
Complexity: Problems and Classes

Maria Serna

Spring 2024

AGT-MIRI Complexity: Problems and Classes Spring 2024 1 / 47

Algorithmics: Basic references

Kleinberg, Tardos. Algorithm Design, Pearson Education, 2006.

Cormen, Leisserson, Rivest and Stein. Introduction to algorithms.
Second edition, MIT Press and McGraw Hill 2001.

Easley, Kleinberg. Networks, Crowds, and Markets: Reasoning About
a Highly Connected World, Cambridge University Press, 2010

AGT-MIRI Complexity: Problems and Classes Spring 2024 2 / 47

Computational Complexity: Basic references

Sipser Introduction to the Theory of Computation 2013.

Papadimitriou Computational Complexity 1994.

Garey and Johnson Computers and Intractability: A Guide to the
Theory of NP-Completeness 1979

AGT-MIRI Complexity: Problems and Classes Spring 2024 3 / 47

Growth of functions: Asymptotic notations

We consider only functions defined on the natural numbers.

f , g : N → N

AGT-MIRI Complexity: Problems and Classes Spring 2024 4 / 47

O-notation
For a given function g(n)

O(g(n)) = {f (n) |there exists a positive constant c and n0 ≥ 0 }
such that 0 ≤ f (n) ≤ cg(n) for all n ≥ n0}

Equivalently, the set of functions that verify

lim
n→∞

f (n)

g(n)
< ∞

5n3 + 2n2 = O(2n)

5n3 + 2n2 = O(n4)

2n = O(22n)

2n = O(2n log n)

It is used for asymptotic upper bound.
Although O(g(n)) is a set we write f (n) = O(g(n)) to indicate that f (n)
is a member of O(g(n))

AGT-MIRI Complexity: Problems and Classes Spring 2024 5 / 47

Ω-notation
For a given function g(n)

Ω(g(n)) = {f (n) |there exists positive constants c and n0 such that}
0 ≤ cg(n) ≤ f (n) for all n ≥ n0}

Equivalently, the set of functions that verify

lim
n→∞

f (n)

g(n)
> 0

5n3 + 2n2 = Θ(n3)

5n3 + 2n2 = Ω(n3)

5n3 + 2n2 = Ω(n2)

2n = Ω(2n/2)

It is used for asymptotic lower bound.
AGT-MIRI Complexity: Problems and Classes Spring 2024 6 / 47

Θ-notation
For a given function g(n)

Θ(g(n)) = {f (n) |there are positive constants c1, c2, and n0 ≥ 0 }
such that 0 ≤ c1g(n) ≤ f (n) ≤ c2g(n) for all n ≥ n0}

Equivalently, the set of functions that verify

0 < lim
n→∞

f (n)

g(n)
< ∞

5n3 + 2n2 = Θ(n3)

5n3 + 2n2 /∈ Θ(n2)

It is used for asymptotic equivalence

AGT-MIRI Complexity: Problems and Classes Spring 2024 7 / 47

o-notation
For a given function g(n)

o(g(n)) = {f (n) |for any positive constant c there is n0 ≥ 0 such that}
0 ≤ f (n) ≤ cg(n) for all n ≥ n0}

Note that f (n) = O(n) implies f (n) ≤ cg(n) asymptotically for some c
but f (n) = o(n) implies f (n) ≤ cg(n) asymptotically for any c

and when f (n) = o(g(n)) it holds that limn→∞
f (n)
g(n) = 0

It is used for asymptotic upper bounds that are not asymtotically tight.

AGT-MIRI Complexity: Problems and Classes Spring 2024 8 / 47

ω-notation
f (n) ∈ ω(g(n)) iff g(n) ∈ o(f (n))

AGT-MIRI Complexity: Problems and Classes Spring 2024 9 / 47

Algorithm’s analysis

Time

Space

Algorithm A on input x takes time t(x).
|x | denotes the size of input x .

Definition

The cost function of algorithm A is a function from N to N defined as

CA(n) = max
|x |=n

t(x)

AGT-MIRI Complexity: Problems and Classes Spring 2024 10 / 47

Fundamental growth functions

Polynomial time

Exponential time

AGT-MIRI Complexity: Problems and Classes Spring 2024 11 / 47

Fundamental growth functions

Polynomial time
CA(n) = O(nc), for some constant c .

Exponential time

AGT-MIRI Complexity: Problems and Classes Spring 2024 12 / 47

Fundamental growth functions

Polynomial time
CA(n) = O(nc), for some constant c .

Exponential time
CA(n) = 2O(nc), for some constant c .

AGT-MIRI Complexity: Problems and Classes Spring 2024 13 / 47

Fundamental growth functions

Polynomial time
CA(n) = O(nc), for some constant c .

Exponential time
CA(n) = 2O(nc), for some constant c .

Quasi-polynomial time

Pseudo polynomial time

AGT-MIRI Complexity: Problems and Classes Spring 2024 14 / 47

Fundamental growth functions

Polynomial time
CA(n) = O(nc), for some constant c .

Exponential time
CA(n) = 2O(nc), for some constant c .

Quasi-polynomial time
CA(n) = 2O(logc n), for some constant c .

Pseudo-polynomial time
CA(n) = O((mW)c), for some constant c , but input size is
O(m + logW)

Similar definitions replacing time by space
Most used PSPACE polynomial space

AGT-MIRI Complexity: Problems and Classes Spring 2024 15 / 47

Fundamental growth functions

Polynomial time
CA(n) = O(nc), for some constant c .

Exponential time
CA(n) = 2O(nc), for some constant c .

Quasi-polynomial time
CA(n) = 2O(logc n), for some constant c .

Pseudo-polynomial time
CA(n) = O((mW)c), for some constant c , but input size is
O(m + logW)

Similar definitions replacing time by space
Most used PSPACE polynomial space

AGT-MIRI Complexity: Problems and Classes Spring 2024 15 / 47

Problem types

Decision
Input x
Property P(x)

Example: Given a graph and two vertices, is there a path joining
them?

Function
Input x
Compute y such that Q(x , y)

Example: Given a graph and two vertices, compute the minimum
distance between them.

AGT-MIRI Complexity: Problems and Classes Spring 2024 16 / 47

Problem types

Decision
Input x
Property P(x)

Coding inputs on alphabet Σ a problem is a set
{x | P(x)} ∈ P(Σ∗)

Function
Input x
Compute y such that Q(x , y)

Coding inputs/outputs on alphabet Σ a deterministic algorithm
solving a problem determines a function
f : Σ∗ → Σ∗ s.t., for any x , Q(x , f (x)) is true.

AGT-MIRI Complexity: Problems and Classes Spring 2024 17 / 47

Problem types

Decision
Input x
Property P(x)

Coding inputs on alphabet Σ a problem is a set

{x | P(x)} ∈ P(Σ∗)

Function
Input x
Compute y such that Q(x , y)

Coding inputs/outputs on alphabet Σ a deterministic algorithm
solving a problem determines a function
f : Σ∗ → Σ∗ s.t., for any x , Q(x , f (x)) is true.

AGT-MIRI Complexity: Problems and Classes Spring 2024 17 / 47

Problem types

Decision
Input x
Property P(x)

Coding inputs on alphabet Σ a problem is a set
{x | P(x)} ∈ P(Σ∗)

Function
Input x
Compute y such that Q(x , y)

Coding inputs/outputs on alphabet Σ a deterministic algorithm
solving a problem determines a function
f : Σ∗ → Σ∗ s.t., for any x , Q(x , f (x)) is true.

AGT-MIRI Complexity: Problems and Classes Spring 2024 17 / 47

Problem types

Decision
Input x
Property P(x)

Coding inputs on alphabet Σ a problem is a set
{x | P(x)} ∈ P(Σ∗)

Function
Input x
Compute y such that Q(x , y)

Coding inputs/outputs on alphabet Σ a deterministic algorithm
solving a problem determines a function
f : Σ∗ → Σ∗ s.t., for any x , Q(x , f (x)) is true.

