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Algorithmics: Basic references

o Kleinberg, Tardos. Algorithm Design, Pearson Education, 2006.

@ Cormen, Leisserson, Rivest and Stein. Introduction to algorithms.
Second edition, MIT Press and McGraw Hill 2001.

o Easley, Kleinberg. Networks, Crowds, and Markets: Reasoning About
a Highly Connected World, Cambridge University Press, 2010
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Computational Complexity: Basic references

@ Sipser Introduction to the Theory of Computation 2013.
@ Papadimitriou Computational Complexity 1994.

@ Garey and Johnson Computers and Intractability: A Guide to the
Theory of NP-Completeness 1979
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Growth of functions: Asymptotic notations

We consider only functions defined on the natural numbers.

f,g:N—=N
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O-notation
For a given function g(n)

O(g(n)) = {f(n) |there exists a positive constant ¢ and ny > 0 }

such that 0 < f(n) < cg(n) for all n > ng}

Equivalently, the set of functions that verify

It is used for asymptotic upper bound.

Although O(g(n)) is a set we write f(n) = O(g(n)) to indicate that f(n)

is a member of O(g(n))
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Q-notation
For a given function g(n)

Q(g(n)) = {f(n) |there exists positive constants ¢ and ng such that}
0 < cg(n) < f(n) forall n> ng}

Equivalently, the set of functions that verify

jim (1)
n—oo g(n)

o(r°)
(n3)
(n*)
Q(2n/2)

5n3 +2n° =
5n3 +2n° =Q
5m3 +2n° =Q

It is used for asymptotic lower bound.
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©-notation
For a given function g(n)

©(g(n)) = {f(n) |there are positive constants ¢;, ¢z, and ny >0 }
such that 0 < c1g(n) < f(n) < cg(n) for all n > no}

Equivalently, the set of functions that verify

. f(n)
0< jim, g(n)

< 00

5n% +2n = O(n®)

5n% +2n% ¢ ©(n?)
It is used for asymptotic equivalence
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o-notation
For a given function g(n)

o(g(n)) = {f(n) |for any positive constant c there is ng > 0 such that}
0 < f(n) < cg(n) forall n> ng}

) = O(n) implies f(n) < cg(n) asymptotically for some ¢
n) implies f(n) < cg(n) asymptotlcally for any ¢
) =

: f(n) _
o(g(n)) it holds that limp_,ec = zm =0

Note that f(n
but f(n) = o

and when f(n

It is used for asymptotic upper bounds that are not asymtotically tight.
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w-notation
f(n) € w(g(n)) iff g(n) € o(f(n))
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Algorithm's analysis

o Time

@ Space
Algorithm A on input x takes time t(x).
|x| denotes the size of input x.
Definition

The cost function of algorithm A is a function from N to N defined as

Ca(n) = max t(x)

x|=n
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Fundamental growth functions

@ Polynomial time

@ Exponential time

AGT-MIRI Complexity: Problems and Classes Spring 2024 11/47



Fundamental growth functions

@ Polynomial time
Ca(n) = O(n°), for some constant c.

@ Exponential time

AGT-MIRI Complexity: Problems and Classes Spring 2024 12 /47



Fundamental growth functions

@ Polynomial time
Ca(n) = O(n°), for some constant c.

@ Exponential time
C(n) = 2°("°) for some constant c.
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Fundamental growth functions

@ Polynomial time
Ca(n) = O(n°), for some constant c.

@ Exponential time
C(n) = 29(") for some constant c.

@ Quasi-polynomial time

@ Pseudo polynomial time
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Fundamental growth functions

@ Polynomial time

Ca(n) = O(n°), for some constant c.
@ Exponential time

C(n) = 290" for some constant c.

@ Quasi-polynomial time
C4(n) = 200 for some constant c.

@ Pseudo-polynomial time
Ca(n) = O((mW)€), for some constant ¢, but input size is
O(m + log W)
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Fundamental growth functions

@ Polynomial time
Ca(n) = O(n°), for some constant c.

@ Exponential time
C(n) = 290" for some constant c.

@ Quasi-polynomial time
C4(n) = 200 for some constant c.

