Complexity: Problems and Classes

Maria Serna

Spring 2024

Algorithmics: Basic references

- Kleinberg, Tardos. Algorithm Design, Pearson Education, 2006.
- Cormen, Leisserson, Rivest and Stein. Introduction to algorithms. Second edition, MIT Press and McGraw Hill 2001.
- Easley, Kleinberg. Networks, Crowds, and Markets: Reasoning About a Highly Connected World, Cambridge University Press, 2010

Computational Complexity: Basic references

- Sipser Introduction to the Theory of Computation 2013.
- Papadimitriou Computational Complexity 1994.
- Garey and Johnson Computers and Intractability: A Guide to the Theory of NP-Completeness 1979

Growth of functions: Asymptotic notations

We consider only functions defined on the natural numbers.

$$
f, g: \mathbb{N} \rightarrow \mathbb{N}
$$

O-notation

For a given function $g(n)$

$$
O(g(n))=\left\{f(n) \mid \text { there exists a positive constant } c \text { and } n_{0} \geq 0\right\}
$$ such that $0 \leq f(n) \leq c g(n)$ for all $\left.n \geq n_{0}\right\}$

Equivalently, the set of functions that verify

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}<\infty \\
& 5 n^{3}+2 n^{2}=O\left(2^{n}\right) \\
& 5 n^{3}+2 n^{2}=O\left(n^{4}\right) \\
& 2^{n}=O\left(2^{2 n}\right) \\
& 2^{n}=O\left(2^{n \log n}\right)
\end{aligned}
$$

It is used for asymptotic upper bound.
Although $O(g(n))$ is a set we write $f(n)=O(g(n))$ to indicate that $f(n)$ is a member of $O(g(n))$

Ω-notation

For a given function $g(n)$

$$
\begin{aligned}
& \Omega(g(n))=\left\{f(n) \mid \text { there exists positive constants } c \text { and } n_{0} \text { such that }\right\} \\
& \left.0 \leq c g(n) \leq f(n) \text { for all } n \geq n_{0}\right\}
\end{aligned}
$$

Equivalently, the set of functions that verify

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}>0
$$

$$
\begin{aligned}
5 n^{3}+2 n^{2} & =\Theta\left(n^{3}\right) \\
5 n^{3}+2 n^{2} & =\Omega\left(n^{3}\right) \\
5 n^{3}+2 n^{2} & =\Omega\left(n^{2}\right) \\
2^{n} & =\Omega\left(2^{n / 2}\right)
\end{aligned}
$$

It is used for asymptotic lower bound.

Θ-notation

For a given function $g(n)$

$$
\begin{aligned}
& \Theta(g(n))=\left\{f(n) \mid \text { there are positive constants } c_{1}, c_{2} \text {, and } n_{0} \geq 0\right\} \\
& \\
& \text { such that } \left.0 \leq c_{1} g(n) \leq f(n) \leq c_{2} g(n) \text { for all } n \geq n_{0}\right\}
\end{aligned}
$$

Equivalently, the set of functions that verify

$$
\begin{aligned}
& 0<\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}<\infty \\
& 5 n^{3}+2 n^{2}=\Theta\left(n^{3}\right) \\
& 5 n^{3}+2 n^{2} \notin \Theta\left(n^{2}\right)
\end{aligned}
$$

It is used for asymptotic equivalence
o-notation
For a given function $g(n)$

$$
\begin{aligned}
& o(g(n))=\left\{f(n) \mid \text { for any positive constant } c \text { there is } n_{0} \geq 0 \text { such that }\right\} \\
& \left.\quad 0 \leq f(n) \leq c g(n) \text { for all } n \geq n_{0}\right\}
\end{aligned}
$$

Note that $f(n)=O(n)$ implies $f(n) \leq c g(n)$ asymptotically for some c but $f(n)=o(n)$ implies $f(n) \leq c g(n)$ asymptotically for any c and when $f(n)=o(g(n))$ it holds that $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0$

It is used for asymptotic upper bounds that are not asymtotically tight.