AGT-MIRI Complexity: Problems and Classes Spring 2024 17 / 47

Problem types

Decision
Input x
Property P(x)

Coding inputs on alphabet Σ a problem is a set
{x | P(x)} ∈ P(Σ∗)

Function
Input x
Compute y such that Q(x , y)

Coding inputs/outputs on alphabet Σ a deterministic algorithm
solving a problem determines a function

f : Σ∗ → Σ∗ s.t., for any x , Q(x , f (x)) is true.

AGT-MIRI Complexity: Problems and Classes Spring 2024 17 / 47

Problem types

Decision
Input x
Property P(x)

Coding inputs on alphabet Σ a problem is a set
{x | P(x)} ∈ P(Σ∗)

Function
Input x
Compute y such that Q(x , y)

Coding inputs/outputs on alphabet Σ a deterministic algorithm
solving a problem determines a function
f : Σ∗ → Σ∗ s.t., for any x , Q(x , f (x)) is true.

AGT-MIRI Complexity: Problems and Classes Spring 2024 17 / 47

Decision problem classes

Undecidable
No algorithm can solve the problem.

Decidable
There is an algorithm solving them.

P:
There is an algorithm solving it with polynomial cost.
EXP
There is an algorithm solving it with exponential cost.
PSPACE
There is an algorithm solving it within polynomial space.

AGT-MIRI Complexity: Problems and Classes Spring 2024 18 / 47

NP: non-deterministic polynomial time

It is possible to define a certificate y and a property P(x , y) such that

If x is an input with answer yes, there is y such that P(x , y) is true,

P(x , y) can be decided in polynomial time, given x and y .

y has polynomial size with respect to |x |.

Problems with a polynomial time verifier

{x | ∃yP(x , y)}

AGT-MIRI Complexity: Problems and Classes Spring 2024 19 / 47

NP: non-deterministic polynomial time

It is possible to define a certificate y and a property P(x , y) such that

If x is an input with answer yes, there is y such that P(x , y) is true,

P(x , y) can be decided in polynomial time, given x and y .

y has polynomial size with respect to |x |.

Problems with a polynomial time verifier
{x | ∃yP(x , y)}

AGT-MIRI Complexity: Problems and Classes Spring 2024 19 / 47

Some decision problems

Bipartiteness (bip)
Given a graph determine whether it is bipartite.

Perfect matching (pmatch)
Given a graph determine whether it has a perfect matching.

Hamiltonian Cycle (hc)
Given a graph determine whether it has a Hamiltonian circuit.

In which classes?

AGT-MIRI Complexity: Problems and Classes Spring 2024 20 / 47

NP-hardness

It is an open question whether P = NP or NP = EXP. Most believed
is that P ̸= NP

Π is NP-hard means that a polynomial time algorithm for Π can be
reused to solve in polynomial time any problem in P.

Decision problem A is NP-complete iff A ∈ NP and A is NP-hard.
Look at Garey and Johnson’s book for a big list of NP-hard/complete
problems.

The NP-hardness of a problem is assessed through reductions.

AGT-MIRI Complexity: Problems and Classes Spring 2024 21 / 47

NP-hardness

It is an open question whether P = NP or NP = EXP. Most believed
is that P ̸= NP

Π is NP-hard means that a polynomial time algorithm for Π can be
reused to solve in polynomial time any problem in P.

Decision problem A is NP-complete iff A ∈ NP and A is NP-hard.
Look at Garey and Johnson’s book for a big list of NP-hard/complete
problems.

The NP-hardness of a problem is assessed through reductions.

AGT-MIRI Complexity: Problems and Classes Spring 2024 21 / 47

Reductions

Let A and B be decision problems

A function f : N → N is a reduction from A to B if
x ∈ A iff f (x) ∈ B

f is a polynomial time reduction if in addition f can be computed in
polynomial time.

A is reducible to B (A ≤ B) if there is a polynomial time reduction
from A to B.

Theorem

If A ≤ B and B ∈ P then A ∈ P

This type of reduction is calle many-one polynomial reduction, sometiomes
we use ≤p

m to distinguish from other reducibilities.

AGT-MIRI Complexity: Problems and Classes Spring 2024 22 / 47

Reductions

Let A and B be decision problems

A function f : N → N is a reduction from A to B if
x ∈ A iff f (x) ∈ B

f is a polynomial time reduction if in addition f can be computed in
polynomial time.

A is reducible to B (A ≤ B) if there is a polynomial time reduction
from A to B.

Theorem

If A ≤ B and B ∈ P then A ∈ P

This type of reduction is calle many-one polynomial reduction, sometiomes
we use ≤p

m to distinguish from other reducibilities.

AGT-MIRI Complexity: Problems and Classes Spring 2024 22 / 47

Reductions

Let A and B be decision problems

A function f : N → N is a reduction from A to B if
x ∈ A iff f (x) ∈ B

f is a polynomial time reduction if in addition f can be computed in
polynomial time.

A is reducible to B (A ≤ B) if there is a polynomial time reduction
from A to B.

Theorem

If A ≤ B and B ∈ P then A ∈ P

This type of reduction is calle many-one polynomial reduction, sometiomes
we use ≤p

m to distinguish from other reducibilities.

AGT-MIRI Complexity: Problems and Classes Spring 2024 22 / 47

Reductions

Let A and B be decision problems

A function f : N → N is a reduction from A to B if
x ∈ A iff f (x) ∈ B

f is a polynomial time reduction if in addition f can be computed in
polynomial time.

A is reducible to B (A ≤ B) if there is a polynomial time reduction
from A to B.

Theorem

If A ≤ B and B ∈ P then A ∈ P

This type of reduction is calle many-one polynomial reduction, sometiomes
we use ≤p

m to distinguish from other reducibilities.

AGT-MIRI Complexity: Problems and Classes Spring 2024 22 / 47

Reductions

Let A and B be decision problems

A function f : N → N is a reduction from A to B if
x ∈ A iff f (x) ∈ B

f is a polynomial time reduction if in addition f can be computed in
polynomial time.

A is reducible to B (A ≤ B) if there is a polynomial time reduction
from A to B.

Theorem

If A ≤ B and B ∈ P then A ∈ P

This type of reduction is calle many-one polynomial reduction, sometiomes
we use ≤p

m to distinguish from other reducibilities.

AGT-MIRI Complexity: Problems and Classes Spring 2024 22 / 47

Completeness

Let ≤ be a reducibility among problems and C a class of problems.
C is closed under ≤ if A ≤ B and B ∈ C implies A ∈ C.

Let ≤ be a reducibility among problems and C a class of problems
closed under ≤

Problem B is hard for class C under ≤ if, for each A ∈ C, A ≤ B.
Problem B is complete for class C under ≤ if, B is hard for C and
B ∈ C.

P, NP, PSPACE, EXP are closed under ≤.

A NP-complete problem is a problem complete for NP under ≤.

≤ is a transitive relation.

AGT-MIRI Complexity: Problems and Classes Spring 2024 23 / 47

Completeness

Let ≤ be a reducibility among problems and C a class of problems.
C is closed under ≤ if A ≤ B and B ∈ C implies A ∈ C.
Let ≤ be a reducibility among problems and C a class of problems
closed under ≤

Problem B is hard for class C under ≤ if, for each A ∈ C, A ≤ B.
Problem B is complete for class C under ≤ if, B is hard for C and
B ∈ C.

P, NP, PSPACE, EXP are closed under ≤.

A NP-complete problem is a problem complete for NP under ≤.

≤ is a transitive relation.

AGT-MIRI Complexity: Problems and Classes Spring 2024 23 / 47

Completeness

Let ≤ be a reducibility among problems and C a class of problems.
C is closed under ≤ if A ≤ B and B ∈ C implies A ∈ C.
Let ≤ be a reducibility among problems and C a class of problems
closed under ≤

Problem B is hard for class C under ≤ if, for each A ∈ C, A ≤ B.

Problem B is complete for class C under ≤ if, B is hard for C and
B ∈ C.

P, NP, PSPACE, EXP are closed under ≤.

A NP-complete problem is a problem complete for NP under ≤.

≤ is a transitive relation.

