ = [q;w ] and any two players i , j ∈ N, we
have ϕi (Γ) ≤ ϕj(Γ) iff wi ≤ wj .

However, two agents may have identical voting power even if their
weights differ considerably.
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Weighted voting games Power and weight

Power and weight

After the May 2010 elections in the UK, the Conservative Party had
307 seats, the Labour Party had 258 seats, the Liberal Democrats
(LibDems) had 57 seats, and all other parties shared the remaining 28
seats (with the most powerful of them getting 8 seats).

It is easy to see that in this weighted voting game there are two
two-party coalitions (Conservatives+Labour and
Conservatives+LibDems) that can get a majority of seats.

Moreover, if Labour or LibDems want to form a coalition that does
not include Conservatives, they need each other (as well as a few
minor parties).

Thus, Labour and LibDems have the same Shapley value, despite
being vastly different in size.
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Weighted voting games Power and weight

Power and weight

The phenomenon illustrated in the previous example explains why
major parties often end up making concessions to smaller parties in
order to form a winning coalition: the small parties may wield
substantial voting power.

To determine a player’s power, we have to take into account the
distribution of the other players’ weights as well as the quota.
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Weighted voting games Power and weight

Power and weight

Consider a weighted voting game with w = (4, 4, 1, 1).

Setting q = 10, only the grand coalition wins, so all Shapley values
are 1/4.

Setting q = 8, the smaller players are dummies, so their Shapley value
is 0.

Setting q = 5, a player of weight 1 is pivotal only if it appears in the
second position, and a player of weight 4 appears in the first position.
There are four permutations that satisfy this condition, so the
Shapley value of each of the smaller players is 1/6.
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Weighted voting games Power and weight

Power and weight:duality

The dual of a game Γ = (N,W) is the game Γd = (N,Wd) where
Wd = {S ⊆ N | N \ S /∈ W}.

A coalition S is blocking if N \ S /∈ W

Lemma

Given a WVG Γ = [q;w ], we have

[w(N) + 1− q;w ] is a representation of Γd .

for each i ∈ N, ϕi (Γ) = ϕi (Γ
d)
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Weighted voting games Power and weight

Power and weight

Proof.

Let us see that [w(N) + 1− q;w ] is a representation of Γd .

Assume that S is a blocking coalition, we know that N \ S loses in Γ.

i.e., w(N \ S) < q, i.e., w(N)− w(S) < q.

giving w(S) > w(N)− q,

but as all the numbers are integers, equivalently,
w(S) ≥ 1 + w(N)− q

So, S ∈ Wd iff w(S) ≥ 1 + w(N)− q.
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Weighted voting games Power and weight

Power and weight

Let us prove that, for each i ∈ N, ϕi (Γ) = ϕi (Γ
d)

Suppose, that for a permutation π and a player i , w(Sπ(i)) < q and
w(Sπ(i) ∪ {i}) ≥ q.

Let π′ be the permutation obtained by reversing π, we have
w(Sπ′(i)) = w(N)− w(Sπ(i))− wi ≤ w(N)− q < w(N)− q + 1,
w(Sπ′(i) ∪ {i}) = w(N)− w(Sπ(i)) > w(N)− q ≥ w(N)− q + 1.

Hence, i is pivotal for the permutation π′ in the game Γd .

By symmetry, the converse is also true.

Thus, we have established a bijection between the set of permutations
that i is pivotal for in Γ and the set of permutations that i is pivotal
for in Γd .

EndProof.
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Weighted voting games Computing power indices

Auxiliary results

For n integer values w = (w1, . . . ,wn) and an integer x , let Tw (i , x)
be the number of possibilities to write the integer x as the sum of
some subset of the first i weights.

Let w̄ =
∑n

i=1 wi

When x > w̄ , Tw (i , x) = 0
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Weighted voting games Computing power indices

Auxiliary results

Given w , the values Tw (i , x), for 0 ≤ i ≤ n and 0 ≤ x ≤ w̄ , can be
computed in time O(xn)

We can use dynamic programming over the following recurrence.

Tw (i , x) =


1 if x = 0

0 if x > 0 and i = 0

Tw (i − 1, x) if x < wi and i > 0

Tw (i − 1, x) + Tw (i − 1, x − wi ) otherwise

The table has size O(xn) and each element can be computed in O(1)
filling the table by rows.
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Weighted voting games Computing power indices

Auxiliary results

For integers x , c , let Cw (i , x) be the number of possibilities to write
the integer x as the sum of some subset with cardinality c of the first
i weights.

When x > w̄ , or c > n, the values are 0.
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Weighted voting games Computing power indices

Auxiliary results

Given w , the values Cw (i , x), for 0 ≤ i ≤ n, 0 ≤ x ≤ w̄ , and 0 ≤ c ≤ n
can be computed in time O(xn2)

We can use dynamic programming over the following recurrence.

C (i , x , c) =



1 for x = 0

0 if x > 0 and i = 0

0 if x > 0 i > 0 and c = 0

C (i − 1, x , c) for 1 ≤ i ≤ n, 1 ≤ x < wi ,

and 1 ≤ c ≤ n

C (i − 1, x , c) + C (i − 1, x − wi , c − 1) otherwise

The table has size O(xn2) and each element can be computed in
O(1) filling the table in an adequate order.
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Weighted voting games Computing power indices

Auxiliary results

Note that in T once a row is computed, we do not need any of the
previous rows to compute the next row.

This allows for the design of algorithms that consume the values as
they are computed but do no require to store the complete table.
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Weighted voting games Computing power indices

Definitions

For a simple game Γ = (N,W),

player i is critical for coalition S if S ∈ W and S − {i} ∈ L

ηi (Γ) is the number of coalitions for which i is critical.

Wi is the set of winning coalitions containing i

The Banzhaf value is βi (Γ) = ηi (Γ)/2
n−1
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Weighted voting games Computing power indices

Computing the Banzhaf value

Lemma

For a WVG Γ = (N,W) given by an integer realization [q;w ], the
quantites ηi (Γ) and |Wi |, for i ∈ N, and |W| can be computed in O(∆n)
time and O(∆) space, where ∆ = min(q, w̄ − q + 1).
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Weighted voting games Computing power indices

Computing the Banzhaf value

Proof.

Case q = min(q, w̄ − q + 1) (q ≤ (w̄ + 1)/2)

We compute the vector T (n, x) = Tw (n, x), for 0 ≤ x ≤ q − 1

Let T−i (x) be the number of losing coalitions S ∈ L, with w(S) = x
and i /∈ S . These values can be computed recursively as

T−i (x) = T (n, x)− T−i (n, x − wi )

Then,

ηi (Γ) =

q−1∑
x=q−wi

T−i (x)

All the computation can be done in the desired time bounds.
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Weighted voting games Computing power indices

Computing the Banzhaf value

When q > (w̄ + 1)/2, we compute T (n, x), for q ≤ x ≤ w̄ indexing
the sets by their complements.

With a symmetric definition of T+i (x) we can express ηi (Γ) in a
similar way.

The other values can be expressed as sums of T−i (x) and/or T+i (x)

EndProof.
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Weighted voting games Computing power indices

Other power indices

In a similar way, it can be shown that the Shapley-Shubick index can
be computed in O(∆n2) time using O(∆n) memory.

Other power indices can be computed using similar techniques, see
[Staudacher et al., Operations research and decisions 2:123–145,
2021]

CoopGame is a R-package implementing most of the results in the
paper.
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