ω-notation
 $f(n) \in \omega(g(n))$ iff $g(n) \in o(f(n))$

Algorithm's analysis

- Time
- Space

Algorithm \mathcal{A} on input x takes time $t(x)$.
$|x|$ denotes the size of input x.

Definition

The cost function of algorithm \mathcal{A} is a function from \mathbb{N} to \mathbb{N} defined as

$$
\mathcal{C}_{\mathcal{A}}(n)=\max _{|x|=n} t(x)
$$

Fundamental growth functions

- Polynomial time
- Exponential time

Fundamental growth functions

- Polynomial time
$\mathcal{C}_{\mathcal{A}}(n)=O\left(n^{c}\right)$, for some constant c.
- Exponential time

Fundamental growth functions

- Polynomial time $\mathcal{C}_{\mathcal{A}}(n)=O\left(n^{c}\right)$, for some constant c.
- Exponential time $\mathcal{C}_{\mathcal{A}}(n)=2^{O\left(n^{c}\right)}$, for some constant c.

Fundamental growth functions

- Polynomial time $\mathcal{C}_{\mathcal{A}}(n)=O\left(n^{c}\right)$, for some constant c.
- Exponential time $\mathcal{C}_{\mathcal{A}}(n)=2^{O\left(n^{c}\right)}$, for some constant c.
- Quasi-polynomial time
- Pseudo polynomial time

Fundamental growth functions

- Polynomial time $\mathcal{C}_{\mathcal{A}}(n)=O\left(n^{c}\right)$, for some constant c.
- Exponential time $\mathcal{C}_{\mathcal{A}}(n)=2^{O\left(n^{c}\right)}$, for some constant c.
- Quasi-polynomial time $\mathcal{C}_{\mathcal{A}}(n)=2^{O\left(\log ^{c} n\right)}$, for some constant c.
- Pseudo-polynomial time $\mathcal{C}_{\mathcal{A}}(n)=O\left((m W)^{c}\right)$, for some constant c, but input size is $O(m+\log W)$

Fundamental growth functions

- Polynomial time $\mathcal{C}_{\mathcal{A}}(n)=O\left(n^{c}\right)$, for some constant c.
- Exponential time $\mathcal{C}_{\mathcal{A}}(n)=2^{O\left(n^{c}\right)}$, for some constant c.
- Quasi-polynomial time $\mathcal{C}_{\mathcal{A}}(n)=2^{O\left(\log ^{c} n\right)}$, for some constant c.
- Pseudo-polynomial time $\mathcal{C}_{\mathcal{A}}(n)=O\left((m W)^{c}\right)$, for some constant c, but input size is $O(m+\log W)$
- Similar definitions replacing time by space Most used PSPACE polynomial space

Problem types

- Decision

$$
\begin{aligned}
& \text { Input } x \\
& \text { Property } P(x)
\end{aligned}
$$

Example: Given a graph and two vertices, is there a path joining them?

- Function

```
Input x
Compute y such that Q (x,y)
```

Example: Given a graph and two vertices, compute the minimum distance between them.

Problem types

- Decision

Input x
Property $P(x)$

Problem types

- Decision

$$
\begin{aligned}
& \text { Input } x \\
& \text { Property } P(x)
\end{aligned}
$$

Coding inputs on alphabet Σ a problem is a set

Problem types

- Decision

$$
\begin{aligned}
& \text { Input } x \\
& \text { Property } P(x)
\end{aligned}
$$

Coding inputs on alphabet Σ a problem is a set $\{x \mid P(x)\} \in \mathcal{P}\left(\Sigma^{*}\right)$

Problem types

- Decision

$$
\begin{aligned}
& \text { Input } x \\
& \text { Property } P(x)
\end{aligned}
$$

Coding inputs on alphabet Σ a problem is a set $\{x \mid P(x)\} \in \mathcal{P}\left(\Sigma^{*}\right)$