AGT-MIRI Complexity: Problems and Classes Spring 2024 23 / 47

Completeness

Let ≤ be a reducibility among problems and C a class of problems.
C is closed under ≤ if A ≤ B and B ∈ C implies A ∈ C.
Let ≤ be a reducibility among problems and C a class of problems
closed under ≤

Problem B is hard for class C under ≤ if, for each A ∈ C, A ≤ B.
Problem B is complete for class C under ≤ if, B is hard for C and
B ∈ C.

P, NP, PSPACE, EXP are closed under ≤.

A NP-complete problem is a problem complete for NP under ≤.

≤ is a transitive relation.

AGT-MIRI Complexity: Problems and Classes Spring 2024 23 / 47

Completeness

Let ≤ be a reducibility among problems and C a class of problems.
C is closed under ≤ if A ≤ B and B ∈ C implies A ∈ C.
Let ≤ be a reducibility among problems and C a class of problems
closed under ≤

Problem B is hard for class C under ≤ if, for each A ∈ C, A ≤ B.
Problem B is complete for class C under ≤ if, B is hard for C and
B ∈ C.

P, NP, PSPACE, EXP are closed under ≤.

A NP-complete problem is a problem complete for NP under ≤.

≤ is a transitive relation.

AGT-MIRI Complexity: Problems and Classes Spring 2024 23 / 47

Completeness

Let ≤ be a reducibility among problems and C a class of problems.
C is closed under ≤ if A ≤ B and B ∈ C implies A ∈ C.
Let ≤ be a reducibility among problems and C a class of problems
closed under ≤

Problem B is hard for class C under ≤ if, for each A ∈ C, A ≤ B.
Problem B is complete for class C under ≤ if, B is hard for C and
B ∈ C.

P, NP, PSPACE, EXP are closed under ≤.

A NP-complete problem is a problem complete for NP under ≤.

≤ is a transitive relation.

AGT-MIRI Complexity: Problems and Classes Spring 2024 23 / 47

Completeness

Let ≤ be a reducibility among problems and C a class of problems.
C is closed under ≤ if A ≤ B and B ∈ C implies A ∈ C.
Let ≤ be a reducibility among problems and C a class of problems
closed under ≤

Problem B is hard for class C under ≤ if, for each A ∈ C, A ≤ B.
Problem B is complete for class C under ≤ if, B is hard for C and
B ∈ C.

P, NP, PSPACE, EXP are closed under ≤.

A NP-complete problem is a problem complete for NP under ≤.

≤ is a transitive relation.

AGT-MIRI Complexity: Problems and Classes Spring 2024 23 / 47

NP-completeness

A problem A is NP-complete if:

1 A ∈ NP, and

2 for every B ∈ NP, B ≤ A.

If for every B ∈ NP, B ≤ A but A ̸∈ NP then A is said to be NP-hard.

AGT-MIRI Complexity: Problems and Classes Spring 2024 24 / 47

Lemma

If A is NP-complete, then A ∈P iff P=NP.

Once we prove that a problem is NP-complete, either A has no
efficient algorithm or all NP problems are in P.

Majority conjecture: P ̸= NP

To prove a problem is NP-complete, we just have to find a reduction
from a problem known to be NP-complete.

We need as a seed a first NP-complete problem.

AGT-MIRI Complexity: Problems and Classes Spring 2024 25 / 47

Lemma

If A is NP-complete, then A ∈P iff P=NP.

Once we prove that a problem is NP-complete, either A has no
efficient algorithm or all NP problems are in P.

Majority conjecture: P ̸= NP

To prove a problem is NP-complete, we just have to find a reduction
from a problem known to be NP-complete.

We need as a seed a first NP-complete problem.

AGT-MIRI Complexity: Problems and Classes Spring 2024 25 / 47

Lemma

If A is NP-complete, then A ∈P iff P=NP.

Once we prove that a problem is NP-complete, either A has no
efficient algorithm or all NP problems are in P.

Majority conjecture: P ̸= NP

To prove a problem is NP-complete, we just have to find a reduction
from a problem known to be NP-complete.

We need as a seed a first NP-complete problem.

AGT-MIRI Complexity: Problems and Classes Spring 2024 25 / 47

Lemma

If A is NP-complete, then A ∈P iff P=NP.

Once we prove that a problem is NP-complete, either A has no
efficient algorithm or all NP problems are in P.

Majority conjecture: P ̸= NP

To prove a problem is NP-complete, we just have to find a reduction
from a problem known to be NP-complete.

We need as a seed a first NP-complete problem.

AGT-MIRI Complexity: Problems and Classes Spring 2024 25 / 47

Lemma

If A is NP-complete, then A ∈P iff P=NP.

Once we prove that a problem is NP-complete, either A has no
efficient algorithm or all NP problems are in P.

Majority conjecture: P ̸= NP

To prove a problem is NP-complete, we just have to find a reduction
from a problem known to be NP-complete.

We need as a seed a first NP-complete problem.

AGT-MIRI Complexity: Problems and Classes Spring 2024 25 / 47

CIRCUIT SAT.

CIRCUIT SAT: Given a Boolean circuit with gates AND, OR, NOT, and
the input gates T, F and ?, and one output gate. Is there an an
assignment to the input gates (?), such that the circuit evaluates to T?

?

AND

NOT OR

AND OR AND

T ? ?

For example if the input to ? is T,F,T, the output is F
if the input is F,T,T, the output is T

AGT-MIRI Complexity: Problems and Classes Spring 2024 26 / 47

Any NP problem can be ”expressed” as CIRCUIT SAT.

We want to show that if A ∈ NP, then A ≤ CIRCUIT SAT.

A is a decision NP problem ⇒ there is a polynomial-time algorithm A
which given an instance x and a witness solution c of A, checks in
polynomial time (in the length of |x |) if c is a valid certificate for x .

Any polynomial-time algorithm (TM) can be expressed as a
polynomial-size circuit, whose input gates encode the input to the
algorithm, and the ? input gates are feeding the witness c. If the
algorithm solves a decision problem (Y/N), the output of the circuit
will be 1/0.

There is a way to feed c and get output 1 iff there is a valid cerificate.

AGT-MIRI Complexity: Problems and Classes Spring 2024 27 / 47

Any NP problem can be ”expressed” as CIRCUIT SAT.

We want to show that if A ∈ NP, then A ≤ CIRCUIT SAT.

A is a decision NP problem ⇒ there is a polynomial-time algorithm A
which given an instance x and a witness solution c of A, checks in
polynomial time (in the length of |x |) if c is a valid certificate for x .

Any polynomial-time algorithm (TM) can be expressed as a
polynomial-size circuit, whose input gates encode the input to the
algorithm, and the ? input gates are feeding the witness c. If the
algorithm solves a decision problem (Y/N), the output of the circuit
will be 1/0.

There is a way to feed c and get output 1 iff there is a valid cerificate.

AGT-MIRI Complexity: Problems and Classes Spring 2024 27 / 47

Any NP problem can be ”expressed” as CIRCUIT SAT.

We want to show that if A ∈ NP, then A ≤ CIRCUIT SAT.

A is a decision NP problem ⇒ there is a polynomial-time algorithm A
which given an instance x and a witness solution c of A, checks in
polynomial time (in the length of |x |) if c is a valid certificate for x .

Any polynomial-time algorithm (TM) can be expressed as a
polynomial-size circuit, whose input gates encode the input to the
algorithm, and the ? input gates are feeding the witness c. If the
algorithm solves a decision problem (Y/N), the output of the circuit
will be 1/0.

There is a way to feed c and get output 1 iff there is a valid cerificate.

AGT-MIRI Complexity: Problems and Classes Spring 2024 27 / 47

Any NP problem can be ”expressed” as CIRCUIT SAT.

We want to show that if A ∈ NP, then A ≤ CIRCUIT SAT.

A is a decision NP problem ⇒ there is a polynomial-time algorithm A
which given an instance x and a witness solution c of A, checks in
polynomial time (in the length of |x |) if c is a valid certificate for x .

Any polynomial-time algorithm (TM) can be expressed as a
polynomial-size circuit, whose input gates encode the input to the
algorithm, and the ? input gates are feeding the witness c. If the
algorithm solves a decision problem (Y/N), the output of the circuit
will be 1/0.