@ Pseudo-polynomial time
Ca(n) = O((mW)©), for some constant c, but input size is
O(m + log W)

@ Similar definitions replacing time by space
Most used PSPACE polynomial space
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Problem types

@ Decision
Input

Property

Example: Given a graph and two vertices, is there a path joining
them?
e Function
Input
Compute y such that

Example: Given a graph and two vertices, compute the minimum
distance between them.
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N
Problem types

@ Decision
Input x

Property P(x)
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N
Problem types

@ Decision
Input x
Property P(x)

Coding inputs on alphabet ¥ a problem is a set
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N
Problem types

@ Decision
Input x

Property P(x)

Coding inputs on alphabet ¥ a problem is a set
{x | P(x)} € P(X7)
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N
Problem types

@ Decision
Input x

Property P(x)

Coding inputs on alphabet ¥ a problem is a set
{x | P(x)} € P(X7)
@ Function

Input x
Compute y such that Q(x.y)
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|
Problem types

@ Decision
Input x

Property P(x)

Coding inputs on alphabet ¥ a problem is a set
{x | P(x)} € P(X7)

@ Function
Input x

Compute y such that Q(x.y)

Coding inputs/outputs on alphabet ¥ a deterministic algorithm
solving a problem determines a function
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|
Problem types

@ Decision
Input x

Property P(x)

Coding inputs on alphabet ¥ a problem is a set
{x | P(x)} € P(X7)

@ Function
Input x

Compute y such that Q(x.y)

Coding inputs/outputs on alphabet ¥ a deterministic algorithm
solving a problem determines a function
foX* — ¥*st., for any x, Q(x,f(x)) is true.
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Decision problem classes

@ Undecidable
No algorithm can solve the problem.

@ Decidable
There is an algorithm solving them.

o P:
There is an algorithm solving it with polynomial cost.

o EXP
There is an algorithm solving it with exponential cost.

e PSPACE
There is an algorithm solving it within polynomial space.
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NP: non-deterministic polynomial time

It is possible to define a certificate y and a property P(x,y) such that
o If x is an input with answer yes, there is y such that P(x,y) is true,
@ P(x,y) can be decided in polynomial time, given x and y.

@ y has polynomial size with respect to |x|.

Problems with a polynomial time verifier
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NP: non-deterministic polynomial time

It is possible to define a certificate y and a property P(x,y) such that
o If x is an input with answer yes, there is y such that P(x,y) is true,
@ P(x,y) can be decided in polynomial time, given x and y.

@ y has polynomial size with respect to |x|.

Problems with a polynomial time verifier
{x|3yP(x )}
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Some decision problems

Bipartiteness (BIP)
Given a graph determine whether it is bipartite.

Perfect matching (PMATCH)
Given a graph determine whether it has a perfect matching.

Hamiltonian Cycle (HC)
Given a graph determine whether it has a Hamiltonian circuit.

In which classes?
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R
NP-hardness

@ It is an open question whether P = NP or NP = EXP. Most believed
is that P # NP

@ [1is NP-hard means that a polynomial time algorithm for 1 can be
reused to solve in polynomial time any problem in P.

@ Decision problem A is NP-complete iff A € NP and A is NP-hard.
Look at Garey and Johnson's book for a big list of NP-hard/complete
problems.
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R
NP-hardness

@ It is an open question whether P = NP or NP = EXP. Most believed
is that P # NP

@ [1is NP-hard means that a polynomial time algorithm for 1 can be
reused to solve in polynomial time any problem in P.

@ Decision problem A is NP-complete iff A € NP and A is NP-hard.
Look at Garey and Johnson's book for a big list of NP-hard/complete
problems.

@ The NP-hardness of a problem is assessed through reductions.
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Reductions

@ Let A and B be decision problems

@ A function f : N — N is a reduction from A to B if
x € Aiff f(x) e B
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Reductions

@ Let A and B be decision problems

@ A function f : N — N is a reduction from A to B if
x € Aiff f(x) e B

o f is a polynomial time reduction if in addition f can be computed in
polynomial time.
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Reductions

@ Let A and B be decision problems

@ A function f : N — N is a reduction from A to B if
x € Aiff f(x) e B

o f is a polynomial time reduction if in addition f can be computed in
polynomial time.

e Ais reducible to B (A < B) if there is a polynomial time reduction
from A to B.
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Reductions

@ Let A and B be decision problems

@ A function f : N — N is a reduction from A to B if
x € Aiff f(x) e B

o f is a polynomial time reduction if in addition f can be computed in
polynomial time.

e Ais reducible to B (A < B) if there is a polynomial time reduction
from A to B.