- Function

Input \times
Compute y such that $Q(x, y)$

Problem types

- Decision

$$
\begin{aligned}
& \text { Input } x \\
& \text { Property } P(x)
\end{aligned}
$$

Coding inputs on alphabet Σ a problem is a set $\{x \mid P(x)\} \in \mathcal{P}\left(\Sigma^{*}\right)$

- Function

$$
\begin{aligned}
& \text { Input } x \\
& \text { Compute } y \text { such that } Q(x, y)
\end{aligned}
$$

Coding inputs/outputs on alphabet Σ a deterministic algorithm solving a problem determines a function

Problem types

- Decision

$$
\begin{aligned}
& \text { Input } x \\
& \text { Property } P(x)
\end{aligned}
$$

Coding inputs on alphabet Σ a problem is a set $\{x \mid P(x)\} \in \mathcal{P}\left(\Sigma^{*}\right)$

- Function

$$
\begin{aligned}
& \text { Input } x \\
& \text { Compute } y \text { such that } Q(x, y)
\end{aligned}
$$

Coding inputs/outputs on alphabet Σ a deterministic algorithm solving a problem determines a function $f: \Sigma^{*} \rightarrow \Sigma^{*}$ s.t., for any $x, Q(x, f(x))$ is true.

Decision problem classes

- Undecidable

No algorithm can solve the problem.

- Decidable

There is an algorithm solving them.

- P :

There is an algorithm solving it with polynomial cost.

- EXP

There is an algorithm solving it with exponential cost.

- PSPACE

There is an algorithm solving it within polynomial space.

NP: non-deterministic polynomial time

It is possible to define a certificate y and a property $P(x, y)$ such that

- If x is an input with answer yes, there is y such that $P(x, y)$ is true,
- $P(x, y)$ can be decided in polynomial time, given x and y.
- y has polynomial size with respect to $|x|$.

Problems with a polynomial time verifier

NP: non-deterministic polynomial time

It is possible to define a certificate y and a property $P(x, y)$ such that

- If x is an input with answer yes, there is y such that $P(x, y)$ is true,
- $P(x, y)$ can be decided in polynomial time, given x and y.
- y has polynomial size with respect to $|x|$.

Problems with a polynomial time verifier $\{x \mid \exists y P(x, y)\}$

Some decision problems

Bipartiteness (BIP)
Given a graph determine whether it is bipartite.
Perfect matching (PMATCH)
Given a graph determine whether it has a perfect matching.
Hamiltonian Cycle (HC)
Given a graph determine whether it has a Hamiltonian circuit. In which classes?

NP-hardness

- It is an open question whether $\mathrm{P}=\mathrm{NP}$ or $\mathrm{NP}=$ EXP. Most believed is that $P \neq N P$
- Π is NP-hard means that a polynomial time algorithm for Π can be reused to solve in polynomial time any problem in P .
- Decision problem A is NP-complete iff $A \in$ NP and A is NP-hard. Look at Garey and Johnson's book for a big list of NP-hard/complete problems.

NP-hardness

- It is an open question whether $\mathrm{P}=\mathrm{NP}$ or $\mathrm{NP}=$ EXP. Most believed is that $P \neq N P$
- Π is NP-hard means that a polynomial time algorithm for Π can be reused to solve in polynomial time any problem in P .
- Decision problem A is NP-complete iff $A \in$ NP and A is NP-hard. Look at Garey and Johnson's book for a big list of NP-hard/complete problems.
- The NP-hardness of a problem is assessed through reductions.

Reductions

- Let A and B be decision problems
- A function $f: \mathbb{N} \rightarrow \mathbb{N}$ is a reduction from A to B if $x \in A$ iff $f(x) \in B$

Reductions

- Let A and B be decision problems
- A function $f: \mathbb{N} \rightarrow \mathbb{N}$ is a reduction from A to B if $x \in A$ iff $f(x) \in B$
- f is a polynomial time reduction if in addition f can be computed in polynomial time.