There is a way to feed c and get output 1 iff there is a valid cerificate.

AGT-MIRI Complexity: Problems and Classes Spring 2024 27 / 47

The seminal theorem: Cook-Levin’s Theorem

Therefore, given any instance x for A, we can construct in poly-time
instance C of CIRCUIT SAT whose known inputs are the bits of x , and
whose unknown inputs are the bits of x , and such that the output of C is
1 iff A outputs YES on input (x , c).

Theorem (Cook-Levin’s theorem)

CIRCUIT-SAT is NP-complete.

AGT-MIRI Complexity: Problems and Classes Spring 2024 28 / 47

The seminal theorem: Cook-Levin’s Theorem

Therefore, given any instance x for A, we can construct in poly-time
instance C of CIRCUIT SAT whose known inputs are the bits of x , and
whose unknown inputs are the bits of x , and such that the output of C is
1 iff A outputs YES on input (x , c).

Theorem (Cook-Levin’s theorem)

CIRCUIT-SAT is NP-complete.

AGT-MIRI Complexity: Problems and Classes Spring 2024 28 / 47

Boolean formulas

A Boolean variable x can take values 0,1.

A Boolean formula is an expression constructed from Boolean
variables and connectives, negation (¬ϕ or ϕ), disjunction (∨), and
conjunction (∧).
A Boolean formula ϕ is satisfiable if there is a truth assignment
T : X → {0, 1} to the variables in ϕ such that T (ϕ) = 1.

For example, for X = {x1, x2, x3},

ϕ = (x1 ∨ x̄3) ∧ (x̄1 ∨ x̄2 ∨ x3) ∧ (x̄1 ∨ x̄2 ∨ x̄3) ∧ (x2 ∨ x3)

is satisfiable, take T (x1) = T (x2) = 0,T (x3) = 1 then T (ϕ) = 1.

AGT-MIRI Complexity: Problems and Classes Spring 2024 29 / 47

Boolean formulas

A Boolean variable x can take values 0,1.

A Boolean formula is an expression constructed from Boolean
variables and connectives, negation (¬ϕ or ϕ), disjunction (∨), and
conjunction (∧).

A Boolean formula ϕ is satisfiable if there is a truth assignment
T : X → {0, 1} to the variables in ϕ such that T (ϕ) = 1.

For example, for X = {x1, x2, x3},

ϕ = (x1 ∨ x̄3) ∧ (x̄1 ∨ x̄2 ∨ x3) ∧ (x̄1 ∨ x̄2 ∨ x̄3) ∧ (x2 ∨ x3)

is satisfiable, take T (x1) = T (x2) = 0,T (x3) = 1 then T (ϕ) = 1.

AGT-MIRI Complexity: Problems and Classes Spring 2024 29 / 47

Boolean formulas

A Boolean variable x can take values 0,1.

A Boolean formula is an expression constructed from Boolean
variables and connectives, negation (¬ϕ or ϕ), disjunction (∨), and
conjunction (∧).
A Boolean formula ϕ is satisfiable if there is a truth assignment
T : X → {0, 1} to the variables in ϕ such that T (ϕ) = 1.

For example, for X = {x1, x2, x3},

ϕ = (x1 ∨ x̄3) ∧ (x̄1 ∨ x̄2 ∨ x3) ∧ (x̄1 ∨ x̄2 ∨ x̄3) ∧ (x2 ∨ x3)

is satisfiable, take T (x1) = T (x2) = 0,T (x3) = 1 then T (ϕ) = 1.

AGT-MIRI Complexity: Problems and Classes Spring 2024 29 / 47

Boolean formulas

A Boolean variable x can take values 0,1.

A Boolean formula is an expression constructed from Boolean
variables and connectives, negation (¬ϕ or ϕ), disjunction (∨), and
conjunction (∧).
A Boolean formula ϕ is satisfiable if there is a truth assignment
T : X → {0, 1} to the variables in ϕ such that T (ϕ) = 1.

For example, for X = {x1, x2, x3},

ϕ = (x1 ∨ x̄3) ∧ (x̄1 ∨ x̄2 ∨ x3) ∧ (x̄1 ∨ x̄2 ∨ x̄3) ∧ (x2 ∨ x3)

is satisfiable, take T (x1) = T (x2) = 0,T (x3) = 1 then T (ϕ) = 1.

AGT-MIRI Complexity: Problems and Classes Spring 2024 29 / 47

Boolean formulas: normal forms

A literal is a Boolean variable x or a negation of a Boolean variable x̄ .

A clause is a disjunction (conjunction) of literals.

A Boolean formula ϕ in Conjunctive Normal Form (CNF) is a
conjunction of clauses, ϕ =

∧m
i=1(Ci), where each clause

Ci =
∨ki

j=1{lj}.

For example, for X = {x1, x2, x3}, a CNF formula is

ϕ = (x1 ∨ x̄3) ∧ (x̄1 ∨ x̄2 ∨ x3) ∧ (x̄1 ∨ x̄2 ∨ x̄3) ∧ (x2 ∨ x3)

A Boolean formula ϕ in Disjunctive Normal Form (DNF) is expressed
as a disjunction of clauses, ϕ =

∨m
i=1(Ci), where each clause

Ci =
∧ki

j=1{lj}.

AGT-MIRI Complexity: Problems and Classes Spring 2024 30 / 47

Boolean formulas: normal forms

A literal is a Boolean variable x or a negation of a Boolean variable x̄ .

A clause is a disjunction (conjunction) of literals.

A Boolean formula ϕ in Conjunctive Normal Form (CNF) is a
conjunction of clauses, ϕ =

∧m
i=1(Ci), where each clause

Ci =
∨ki

j=1{lj}.

For example, for X = {x1, x2, x3}, a CNF formula is

ϕ = (x1 ∨ x̄3) ∧ (x̄1 ∨ x̄2 ∨ x3) ∧ (x̄1 ∨ x̄2 ∨ x̄3) ∧ (x2 ∨ x3)

A Boolean formula ϕ in Disjunctive Normal Form (DNF) is expressed
as a disjunction of clauses, ϕ =

∨m
i=1(Ci), where each clause

Ci =
∧ki

j=1{lj}.

AGT-MIRI Complexity: Problems and Classes Spring 2024 30 / 47

Boolean formulas: normal forms

A literal is a Boolean variable x or a negation of a Boolean variable x̄ .

A clause is a disjunction (conjunction) of literals.

A Boolean formula ϕ in Conjunctive Normal Form (CNF) is a
conjunction of clauses, ϕ =

∧m
i=1(Ci), where each clause

Ci =
∨ki

j=1{lj}.

For example, for X = {x1, x2, x3}, a CNF formula is

ϕ = (x1 ∨ x̄3) ∧ (x̄1 ∨ x̄2 ∨ x3) ∧ (x̄1 ∨ x̄2 ∨ x̄3) ∧ (x2 ∨ x3)

A Boolean formula ϕ in Disjunctive Normal Form (DNF) is expressed
as a disjunction of clauses, ϕ =

∨m
i=1(Ci), where each clause

Ci =
∧ki

j=1{lj}.

AGT-MIRI Complexity: Problems and Classes Spring 2024 30 / 47

Boolean formulas: normal forms

A literal is a Boolean variable x or a negation of a Boolean variable x̄ .

A clause is a disjunction (conjunction) of literals.

A Boolean formula ϕ in Conjunctive Normal Form (CNF) is a
conjunction of clauses, ϕ =

∧m
i=1(Ci), where each clause

Ci =
∨ki

j=1{lj}.

For example, for X = {x1, x2, x3}, a CNF formula is

ϕ = (x1 ∨ x̄3) ∧ (x̄1 ∨ x̄2 ∨ x3) ∧ (x̄1 ∨ x̄2 ∨ x̄3) ∧ (x2 ∨ x3)

A Boolean formula ϕ in Disjunctive Normal Form (DNF) is expressed
as a disjunction of clauses, ϕ =

∨m
i=1(Ci), where each clause

Ci =
∧ki

j=1{lj}.