Theorem
IfA<Band Be P then Ac P J
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Reductions

@ Let A and B be decision problems

@ A function f : N — N is a reduction from A to B if
x e Aiff f(x) e B

o f is a polynomial time reduction if in addition f can be computed in
polynomial time.

e Ais reducible to B (A < B) if there is a polynomial time reduction
from A to B.

Theorem
IfA<Band Be P then Ac P J

This type of reduction is calle many-one polynomial reduction, sometiomes
we use <%, to distinguish from other reducibilities.
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Completeness

@ Let < be a reducibility among problems and C a class of problems.
C is closed under < if A< B and B € C implies A € C.
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Completeness

@ Let < be a reducibility among problems and C a class of problems.
C is closed under < if A< B and B € C implies A € C.

o Let < be a reducibility among problems and C a class of problems
closed under <
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Completeness

@ Let < be a reducibility among problems and C a class of problems.
C is closed under < if A< B and B € C implies A € C.

o Let < be a reducibility among problems and C a class of problems
closed under <

o Problem B is hard for class C under < if, for each A€ C, A< B.
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Completeness

@ Let < be a reducibility among problems and C a class of problems.
C is closed under < if A< B and B € C implies A € C.

o Let < be a reducibility among problems and C a class of problems
closed under <

o Problem B is hard for class C under < if, for each A€ C, A< B.
e Problem B is complete for class C under < if, B is hard for C and
BelcC.
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Completeness

@ Let < be a reducibility among problems and C a class of problems.
C is closed under < if A< B and B € C implies A € C.

o Let < be a reducibility among problems and C a class of problems
closed under <

o Problem B is hard for class C under < if, for each A€ C, A< B.
e Problem B is complete for class C under < if, B is hard for C and
BelcC.

e P, NP, PSPACE, EXP are closed under <.
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Completeness

@ Let < be a reducibility among problems and C a class of problems.
C is closed under < if A< B and B € C implies A € C.

o Let < be a reducibility among problems and C a class of problems
closed under <

o Problem B is hard for class C under < if, for each A€ C, A< B.
e Problem B is complete for class C under < if, B is hard for C and
BelcC.

o P, NP, PSPACE, EXP are closed under <.
@ A NP-complete problem is a problem complete for NP under <.
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Completeness

@ Let < be a reducibility among problems and C a class of problems.
C is closed under < if A< B and B € C implies A € C.

o Let < be a reducibility among problems and C a class of problems
closed under <

o Problem B is hard for class C under < if, for each A€ C, A< B.
e Problem B is complete for class C under < if, B is hard for C and
BelcC.

P, NP, PSPACE, EXP are closed under <.

A NP-complete problem is a problem complete for NP under <.

o < is a transitive relation.
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NP-completeness

A problem A is NP-complete if:
QO A€ NP, and
@ for every B€ NP, B <A.

If for every B € NP, B < Abut A¢ NP then A is said to be NP-hard.

\_  NP-hard
l"‘. OO-NP\{\ y
\ // b‘\\ NP
( l//;\\') NP-complete
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Lemma
If A is NP-complete, then A €P iff P=NP. J
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Lemma
If A is NP-complete, then A €P iff P=NP. J

@ Once we prove that a problem is NP-complete, either A has no
efficient algorithm or all NP problems are in P.
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Lemma
If A is NP-complete, then A €P iff P=NP. J

@ Once we prove that a problem is NP-complete, either A has no
efficient algorithm or all NP problems are in P.

e Majority conjecture: P # NP
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Lemma
If A is NP-complete, then A €P iff P=NP. J

@ Once we prove that a problem is NP-complete, either A has no
efficient algorithm or all NP problems are in P.

e Majority conjecture: P # NP
@ To prove a problem is NP-complete, we just have to find a reduction
from a problem known to be NP-complete.
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Lemma
If A is NP-complete, then A €P iff P=NP. J

@ Once we prove that a problem is NP-complete, either A has no
efficient algorithm or all NP problems are in P.

e Majority conjecture: P # NP
@ To prove a problem is NP-complete, we just have to find a reduction
from a problem known to be NP-complete.