Reductions

- Let A and B be decision problems
- A function $f: \mathbb{N} \rightarrow \mathbb{N}$ is a reduction from A to B if $x \in A$ iff $f(x) \in B$
- f is a polynomial time reduction if in addition f can be computed in polynomial time.
- A is reducible to $B(A \leq B)$ if there is a polynomial time reduction from A to B.

Reductions

- Let A and B be decision problems
- A function $f: \mathbb{N} \rightarrow \mathbb{N}$ is a reduction from A to B if $x \in A$ iff $f(x) \in B$
- f is a polynomial time reduction if in addition f can be computed in polynomial time.
- A is reducible to $B(A \leq B)$ if there is a polynomial time reduction from A to B.

```
Theorem
If A\leqB and B\inP then }A\in
```


Reductions

- Let A and B be decision problems
- A function $f: \mathbb{N} \rightarrow \mathbb{N}$ is a reduction from A to B if $x \in A$ iff $f(x) \in B$
- f is a polynomial time reduction if in addition f can be computed in polynomial time.
- A is reducible to $B(A \leq B)$ if there is a polynomial time reduction from A to B.

```
Theorem
If }A\leqB\mathrm{ and }B\inP\mathrm{ then }A\in
```

This type of reduction is calle many-one polynomial reduction, sometiomes we use \leq_{m}^{p} to distinguish from other reducibilities.

Completeness

- Let \leq be a reducibility among problems and \mathcal{C} a class of problems. \mathcal{C} is closed under \leq if $A \leq B$ and $B \in \mathcal{C}$ implies $A \in \mathcal{C}$.

Completeness

- Let \leq be a reducibility among problems and \mathcal{C} a class of problems. \mathcal{C} is closed under \leq if $A \leq B$ and $B \in \mathcal{C}$ implies $A \in \mathcal{C}$.
- Let \leq be a reducibility among problems and \mathcal{C} a class of problems closed under \leq

Completeness

- Let \leq be a reducibility among problems and \mathcal{C} a class of problems. \mathcal{C} is closed under \leq if $A \leq B$ and $B \in \mathcal{C}$ implies $A \in \mathcal{C}$.
- Let \leq be a reducibility among problems and \mathcal{C} a class of problems closed under \leq
- Problem B is hard for class \mathcal{C} under \leq if, for each $A \in \mathcal{C}, A \leq B$.

Completeness

- Let \leq be a reducibility among problems and \mathcal{C} a class of problems. \mathcal{C} is closed under \leq if $A \leq B$ and $B \in \mathcal{C}$ implies $A \in \mathcal{C}$.
- Let \leq be a reducibility among problems and \mathcal{C} a class of problems closed under \leq
- Problem B is hard for class \mathcal{C} under \leq if, for each $A \in \mathcal{C}, A \leq B$.
- Problem B is complete for class \mathcal{C} under $\leq \mathrm{if}, B$ is hard for \mathcal{C} and $B \in \mathcal{C}$.

Completeness

- Let \leq be a reducibility among problems and \mathcal{C} a class of problems. \mathcal{C} is closed under \leq if $A \leq B$ and $B \in \mathcal{C}$ implies $A \in \mathcal{C}$.
- Let \leq be a reducibility among problems and \mathcal{C} a class of problems closed under \leq
- Problem B is hard for class \mathcal{C} under \leq if, for each $A \in \mathcal{C}, A \leq B$.
- Problem B is complete for class \mathcal{C} under $\leq \mathrm{if}, B$ is hard for \mathcal{C} and $B \in \mathcal{C}$.
- P, NP, PSPACE, EXP are closed under \leq.

Completeness

- Let \leq be a reducibility among problems and \mathcal{C} a class of problems. \mathcal{C} is closed under \leq if $A \leq B$ and $B \in \mathcal{C}$ implies $A \in \mathcal{C}$.
- Let \leq be a reducibility among problems and \mathcal{C} a class of problems closed under \leq
- Problem B is hard for class \mathcal{C} under \leq if, for each $A \in \mathcal{C}, A \leq B$.
- Problem B is complete for class \mathcal{C} under \leq if, B is hard for \mathcal{C} and $B \in \mathcal{C}$.
- P, NP, PSPACE, EXP are closed under \leq.
- A NP-complete problem is a problem complete for NP under \leq.