AGT-MIRI Complexity: Problems and Classes Spring 2024 30 / 47

Boolean formulas: normal forms

A literal is a Boolean variable x or a negation of a Boolean variable x̄ .

A clause is a disjunction (conjunction) of literals.

A Boolean formula ϕ in Conjunctive Normal Form (CNF) is a
conjunction of clauses, ϕ =

∧m
i=1(Ci), where each clause

Ci =
∨ki

j=1{lj}.

For example, for X = {x1, x2, x3}, a CNF formula is

ϕ = (x1 ∨ x̄3) ∧ (x̄1 ∨ x̄2 ∨ x3) ∧ (x̄1 ∨ x̄2 ∨ x̄3) ∧ (x2 ∨ x3)

A Boolean formula ϕ in Disjunctive Normal Form (DNF) is expressed
as a disjunction of clauses, ϕ =

∨m
i=1(Ci), where each clause

Ci =
∧ki

j=1{lj}.

AGT-MIRI Complexity: Problems and Classes Spring 2024 30 / 47

SAT problem and variations

Given a formula CNF formula ϕ on a set X of n variables,

SAT: Is ϕ satisfiable?

k-SAT. Given a boolean formula in CNF ϕ =
∧m

i=1(Ci) in where each
clause is a disjunction of exactly k literals, is ϕ satisfiable?
Ex. 3-SAT
ϕ = (x1∨x2∨x4)∧(x1∨ x̄2∨x4)∧(x̄1∨ x̄2∨ x̄4)∧(x1∨ x̄3∨ x̄4)∧(x̄1∨ x̄2∨
x̄3)∧(x̄2∨x3∨x4)∧(x̄1∨x2∨x̄3)∧(x̄2∨x3∨x̄4)∧(x2∨x̄3∨x̄4)∧(x̄2∨x̄3∨x̄4)
T (x1) = 1,T (x2) = T (x3) = T (x4) = 0, satisfies the previous
instance.

Given a DNF formula ϕ on a set X of n variables,

DNF-SAT: Is ϕ satisfiable?

k-DNF-SAT: Given a boolean formula in DNF ϕ =
∨m

i=1(Ci) in where
each clause is a conjunction of exactly k literals, is ϕ satisfiable?

AGT-MIRI Complexity: Problems and Classes Spring 2024 31 / 47

SAT problem and variations

Given a formula CNF formula ϕ on a set X of n variables,

SAT: Is ϕ satisfiable?

k-SAT. Given a boolean formula in CNF ϕ =
∧m

i=1(Ci) in where each
clause is a disjunction of exactly k literals, is ϕ satisfiable?
Ex. 3-SAT
ϕ = (x1∨x2∨x4)∧(x1∨ x̄2∨x4)∧(x̄1∨ x̄2∨ x̄4)∧(x1∨ x̄3∨ x̄4)∧(x̄1∨ x̄2∨
x̄3)∧(x̄2∨x3∨x4)∧(x̄1∨x2∨x̄3)∧(x̄2∨x3∨x̄4)∧(x2∨x̄3∨x̄4)∧(x̄2∨x̄3∨x̄4)
T (x1) = 1,T (x2) = T (x3) = T (x4) = 0, satisfies the previous
instance.

Given a DNF formula ϕ on a set X of n variables,

DNF-SAT: Is ϕ satisfiable?

k-DNF-SAT: Given a boolean formula in DNF ϕ =
∨m

i=1(Ci) in where
each clause is a conjunction of exactly k literals, is ϕ satisfiable?

AGT-MIRI Complexity: Problems and Classes Spring 2024 31 / 47

SAT problem and variations

Given a formula CNF formula ϕ on a set X of n variables,

SAT: Is ϕ satisfiable?

k-SAT. Given a boolean formula in CNF ϕ =
∧m

i=1(Ci) in where each
clause is a disjunction of exactly k literals, is ϕ satisfiable?
Ex. 3-SAT
ϕ = (x1∨x2∨x4)∧(x1∨ x̄2∨x4)∧(x̄1∨ x̄2∨ x̄4)∧(x1∨ x̄3∨ x̄4)∧(x̄1∨ x̄2∨
x̄3)∧(x̄2∨x3∨x4)∧(x̄1∨x2∨x̄3)∧(x̄2∨x3∨x̄4)∧(x2∨x̄3∨x̄4)∧(x̄2∨x̄3∨x̄4)
T (x1) = 1,T (x2) = T (x3) = T (x4) = 0, satisfies the previous
instance.

Given a DNF formula ϕ on a set X of n variables,

DNF-SAT: Is ϕ satisfiable?

k-DNF-SAT: Given a boolean formula in DNF ϕ =
∨m

i=1(Ci) in where
each clause is a conjunction of exactly k literals, is ϕ satisfiable?

AGT-MIRI Complexity: Problems and Classes Spring 2024 31 / 47

SAT problem and variations

Given a formula CNF formula ϕ on a set X of n variables,

SAT: Is ϕ satisfiable?

k-SAT. Given a boolean formula in CNF ϕ =
∧m

i=1(Ci) in where each
clause is a disjunction of exactly k literals, is ϕ satisfiable?
Ex. 3-SAT
ϕ = (x1∨x2∨x4)∧(x1∨ x̄2∨x4)∧(x̄1∨ x̄2∨ x̄4)∧(x1∨ x̄3∨ x̄4)∧(x̄1∨ x̄2∨
x̄3)∧(x̄2∨x3∨x4)∧(x̄1∨x2∨x̄3)∧(x̄2∨x3∨x̄4)∧(x2∨x̄3∨x̄4)∧(x̄2∨x̄3∨x̄4)
T (x1) = 1,T (x2) = T (x3) = T (x4) = 0, satisfies the previous
instance.

Given a DNF formula ϕ on a set X of n variables,

DNF-SAT: Is ϕ satisfiable?

k-DNF-SAT: Given a boolean formula in DNF ϕ =
∨m

i=1(Ci) in where
each clause is a conjunction of exactly k literals, is ϕ satisfiable?

AGT-MIRI Complexity: Problems and Classes Spring 2024 31 / 47

CIRCUIT SAT ≤p
m SAT

Given any circuit C , we can rewrite it as a CNF formula ϕC : for each
gate we associate a variable to the output connection. We model the
effect of the gate using at most three clauses.

T (x) F (x̄)
NOT

z
(x ∨ z) ∧ (x̄ ∨ z̄)

x

AND

y z

(x̄ ∨ y) ∧ (x̄ ∨ z) ∧ (x ∨ ȳ ∨ z̄)

x

y z

OR (ȳ ∨ x) ∧ (z̄ ∨ x) ∧ (z ∨ y ∨ x̄)

AGT-MIRI Complexity: Problems and Classes Spring 2024 32 / 47

CIRCUIT SAT ≤p
m SAT

Given any circuit C , we can rewrite it as a CNF formula ϕC : for each
gate we associate a variable to the output connection. We model the
effect of the gate using at most three clauses.

T (x) F (x̄)
NOT

z
(x ∨ z) ∧ (x̄ ∨ z̄)

x

AND

y z

(x̄ ∨ y) ∧ (x̄ ∨ z) ∧ (x ∨ ȳ ∨ z̄)

x

y z

OR (ȳ ∨ x) ∧ (z̄ ∨ x) ∧ (z ∨ y ∨ x̄)

AGT-MIRI Complexity: Problems and Classes Spring 2024 32 / 47

CIRCUIT SAT ≤p
m SAT

Given any circuit C , we can rewrite it as a CNF formula ϕC : for each
gate we associate a variable to the output connection. We model the
effect of the gate using at most three clauses.