@ We need as a seed a first NP-complete problem.
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-
CIRCUIT SAT.

CIRCUIT SAT: Given a Boolean circuit with gates AND, OR, NOT, and
the input gates T, F and 7, and one output gate. Is there an an
assignment to the input gates (?), such that the circuit evaluates to T?

For example if the input to 7 is T,F, T, the output is F
if the input is F,T,T, the output is T
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N
Any NP problem can be "expressed” as CIRCUIT SAT.

@ We want to show that if A € NP, then A < CIRCUIT SAT.
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N
Any NP problem can be "expressed” as CIRCUIT SAT.

@ We want to show that if A € NP, then A < CIRCUIT SAT.

@ Ais a decision NP problem = there is a polynomial-time algorithm A
which given an instance x and a witness solution ¢ of A, checks in
polynomial time (in the length of |x|) if ¢ is a valid certificate for x.
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N
Any NP problem can be "expressed” as CIRCUIT SAT.

@ We want to show that if A € NP, then A < CIRCUIT SAT.

@ Ais a decision NP problem = there is a polynomial-time algorithm A
which given an instance x and a witness solution ¢ of A, checks in
polynomial time (in the length of |x|) if ¢ is a valid certificate for x.

@ Any polynomial-time algorithm (TM) can be expressed as a
polynomial-size circuit, whose input gates encode the input to the
algorithm, and the ? input gates are feeding the witness c. If the
algorithm solves a decision problem (Y/N), the output of the circuit
will be 1/0.
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N
Any NP problem can be "expressed” as CIRCUIT SAT.

@ We want to show that if A € NP, then A < CIRCUIT SAT.

@ Ais a decision NP problem = there is a polynomial-time algorithm A
which given an instance x and a witness solution ¢ of A, checks in
polynomial time (in the length of |x|) if ¢ is a valid certificate for x.

@ Any polynomial-time algorithm (TM) can be expressed as a
polynomial-size circuit, whose input gates encode the input to the
algorithm, and the ? input gates are feeding the witness c. If the

algorithm solves a decision problem (Y/N), the output of the circuit
will be 1/0.

@ There is a way to feed ¢ and get output 1 iff there is a valid cerificate.
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The seminal theorem: Cook-Levin's Theorem

Therefore, given any instance x for A, we can construct in poly-time
instance C of CIRCUIT SAT whose known inputs are the bits of x, and

whose unknown inputs are the bits of x, and such that the output of C is
1 iff A outputs YES on input (x, ¢).
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The seminal theorem: Cook-Levin's Theorem

Therefore, given any instance x for A, we can construct in poly-time
instance C of CIRCUIT SAT whose known inputs are the bits of x, and

whose unknown inputs are the bits of x, and such that the output of C is
1 iff A outputs YES on input (x, ¢).

Theorem (Cook-Levin's theorem)
CIRCUIT-SAT is NP-complete. J
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Boolean formulas

@ A Boolean variable x can take values 0,1.
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Boolean formulas

@ A Boolean variable x can take values 0,1.

@ A Boolean formula is an expression constructed from Boolean
variables and connectives, negation (—¢ or ¢), disjunction (V), and
conjunction (A).
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Boolean formulas

@ A Boolean variable x can take values 0,1.

@ A Boolean formula is an expression constructed from Boolean
variables and connectives, negation (—¢ or ¢), disjunction (V), and
conjunction (A).

@ A Boolean formula ¢ is satisfiable if there is a truth assignment
T : X — {0, 1} to the variables in ¢ such that T(¢) = 1.
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Boolean formulas

@ A Boolean variable x can take values 0,1.

@ A Boolean formula is an expression constructed from Boolean
variables and connectives, negation (—¢ or ¢), disjunction (V), and
conjunction (A).

@ A Boolean formula ¢ is satisfiable if there is a truth assignment
T : X — {0, 1} to the variables in ¢ such that T(¢) = 1.

e For example, for X = {x1,x2, x3},
dp=((x1Vx3)A(x1VxVx3)A(XVxVXx3)A(xVx3)

is satisfiable, take T(x1) = T(x2) =0, T(x3) =1 then T(¢) = 1.
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Boolean formulas: normal forms
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Boolean formulas: normal forms

@ A literal is a Boolean variable x or a negation of a Boolean variable x.
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Boolean formulas: normal forms

@ A literal is a Boolean variable x or a negation of a Boolean variable x.