Completeness

- Let \leq be a reducibility among problems and \mathcal{C} a class of problems. \mathcal{C} is closed under \leq if $A \leq B$ and $B \in \mathcal{C}$ implies $A \in \mathcal{C}$.
- Let \leq be a reducibility among problems and \mathcal{C} a class of problems closed under \leq
- Problem B is hard for class \mathcal{C} under \leq if, for each $A \in \mathcal{C}, A \leq B$.
- Problem B is complete for class \mathcal{C} under $\leq \mathrm{if}, B$ is hard for \mathcal{C} and $B \in \mathcal{C}$.
- P, NP, PSPACE, EXP are closed under \leq.
- A NP-complete problem is a problem complete for NP under \leq.
- \leq is a transitive relation.

NP-completeness

A problem A is NP-complete if:
(1) $A \in \mathrm{NP}$, and
(2) for every $B \in \mathrm{NP}, B \leq A$.

If for every $B \in \mathrm{NP}, B \leq A$ but $A \notin \mathrm{NP}$ then A is said to be NP-hard.

Lemma
 If A is $N P$-complete, then $A \in P$ iff $P=N P$.

Lemma

If A is $N P$-complete, then $A \in P$ iff $P=N P$.

- Once we prove that a problem is NP-complete, either A has no efficient algorithm or all NP problems are in P .

Lemma

If A is $N P$-complete, then $A \in P$ iff $P=N P$.

- Once we prove that a problem is NP-complete, either A has no efficient algorithm or all NP problems are in P .
- Majority conjecture: $\mathrm{P} \neq \mathrm{NP}$

If A is $N P$-complete, then $A \in P$ iff $P=N P$.

- Once we prove that a problem is NP-complete, either A has no efficient algorithm or all NP problems are in P .
- Majority conjecture: $\mathrm{P} \neq \mathrm{NP}$
- To prove a problem is NP-complete, we just have to find a reduction from a problem known to be NP-complete.

If A is $N P$-complete, then $A \in P$ iff $P=N P$.

- Once we prove that a problem is NP-complete, either A has no efficient algorithm or all NP problems are in P .
- Majority conjecture: $\mathrm{P} \neq \mathrm{NP}$
- To prove a problem is NP-complete, we just have to find a reduction from a problem known to be NP-complete.
- We need as a seed a first NP-complete problem.

CIRCUIT SAT.

CIRCUIT SAT: Given a Boolean circuit with gates AND, OR, NOT, and the input gates T, F and ?, and one output gate. Is there an an assignment to the input gates (?), such that the circuit evaluates to T ?

For example if the input to ? is $\mathrm{T}, \mathrm{F}, \mathrm{T}$, the output is F if the input is $\mathrm{F}, \mathrm{T}, \mathrm{T}$, the output is T

Any NP problem can be "expressed" as CIRCUIT SAT.

- We want to show that if $A \in$ NP, then $A \leq$ CIRCUIT SAT.

Any NP problem can be "expressed" as CIRCUIT SAT.

- We want to show that if $A \in$ NP, then $A \leq$ CIRCUIT SAT.
- A is a decision NP problem \Rightarrow there is a polynomial-time algorithm \mathcal{A} which given an instance x and a witness solution c of A, checks in polynomial time (in the length of $|x|$) if c is a valid certificate for x.

Any NP problem can be "expressed" as CIRCUIT SAT.

- We want to show that if $A \in$ NP, then $A \leq$ CIRCUIT SAT.
- A is a decision NP problem \Rightarrow there is a polynomial-time algorithm \mathcal{A} which given an instance x and a witness solution c of A, checks in polynomial time (in the length of $|x|$) if c is a valid certificate for x.
- Any polynomial-time algorithm (TM) can be expressed as a polynomial-size circuit, whose input gates encode the input to the algorithm, and the ? input gates are feeding the witness c. If the algorithm solves a decision problem $(\mathrm{Y} / \mathrm{N})$, the output of the circuit will be $1 / 0$.