T (x) F (x̄)
NOT

z
(x ∨ z) ∧ (x̄ ∨ z̄)

x

AND

y z

(x̄ ∨ y) ∧ (x̄ ∨ z) ∧ (x ∨ ȳ ∨ z̄)

x

y z

OR (ȳ ∨ x) ∧ (z̄ ∨ x) ∧ (z ∨ y ∨ x̄)

AGT-MIRI Complexity: Problems and Classes Spring 2024 32 / 47

Example.

x10AND

NOT OR

AND OR AND

T ? ? ?

x1 x2 x3 x4

x5 x6 x7

x8 x9

(x1)∧
(x̄5 ∨ x1) ∧ (x̄5 ∨ x2) ∧ (x5 ∨ x̄1 ∨ x̄2)∧
(x̄2 ∨ x6) ∧ (x̄3 ∨ x6) ∧ (x2 ∨ x3 ∨ x̄6)∧
(x̄7 ∨ x3) ∧ (x̄7 ∨ x4) ∧ (x7 ∨ x̄3 ∨ x̄4)∧
(x8 ∨ x5) ∧ (x̄8 ∨ x̄5)∧
(x̄6 ∨ x9) ∧ (x̄7 ∨ x9) ∧ (x6 ∨ x7 ∨ x̄9)∧
(x̄10 ∨ x8) ∧ (x̄10 ∨ x9) ∧ (x10 ∨ x̄8 ∨ x̄9)∧
(x10)

AGT-MIRI Complexity: Problems and Classes Spring 2024 33 / 47

CIRCUIT SAT ≤p
m SAT

Any truth assignment to the ? gates of C determines a truth
assignment to the variables of ϕC

To insure that the satisfying truth assignment of the resulting SAT
formula is in 1-to-1 correspondence with the assignments on the gates
in the given instance of CIRCUIT-SAT, we add a clause holding the
variable corresponding to the output gate. Call this CNF formula
f (C).

C is satisfiable iff there is an assignment T of truth values such that
the circuit outputs true iff the assignment obtained extending the
truth values of T to coincide with the output of the gates in C is a
satisfying assignment to f (C).

Therefore, CIRCUIT SAT ≤ SAT.

AGT-MIRI Complexity: Problems and Classes Spring 2024 34 / 47

CIRCUIT SAT ≤p
m SAT

Any truth assignment to the ? gates of C determines a truth
assignment to the variables of ϕC

To insure that the satisfying truth assignment of the resulting SAT
formula is in 1-to-1 correspondence with the assignments on the gates
in the given instance of CIRCUIT-SAT, we add a clause holding the
variable corresponding to the output gate. Call this CNF formula
f (C).

C is satisfiable iff there is an assignment T of truth values such that
the circuit outputs true iff the assignment obtained extending the
truth values of T to coincide with the output of the gates in C is a
satisfying assignment to f (C).

Therefore, CIRCUIT SAT ≤ SAT.

AGT-MIRI Complexity: Problems and Classes Spring 2024 34 / 47

CIRCUIT SAT ≤p
m SAT

Any truth assignment to the ? gates of C determines a truth
assignment to the variables of ϕC

To insure that the satisfying truth assignment of the resulting SAT
formula is in 1-to-1 correspondence with the assignments on the gates
in the given instance of CIRCUIT-SAT, we add a clause holding the
variable corresponding to the output gate. Call this CNF formula
f (C).

C is satisfiable iff there is an assignment T of truth values such that
the circuit outputs true iff the assignment obtained extending the
truth values of T to coincide with the output of the gates in C is a
satisfying assignment to f (C).

Therefore, CIRCUIT SAT ≤ SAT.

AGT-MIRI Complexity: Problems and Classes Spring 2024 34 / 47

CIRCUIT SAT ≤p
m SAT

Any truth assignment to the ? gates of C determines a truth
assignment to the variables of ϕC

To insure that the satisfying truth assignment of the resulting SAT
formula is in 1-to-1 correspondence with the assignments on the gates
in the given instance of CIRCUIT-SAT, we add a clause holding the
variable corresponding to the output gate. Call this CNF formula
f (C).

C is satisfiable iff there is an assignment T of truth values such that
the circuit outputs true iff the assignment obtained extending the
truth values of T to coincide with the output of the gates in C is a
satisfying assignment to f (C).

Therefore, CIRCUIT SAT ≤ SAT.

AGT-MIRI Complexity: Problems and Classes Spring 2024 34 / 47

CIRCUIT SAT ≤p
m SAT

It remains to show that the formula f (C) can be obtained in
polynomial time.

A circuit is directed acyclic graph, we can compute a topological sort
in O(|V |+ |E |).
The topological sort provides an order to assign numbers to the
variables.

We can obtain, from each gate, its number and the numbers of their
input gates.

Then write, for each gate in order, the corresponding set of clauses.

All this process can be done in polynomial time.

Therefore, CIRCUIT SAT ≤p
m SAT.

AGT-MIRI Complexity: Problems and Classes Spring 2024 35 / 47

CIRCUIT SAT ≤p
m SAT

It remains to show that the formula f (C) can be obtained in
polynomial time.

A circuit is directed acyclic graph, we can compute a topological sort
in O(|V |+ |E |).

The topological sort provides an order to assign numbers to the
variables.

We can obtain, from each gate, its number and the numbers of their
input gates.

Then write, for each gate in order, the corresponding set of clauses.

All this process can be done in polynomial time.

Therefore, CIRCUIT SAT ≤p
m SAT.

AGT-MIRI Complexity: Problems and Classes Spring 2024 35 / 47

CIRCUIT SAT ≤p
m SAT

It remains to show that the formula f (C) can be obtained in
polynomial time.

A circuit is directed acyclic graph, we can compute a topological sort
in O(|V |+ |E |).
The topological sort provides an order to assign numbers to the
variables.

We can obtain, from each gate, its number and the numbers of their
input gates.

Then write, for each gate in order, the corresponding set of clauses.

All this process can be done in polynomial time.

Therefore, CIRCUIT SAT ≤p
m SAT.

AGT-MIRI Complexity: Problems and Classes Spring 2024 35 / 47

CIRCUIT SAT ≤p
m SAT

It remains to show that the formula f (C) can be obtained in
polynomial time.

A circuit is directed acyclic graph, we can compute a topological sort
in O(|V |+ |E |).
The topological sort provides an order to assign numbers to the
variables.

We can obtain, from each gate, its number and the numbers of their
input gates.

Then write, for each gate in order, the corresponding set of clauses.

All this process can be done in polynomial time.

Therefore, CIRCUIT SAT ≤p
m SAT.

AGT-MIRI Complexity: Problems and Classes Spring 2024 35 / 47

CIRCUIT SAT ≤p
m SAT

It remains to show that the formula f (C) can be obtained in
polynomial time.

A circuit is directed acyclic graph, we can compute a topological sort
in O(|V |+ |E |).
The topological sort provides an order to assign numbers to the
variables.

We can obtain, from each gate, its number and the numbers of their
input gates.

Then write, for each gate in order, the corresponding set of clauses.

All this process can be done in polynomial time.

Therefore, CIRCUIT SAT ≤p
m SAT.

AGT-MIRI Complexity: Problems and Classes Spring 2024 35 / 47

CIRCUIT SAT ≤p
m SAT

It remains to show that the formula f (C) can be obtained in
polynomial time.

A circuit is directed acyclic graph, we can compute a topological sort
in O(|V |+ |E |).
The topological sort provides an order to assign numbers to the
variables.

We can obtain, from each gate, its number and the numbers of their
input gates.

Then write, for each gate in order, the corresponding set of clauses.

All this process can be done in polynomial time.

Therefore, CIRCUIT SAT ≤p
m SAT.

AGT-MIRI Complexity: Problems and Classes Spring 2024 35 / 47

CIRCUIT SAT ≤p
m SAT

It remains to show that the formula f (C) can be obtained in
polynomial time.

A circuit is directed acyclic graph, we can compute a topological sort
in O(|V |+ |E |).
The topological sort provides an order to assign numbers to the
variables.

We can obtain, from each gate, its number and the numbers of their
input gates.

Then write, for each gate in order, the corresponding set of clauses.

All this process can be done in polynomial time.

Therefore, CIRCUIT SAT ≤p
m SAT.

AGT-MIRI Complexity: Problems and Classes Spring 2024 35 / 47

SAT is NP-complete

Theorem

SAT is NP-complete

Proof.

As CIRCUIT SAT ≤p
m SAT, SAT is NP-hard

It remains to show that SAT ∈ NP

The certificate is a truth assignment.

Evaluating a CNF formula on a particular truth assignment, requires
to check that each clause gets at least one literal that evaluates to
true.