@ A clause is a disjunction (conjunction) of literals.
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Boolean formulas: normal forms

@ A literal is a Boolean variable x or a negation of a Boolean variable x.
@ A clause is a disjunction (conjunction) of literals.

@ A Boolean formula ¢ in Conjunctive Normal Form (CNF) is a
conjunction of clauses, ¢ = AT ;(C;), where each clause

G = Vi dl}

For example, for X = {x1, x2,x3}, a CNF formula is

¢:(X1V)_<3)/\()_(1 \/)_(2\/X3)/\()_<1\/)_(2\/)_(3)/\(X2\/X3)
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Boolean formulas: normal forms

@ A literal is a Boolean variable x or a negation of a Boolean variable x.
@ A clause is a disjunction (conjunction) of literals.

@ A Boolean formula ¢ in Conjunctive Normal Form (CNF) is a
conjunction of clauses, ¢ = AT ;(C;), where each clause

ki
Ci = \/J:1{{l}
For example, for X = {x1, x2,x3}, a CNF formula is

¢:(X1V)_<3)/\()_(1 \/)_(2\/X3)/\()_<1\/)_(2\/)_(3)/\(X2\/X3)

@ A Boolean formula ¢ in Disjunctive Normal Form (DNF) is expressed
as a disjunction of clauses, ¢ = \/7;(C;), where each clause

G =N {h}
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SAT problem and variations

Given a formula CNF formula ¢ on a set X of n variables,
@ SAT: Is ¢ satisfiable?
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SAT problem and variations

Given a formula CNF formula ¢ on a set X of n variables,
@ SAT: Is ¢ satisfiable?

e k-SAT. Given a boolean formula in CNF ¢ = A" ;(G;) in where each
clause is a disjunction of exactly k literals, is ¢ satisfiable?
Ex. 3-SAT
¢ =(0aVxaVxa) AN(x1 VR Vxa) AV Via)AN(x1 V3V xa)A(x V<oV
)?3)/\()?2\/X3\/X4)/\()?1\/X2\/)?3)/\()?2\/X3\/)?4)/\(X2\/>?3\/>?4)/\()?2\/)?3\/)?4)
T(x1) =1,T(x2) = T(x3) = T(xq) =0, satisfies the previous
instance.
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SAT problem and variations

Given a formula CNF formula ¢ on a set X of n variables,
@ SAT: Is ¢ satisfiable?
e k-SAT. Given a boolean formula in CNF ¢ = A" ;(G;) in where each
clause is a disjunction of exactly k literals, is ¢ satisfiable?
Ex. 3-SAT
¢ =(0aVxaVxa) AN(x1 VR Vxa) AV Via)AN(x1 V3V xa)A(x V<oV
)?3)/\()?2\/X3\/X4)/\()?1\/X2\/)?3)/\()?2\/X3\/)?4)/\(X2\/>?3\/>?4)/\()?2\/)?3\/)?4)
T(x1)=1,T(x2) = T(x3) = T(xa) = 0, satisfies the previous
instance.
Given a DNF formula ¢ on a set X of n variables,

o DNF-SAT: Is ¢ satisfiable?
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SAT problem and variations

Given a formula CNF formula ¢ on a set X of n variables,
@ SAT: Is ¢ satisfiable?
e k-SAT. Given a boolean formula in CNF ¢ = A" ;(G;) in where each
clause is a disjunction of exactly k literals, is ¢ satisfiable?
Ex. 3-SAT
¢ =(0aVxaVxa) AN(x1 VR Vxa) AV Via)AN(x1 V3V xa)A(x V<oV
)?3)/\()?2\/X3\/X4)/\()?1\/X2\/)?3)/\()?2\/X3\/)?4)/\(X2\/>?3\/>?4)/\()?2\/)?3\/)?4)
T(x1) =1,T(x2) = T(x3) = T(xq) =0, satisfies the previous
instance.
Given a DNF formula ¢ on a set X of n variables,
o DNF-SAT: Is ¢ satisfiable?
o k-DNF-SAT: Given a boolean formula in DNF ¢ = \/_;(G;) in where
each clause is a conjunction of exactly k literals, is ¢ satisfiable?
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-
CIRCUIT SAT <P SAT
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CIRCUIT SAT <P SAT

Given any circuit C , we can rewrite it as a CNF formula ¢¢: for each
gate we associate a variable to the output connection. We model the
effect of the gate using at most three clauses.
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CIRCUIT SAT <P SAT

Given any circuit C , we can rewrite it as a CNF formula ¢¢: for each
gate we associate a variable to the output connection. We model the
effect of the gate using at most three clauses.