This can be done in polynomial time.

AGT-MIRI Complexity: Problems and Classes Spring 2024 36 / 47

SAT is NP-complete

Theorem

SAT is NP-complete

Proof.

As CIRCUIT SAT ≤p
m SAT, SAT is NP-hard

It remains to show that SAT ∈ NP

The certificate is a truth assignment.

Evaluating a CNF formula on a particular truth assignment, requires
to check that each clause gets at least one literal that evaluates to
true.

This can be done in polynomial time.

AGT-MIRI Complexity: Problems and Classes Spring 2024 36 / 47

SAT is NP-complete

Theorem

SAT is NP-complete

Proof.

As CIRCUIT SAT ≤p
m SAT, SAT is NP-hard

It remains to show that SAT ∈ NP

The certificate is a truth assignment.

Evaluating a CNF formula on a particular truth assignment, requires
to check that each clause gets at least one literal that evaluates to
true.

This can be done in polynomial time.

AGT-MIRI Complexity: Problems and Classes Spring 2024 36 / 47

SAT is NP-complete

Theorem

SAT is NP-complete

Proof.

As CIRCUIT SAT ≤p
m SAT, SAT is NP-hard

It remains to show that SAT ∈ NP

The certificate is a truth assignment.

Evaluating a CNF formula on a particular truth assignment, requires
to check that each clause gets at least one literal that evaluates to
true.

This can be done in polynomial time.

AGT-MIRI Complexity: Problems and Classes Spring 2024 36 / 47

The 3-SAT

Recall that the 3-SAT problem is a restricted version of SAT where
each clause has exactly 3 literals.

Let ϕ = {Ci}mi=1 be a CNF formula on a set X of variables. let zi be
the literal xi or x̄i .

We construct a formula ϕ′ = f (ϕ) on a set X ′ of variables (X ⊆ X ′)
having all clauses with 3 literals.

For each clause in ϕ, f determines a set of equivalent clauses, in the
sense that the clause can be satisfied iff the formula corresponding to
the set is satisfiable, to be included.

We add some variables when needed.

The replacements depend on the size k of clause Cj .

AGT-MIRI Complexity: Problems and Classes Spring 2024 37 / 47

The 3-SAT

Recall that the 3-SAT problem is a restricted version of SAT where
each clause has exactly 3 literals.

Let ϕ = {Ci}mi=1 be a CNF formula on a set X of variables. let zi be
the literal xi or x̄i .

We construct a formula ϕ′ = f (ϕ) on a set X ′ of variables (X ⊆ X ′)
having all clauses with 3 literals.

For each clause in ϕ, f determines a set of equivalent clauses, in the
sense that the clause can be satisfied iff the formula corresponding to
the set is satisfiable, to be included.

We add some variables when needed.

The replacements depend on the size k of clause Cj .

AGT-MIRI Complexity: Problems and Classes Spring 2024 37 / 47

The 3-SAT

Recall that the 3-SAT problem is a restricted version of SAT where
each clause has exactly 3 literals.

Let ϕ = {Ci}mi=1 be a CNF formula on a set X of variables. let zi be
the literal xi or x̄i .

We construct a formula ϕ′ = f (ϕ) on a set X ′ of variables (X ⊆ X ′)
having all clauses with 3 literals.

For each clause in ϕ, f determines a set of equivalent clauses, in the
sense that the clause can be satisfied iff the formula corresponding to
the set is satisfiable, to be included.

We add some variables when needed.

The replacements depend on the size k of clause Cj .

AGT-MIRI Complexity: Problems and Classes Spring 2024 37 / 47

The 3-SAT

Recall that the 3-SAT problem is a restricted version of SAT where
each clause has exactly 3 literals.

Let ϕ = {Ci}mi=1 be a CNF formula on a set X of variables. let zi be
the literal xi or x̄i .

We construct a formula ϕ′ = f (ϕ) on a set X ′ of variables (X ⊆ X ′)
having all clauses with 3 literals.

For each clause in ϕ, f determines a set of equivalent clauses, in the
sense that the clause can be satisfied iff the formula corresponding to
the set is satisfiable, to be included.

We add some variables when needed.

The replacements depend on the size k of clause Cj .

AGT-MIRI Complexity: Problems and Classes Spring 2024 37 / 47

SAT ≤ 3-SAT

If k = 1, Cj = z , we add variables {yj1, yj2} and clauses

C ′
j = {(z ∨ yj1 ∨ yj2), (z ∨ ȳj1 ∨ yj2), (z ∨ yj1 ∨ ȳj2), (z ∨ ȳj1 ∨ ȳj2)}.

Observe that Cj is satisfiable iff C ′
j is satisfiable.

If k = 2, Cj = z1 ∨ z2, we add variable yj and clauses

C ′
j = {(z1 ∨ z2 ∨ y), (z1 ∨ z2 ∨ ȳ)}.

Again, Cj is satisfiable iff C ′
j is satisfiable.

If k = 3, we add Cj = (z1 ∨ z2 ∨ z3) to ϕ′.

AGT-MIRI Complexity: Problems and Classes Spring 2024 38 / 47

SAT ≤ 3-SAT

If k = 1, Cj = z , we add variables {yj1, yj2} and clauses

C ′
j = {(z ∨ yj1 ∨ yj2), (z ∨ ȳj1 ∨ yj2), (z ∨ yj1 ∨ ȳj2), (z ∨ ȳj1 ∨ ȳj2)}.

Observe that Cj is satisfiable iff C ′
j is satisfiable.

If k = 2, Cj = z1 ∨ z2, we add variable yj and clauses

C ′
j = {(z1 ∨ z2 ∨ y), (z1 ∨ z2 ∨ ȳ)}.

Again, Cj is satisfiable iff C ′
j is satisfiable.

If k = 3, we add Cj = (z1 ∨ z2 ∨ z3) to ϕ′.

AGT-MIRI Complexity: Problems and Classes Spring 2024 38 / 47

SAT ≤ 3-SAT

If k = 1, Cj = z , we add variables {yj1, yj2} and clauses

C ′
j = {(z ∨ yj1 ∨ yj2), (z ∨ ȳj1 ∨ yj2), (z ∨ yj1 ∨ ȳj2), (z ∨ ȳj1 ∨ ȳj2)}.

Observe that Cj is satisfiable iff C ′
j is satisfiable.

If k = 2, Cj = z1 ∨ z2, we add variable yj and clauses

C ′
j = {(z1 ∨ z2 ∨ y), (z1 ∨ z2 ∨ ȳ)}.

Again, Cj is satisfiable iff C ′
j is satisfiable.

If k = 3, we add Cj = (z1 ∨ z2 ∨ z3) to ϕ′.

AGT-MIRI Complexity: Problems and Classes Spring 2024 38 / 47

SAT ≤ 3-SAT

If k > 3, Cj = (z1 ∨ z2 ∨ · · · ∨ zk), add variables {yj1, yj2, . . . , yjk−3}
and the clauses

C ′
j = {(z1 ∨ z2 ∨ yj1), (ȳj1 ∨ z3 ∨ yj2), . . . , (ȳjk−3 ∨ zk−1 ∨ zk)}

A satisfying assignment for Cj must made T (zi) = 1 for at least one
zi . Then the assignment T ′ such that, T (zi) = 1,
T ′(yj1) = · · · = T ′(yji−2) = 1 and T ′(yji−1) = · · · = T ′(yjk−3) = 0
satisfies C ′

j .