©
® w © ® I wanev

(XVy)AN(xVZ)A(xVyVZ)
é’ \
@)

@ (yVX)AN(ZVX)A(zVyVX)
ofto
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Example.

AGT-MIRI

(x1)A

(X5 V X1) A (X5 vV X2) VAN (X5 VX1V )_(2)/\
(2 Vx6)A(X3V x5) A (x2V x3V Xp)A\
(X7 vV X3) A (X7 V X4) A (X7 V X3V )_(4)/\
(Xg V X5) VAN (Xg V X5)/\

(X6 V Xg) VAN (X7 V Xg) (X(, V x7 V )_(g)/\
(X10 V Xg) (X]_o V Xg) (X10 V Xg V )_<9)A
(x10)
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-
CIRCUIT SAT <P SAT

@ Any truth assignment to the 7 gates of C determines a truth
assignment to the variables of ¢¢
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@ To insure that the satisfying truth assignment of the resulting SAT
formula is in 1-to-1 correspondence with the assignments on the gates
in the given instance of CIRCUIT-SAT, we add a clause holding the

variable corresponding to the output gate. Call this CNF formula
f(C).
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CIRCUIT SAT <P SAT

@ Any truth assignment to the 7 gates of C determines a truth
assignment to the variables of ¢¢

@ To insure that the satisfying truth assignment of the resulting SAT
formula is in 1-to-1 correspondence with the assignments on the gates
in the given instance of CIRCUIT-SAT, we add a clause holding the
variable corresponding to the output gate. Call this CNF formula
f(C).

o C is satisfiable iff there is an assignment T of truth values such that
the circuit outputs true iff the assignment obtained extending the
truth values of T to coincide with the output of the gates in C is a
satisfying assignment to f(C).
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-
CIRCUIT SAT <P SAT

@ Any truth assignment to the 7 gates of C determines a truth
assignment to the variables of ¢¢

@ To insure that the satisfying truth assignment of the resulting SAT
formula is in 1-to-1 correspondence with the assignments on the gates
in the given instance of CIRCUIT-SAT, we add a clause holding the
variable corresponding to the output gate. Call this CNF formula
f(C).

o C is satisfiable iff there is an assignment T of truth values such that
the circuit outputs true iff the assignment obtained extending the
truth values of T to coincide with the output of the gates in C is a
satisfying assignment to f(C).

Therefore, CIRCUIT SAT < SAT.
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-
CIRCUIT SAT <P SAT

@ It remains to show that the formula f(C) can be obtained in
polynomial time.
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polynomial time.

@ A circuit is directed acyclic graph, we can compute a topological sort
in O(|V| + |E]).
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@ A circuit is directed acyclic graph, we can compute a topological sort

in O(|V| + |E]).

@ The topological sort provides an order to assign numbers to the
variables.

@ We can obtain, from each gate, its number and the numbers of their
input gates.

@ Then write, for each gate in order, the corresponding set of clauses.
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-
CIRCUIT SAT <P SAT

@ It remains to show that the formula f(C) can be obtained in
polynomial time.

@ A circuit is directed acyclic graph, we can compute a topological sort
in O(|V| + |E]).

@ The topological sort provides an order to assign numbers to the
variables.

@ We can obtain, from each gate, its number and the numbers of their
input gates.

@ Then write, for each gate in order, the corresponding set of clauses.

@ All this process can be done in polynomial time.

@ Therefore, CIRCUIT SAT <P SAT.
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SAT is NP-complete

Theorem
SAT is NP-complete

Proof.

e As CIRCUIT SAT <P, SAT, SAT is NP-hard
@ It remains to show that SAT € NP
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SAT is NP-complete

Theorem
SAT is NP-complete

Proof.
e As CIRCUIT SAT <F, SAT, SAT is NP-hard
@ It remains to show that SAT € NP
@ The certificate is a truth assignment.
o

Evaluating a CNF formula on a particular truth assignment, requires
to check that each clause gets at least one literal that evaluates to
true.
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N
SAT is NP-complete

Theorem
SAT is NP-complete

Proof.
As CIRCUIT SAT <? SAT, SAT is NP-hard
It remains to show that SAT € NP

o
@ The certificate is a truth assignment.
o

Evaluating a CNF formula on a particular truth assignment, requires
to check that each clause gets at least one literal that evaluates to
true.

This can be done in polynomial time.
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-
The 3-SAT

@ Recall that the 3-SAT problem is a restricted version of SAT where
each clause has exactly 3 literals.
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The 3-SAT

@ Recall that the 3-SAT problem is a restricted version of SAT where
each clause has exactly 3 literals.

o Let ¢ = {C;}7; be a CNF formula on a set X of variables. let z; be
the literal x; or X;.

@ We construct a formula ¢/ = f(¢) on a set X’ of variables (X C X’)
having all clauses with 3 literals.
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@ Recall that the 3-SAT problem is a restricted version of SAT where
each clause has exactly 3 literals.

o Let ¢ = {C;}7; be a CNF formula on a set X of variables. let z; be
the literal x; or X;.

@ We construct a formula ¢/ = f(¢) on a set X’ of variables (X C X’)
having all clauses with 3 literals.

@ For each clause in ¢, f determines a set of equivalent clauses, in the
sense that the clause can be satisfied iff the formula corresponding to
the set is satisfiable, to be included.

@ We add some variables when needed.
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-
The 3-SAT

@ Recall that the 3-SAT problem is a restricted version of SAT where
each clause has exactly 3 literals.

o Let ¢ = {C;}7; be a CNF formula on a set X of variables. let z; be
the literal x; or X;.

@ We construct a formula ¢/ = f(¢) on a set X’ of variables (X C X’)
having all clauses with 3 literals.

@ For each clause in ¢, f determines a set of equivalent clauses, in the
sense that the clause can be satisfied iff the formula corresponding to
the set is satisfiable, to be included.

@ We add some variables when needed.
@ The replacements depend on the size k of clause C;.
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-
SAT < 3-SAT

o If k=1, G; = z, we add variables {y;1, yj»} and clauses

G ={(zVy1Vypn) (zVi1Vyp),(z2VyaVip)(zVinVip)}

Observe that C; is satisfiable iff ij is satisfiable.
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Observe that C; is satisfiable iff ij is satisfiable.

o If k=2, (G =21V z, we add variable y; and clauses
G={(aVvaVvy),(aVvaVy)y}

Again, C; is satisfiable iff C; is satisfiable.
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SAT < 3-SAT

o If k=1, G; = z, we add variables {y;1, yj»} and clauses
G ={(zVy1Vypn) (zVi1Vyp),(z2VyaVip)(zVinVip)}

Observe that C; is satisfiable iff ij is satisfiable.

o If k=2, (G =21V z, we add variable y; and clauses
G={(aVvaVvy),(aVvaVy)y}

Again, C; is satisfiable iff C; is satisfiable.
o lf k=3, weadd CG=(z1V2zVz)to ¢.
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-
SAT < 3-SAT

o lfk>3 (G =(z1VnV---Vz) add variables {yj1,yj2, ..., Yjk-3}
and the clauses

G={(mvaVvys),FpVzaVyp). . (JKk-3Vz-1Vz)}

o A satisfying assignment for C; must made T(z;) =1 for at least one
zj. Then the assignment T’ such that, T(z) =1,

T'(yp) = =T (yji2)=1and T'(yji1) == T'(yx3) =0
satisfies CJ{.

@ On the other hand, if T’ satisfies Cj’, there is z; such that T'(z) =1
(otherwise there would be a yjy such that T'(yje) =1 = T'(yj¢))
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Example

Input to SAT: ¢ = ()?1) A ()?1,)?2) A ()?1,X3,)?4) A\ (X1,X2,)?3,X4,X5)
Cl = (%1, y11, y12) A (%1, 711, Y12) A (K1, y11, y12) A (K1, 11, v12)
G = (%1, %, y2) A (%1, X2, ¥2)

Cé = ()?1,X3,)?4)

Cyp = (x1,x2, ya1) A (Va1, X3, ya2) N (Va2, Xa, X5)

Then f(¢) = CEACGACGANG

with X" = {x1,x2, X3, Xa, X5, y11, Y12, Y2, ¥3, Va1, Va2 }
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N
3-SAT is NP-complete

Theorem
3-SAT is NP-complete

Proof.