On the other hand, if T ′ satisfies C ′
j , there is zi such that T ′(zi) = 1

(otherwise there would be a yjℓ such that T ′(yjℓ) = 1 = T ′(ȳjℓ))

AGT-MIRI Complexity: Problems and Classes Spring 2024 39 / 47

Example

Input to SAT: ϕ = (x̄1) ∧ (x̄1, x̄2) ∧ (x̄1, x3, x̄4) ∧ (x1, x2, x̄3, x4, x5)
C ′
1 = (x̄1, y11, y12) ∧ (x̄1, ȳ11, y12) ∧ (x̄1, y11, ȳ12) ∧ (x̄1, ȳ11, ȳ12)

C ′
2 = (x̄1, x̄2, y2) ∧ (x̄1, x̄2, ȳ2)

C ′
3 = (x̄1, x3, x̄4)

C ′
4 = (x1, x2, y41) ∧ (ȳ41, x3, y42) ∧ (ȳ42, x4, x5)

Then f (ϕ) = C ′
1 ∧ C ′

2 ∧ C ′
3 ∧ C ′

4

with X ′ = {x1, x2, x3, x4, x5, y11, y12, y2, y3, y41, y42}

AGT-MIRI Complexity: Problems and Classes Spring 2024 40 / 47

3-SAT is NP-complete

Theorem

3-SAT is NP-complete

Proof.

The above construction can be done in polynomial time, therefor
SAT ≤p

m 3-SAT, 3-SAT is NP-hard

On the other hand 3-SAT is a subproblem of SAT, do 3-SAT∈ NP

AGT-MIRI Complexity: Problems and Classes Spring 2024 41 / 47

The k-SAT problem

Theorem

For k ≥ 3, k-SAT is NP-complete

Proof.

We have just show that 3-SAT is NP-complete.

Assume that ℓ-SAT is NP-complete.

To reduce ℓ-SAT ≤p
m (ℓ+ 1)-SAT, for each clause Cj (with ℓ literals)

Add variable {yj}
and add clauses

C ′
j = {(Cj ∨ yj), (Cj ∨ ȳj)}.

Cj is satisfiable iff Cj is satisfiable.

AGT-MIRI Complexity: Problems and Classes Spring 2024 42 / 47

The 2-SAT problem

2-SAT: Given a Boolean formula ϕ, where each clause has exactly 2
literals, is ϕ satisfiable?

A clause in a 2-SAT instance has the form (y ∨ z) for some literals
y , z .

Recall that p → q is equivalent to p̄ ∨ q.

So, (y ∨ z) is equivalent to ȳ → z and to z̄ → y .

A 2-SAT formula can be seen as a collection of implications.

To show that 2-SAT ∈ P, we construct a kind of reduction to a
problem related to the strongly connected components of a digraph.

AGT-MIRI Complexity: Problems and Classes Spring 2024 43 / 47

The 2-SAT problem

2-SAT: Given a Boolean formula ϕ, where each clause has exactly 2
literals, is ϕ satisfiable?

A clause in a 2-SAT instance has the form (y ∨ z) for some literals
y , z .

Recall that p → q is equivalent to p̄ ∨ q.

So, (y ∨ z) is equivalent to ȳ → z and to z̄ → y .

A 2-SAT formula can be seen as a collection of implications.

To show that 2-SAT ∈ P, we construct a kind of reduction to a
problem related to the strongly connected components of a digraph.

AGT-MIRI Complexity: Problems and Classes Spring 2024 43 / 47

The 2-SAT problem

2-SAT: Given a Boolean formula ϕ, where each clause has exactly 2
literals, is ϕ satisfiable?

A clause in a 2-SAT instance has the form (y ∨ z) for some literals
y , z .

Recall that p → q is equivalent to p̄ ∨ q.

So, (y ∨ z) is equivalent to ȳ → z and to z̄ → y .

A 2-SAT formula can be seen as a collection of implications.

To show that 2-SAT ∈ P, we construct a kind of reduction to a
problem related to the strongly connected components of a digraph.

AGT-MIRI Complexity: Problems and Classes Spring 2024 43 / 47

The 2-SAT problem

2-SAT: Given a Boolean formula ϕ, where each clause has exactly 2
literals, is ϕ satisfiable?

A clause in a 2-SAT instance has the form (y ∨ z) for some literals
y , z .

Recall that p → q is equivalent to p̄ ∨ q.

So, (y ∨ z) is equivalent to ȳ → z and to z̄ → y .

A 2-SAT formula can be seen as a collection of implications.

To show that 2-SAT ∈ P, we construct a kind of reduction to a
problem related to the strongly connected components of a digraph.

AGT-MIRI Complexity: Problems and Classes Spring 2024 43 / 47

The 2-SAT problem

2-SAT: Given a Boolean formula ϕ, where each clause has exactly 2
literals, is ϕ satisfiable?

A clause in a 2-SAT instance has the form (y ∨ z) for some literals
y , z .

Recall that p → q is equivalent to p̄ ∨ q.

So, (y ∨ z) is equivalent to ȳ → z and to z̄ → y .

A 2-SAT formula can be seen as a collection of implications.

To show that 2-SAT ∈ P, we construct a kind of reduction to a
problem related to the strongly connected components of a digraph.

AGT-MIRI Complexity: Problems and Classes Spring 2024 43 / 47

Strongly connected components of a digraph

A digraph G is strongly connected iff ∀u, v ∈ V , there is a path from
u to v (u ⇝ v) and there is a path from v to u (v ⇝ u).

We can determine if G is strongly connected in O(n +m) time.

When G⃗ not strongly connected, we can find its strongly connected
components in O(n +m) steps.

Recall, that by collapsing each strongly connected component of G⃗ to
a node, and removing multiple edges and loops, the remaining
digraph is acyclic.

AGT-MIRI Complexity: Problems and Classes Spring 2024 44 / 47

Strongly connected components of a digraph

A digraph G is strongly connected iff ∀u, v ∈ V , there is a path from
u to v (u ⇝ v) and there is a path from v to u (v ⇝ u).

We can determine if G is strongly connected in O(n +m) time.

When G⃗ not strongly connected, we can find its strongly connected
components in O(n +m) steps.

Recall, that by collapsing each strongly connected component of G⃗ to
a node, and removing multiple edges and loops, the remaining
digraph is acyclic.

AGT-MIRI Complexity: Problems and Classes Spring 2024 44 / 47

2-SAT≤ P

Let ϕ be a 2-SAT instance on a set X of n variables and with m clauses
(|ϕ| = 2m).

Define Gϕ as follows:

V : 2n nodes, two for each variable (x and x̄).

E⃗ , has 2m edges, for each Ci = (α ∨ β), add edges ᾱ → β and
β̄ → α.

Notice that Gϕ collects all implications in ϕ.

AGT-MIRI Complexity: Problems and Classes Spring 2024 45 / 47

2-SAT≤ P

Let ϕ be a 2-SAT instance on a set X of n variables and with m clauses
(|ϕ| = 2m).
Define Gϕ as follows:

V : 2n nodes, two for each variable (x and x̄).

E⃗ , has 2m edges, for each Ci = (α ∨ β), add edges ᾱ → β and
β̄ → α.

Notice that Gϕ collects all implications in ϕ.

AGT-MIRI Complexity: Problems and Classes Spring 2024 45 / 47

Examples

(x1 ∨ x̄2) ∧ (x̄1 ∨ x̄3) ∧ (x1 ∨ x2)
∧(x̄3 ∨ x4) ∧ (x̄1 ∨ x4)
which is satisfiable.

4

x

x

x x x

x
xx

1

1

2 3 4

2 3

ϕ = (x1 ∨ x̄2) ∧ (x̄1 ∨ x̄2)∧
(x3 ∨ x2) ∧ (x̄3 ∨ x2) ∧ (x2 ∨ x4)
which is not satisfiable.

4

x

x

x x x

x
xx

1

1

2 3 4

2 3

AGT-MIRI Complexity: Problems and Classes Spring 2024 46 / 47

Correctness of the reduction

Exercise

ϕ is satisfiable iff no strongly connected component in Gϕ contains nodes
x and x̄ , for x ∈ X

Theorem

2-Sat ∈ P

Proof.

To build Gϕ takes O(m).

The strongly connected components of Gϕ can be obtained in O(m + n).

AGT-MIRI Complexity: Problems and Classes Spring 2024 47 / 47

Correctness of the reduction

Exercise

ϕ is satisfiable iff no strongly connected component in Gϕ contains nodes
x and x̄ , for x ∈ X

Theorem

2-Sat ∈ P

Proof.

To build Gϕ takes O(m).

The strongly connected components of Gϕ can be obtained in O(m + n).

AGT-MIRI Complexity: Problems and Classes Spring 2024 47 / 47