@ The above construction can be done in polynomial time, therefor
SAT <P 3-SAT, 3-SAT is NP-hard

@ On the other hand 3-SAT is a subproblem of SAT, do 3-SAT& NP

O

v
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-
The k-SAT problem

Theorem
For k > 3, k-SAT is NP-complete

Proof.

@ We have just show that 3-SAT is NP-complete.
@ Assume that ¢-SAT is NP-complete.

o To reduce (-SAT <, (£ +1)-SAT, for each clause C; (with ¢ literals)
o Add variable {y;}
e and add clauses
G ={GVvy)(GV)}
o (; is satisfiable iff C; is satisfiable.
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N
The 2-SAT problem

2-SAT: Given a Boolean formula ¢, where each clause has exactly 2
literals, is ¢ satisfiable?

@ A clause in a 2-SAT instance has the form (y V z) for some literals
v,Z.
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2-SAT: Given a Boolean formula ¢, where each clause has exactly 2
literals, is ¢ satisfiable?

@ A clause in a 2-SAT instance has the form (y V z) for some literals
Yy, Z.
@ Recall that p — g is equivalent to p V gq.
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N
The 2-SAT problem

2-SAT: Given a Boolean formula ¢, where each clause has exactly 2
literals, is ¢ satisfiable?

@ A clause in a 2-SAT instance has the form (y V z) for some literals
Y, Z.

Recall that p — ¢ is equivalent to p V q.

So, (y V z) is equivalent to y — z and to Z — y.

A 2-SAT formula can be seen as a collection of implications.

To show that 2-SAT € P, we construct a kind of reduction to a
problem related to the strongly connected components of a digraph.
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Strongly connected components of a digraph

@ A digraph G is strongly connected iff Vu, v € V, there is a path from
uto v (u~-v) and there is a path from v to u (v ~ u).

@ We can determine if G is strongly connected in O(n+ m) time.

e When G not strongly connected, we can find its strongly connected
components in O(n+ m) steps.
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Strongly connected components of a digraph

@ A digraph G is strongly connected iff Vu, v € V, there is a path from
uto v (u~-v) and there is a path from v to u (v ~ u).

@ We can determine if G is strongly connected in O(n+ m) time.

e When G not strongly connected, we can find its strongly connected
components in O(n+ m) steps.

@ Recall, that by collapsing each strongly connected component of G to
a node, and removing multiple edges and loops, the remaining
digraph is acyclic.
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-
2-SAT< P

Let ¢ be a 2-SAT instance on a set X of n variables and with m clauses

(I¢| = 2m).

AGT-MIRI Complexity: Problems and Classes Spring 2024 45 /47



-
2-SAT< P

Let ¢ be a 2-SAT instance on a set X of n variables and with m clauses

(I¢| = 2m).

Define G4 as follows:
@ V: 2n nodes, two for each variable (x and X).
° E has 2m edges, for each C; = (a Vv 3), add edges & — /3 and
8 — «a.
Notice that Gy collects all implications in ¢.
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Examples
_ - X1 Xy
(X1VX2)/\(X1 \/X3)/\(X1 \/X2) V
/\()_(3 V X4) N ()_(1 V X4) >
which is satisfiable. _ A _
Xl X4
X1 X ° X4
= (x1VR)A (X VR)A
(X3 V X2) A ()_<3 V X2) VAN (X2 V X4)
which is not satisfiable. 3 — 3
1 Xy X3 4
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Correctness of the reduction

Exercise

¢ is satisfiable iff no strongly connected component in G contains nodes
x and X, for x € X
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Correctness of the reduction

Exercise
¢ is satisfiable iff no strongly connected component in G contains nodes
x and X, for x € X

Theorem
2-Satec P

Proof.
To build G4 takes O(m).

The strongly connected components of G, can be obtained in O(m + n).
L]

v
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