Any NP problem can be "expressed" as CIRCUIT SAT.

- We want to show that if $A \in$ NP, then $A \leq$ CIRCUIT SAT.
- A is a decision NP problem \Rightarrow there is a polynomial-time algorithm \mathcal{A} which given an instance x and a witness solution c of A, checks in polynomial time (in the length of $|x|$) if c is a valid certificate for x.
- Any polynomial-time algorithm (TM) can be expressed as a polynomial-size circuit, whose input gates encode the input to the algorithm, and the ? input gates are feeding the witness c. If the algorithm solves a decision problem $(\mathrm{Y} / \mathrm{N})$, the output of the circuit will be $1 / 0$.
- There is a way to feed c and get output 1 iff there is a valid cerificate.

The seminal theorem: Cook-Levin's Theorem

Therefore, given any instance x for A, we can construct in poly-time instance C of CIRCUIT SAT whose known inputs are the bits of x, and whose unknown inputs are the bits of x, and such that the output of C is 1 iff \mathcal{A} outputs YES on input (x, c).

The seminal theorem: Cook-Levin's Theorem

Therefore, given any instance x for A, we can construct in poly-time instance C of CIRCUIT SAT whose known inputs are the bits of x, and whose unknown inputs are the bits of x, and such that the output of C is 1 iff \mathcal{A} outputs YES on input (x, c).

Theorem (Cook-Levin's theorem)
CIRCUIT-SAT is NP-complete.

Boolean formulas

- A Boolean variable x can take values 0,1 .

Boolean formulas

- A Boolean variable x can take values 0,1 .
- A Boolean formula is an expression constructed from Boolean variables and connectives, negation $(\neg \phi$ or $\bar{\phi})$, disjunction (\vee), and conjunction (\wedge).

Boolean formulas

- A Boolean variable x can take values 0,1 .
- A Boolean formula is an expression constructed from Boolean variables and connectives, negation ($\neg \phi$ or $\bar{\phi}$), disjunction (\vee), and conjunction (\wedge).
- A Boolean formula ϕ is satisfiable if there is a truth assignment $T: X \rightarrow\{0,1\}$ to the variables in ϕ such that $T(\phi)=1$.

Boolean formulas

- A Boolean variable x can take values 0,1 .
- A Boolean formula is an expression constructed from Boolean variables and connectives, negation ($\neg \phi$ or $\bar{\phi}$), disjunction (\vee), and conjunction (\wedge).
- A Boolean formula ϕ is satisfiable if there is a truth assignment $T: X \rightarrow\{0,1\}$ to the variables in ϕ such that $T(\phi)=1$.
- For example, for $X=\left\{x_{1}, x_{2}, x_{3}\right\}$,

$$
\phi=\left(x_{1} \vee \bar{x}_{3}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{2} \vee \bar{x}_{3}\right) \wedge\left(x_{2} \vee x_{3}\right)
$$

is satisfiable, take $T\left(x_{1}\right)=T\left(x_{2}\right)=0, T\left(x_{3}\right)=1$ then $T(\phi)=1$.

Boolean formulas: normal forms

Boolean formulas: normal forms

- A literal is a Boolean variable x or a negation of a Boolean variable \bar{x}.

Boolean formulas: normal forms

- A literal is a Boolean variable x or a negation of a Boolean variable \bar{x}.
- A clause is a disjunction (conjunction) of literals.

Boolean formulas: normal forms

- A literal is a Boolean variable x or a negation of a Boolean variable \bar{x}.
- A clause is a disjunction (conjunction) of literals.
- A Boolean formula ϕ in Conjunctive Normal Form (CNF) is a conjunction of clauses, $\phi=\bigwedge_{i=1}^{m}\left(C_{i}\right)$, where each clause $C_{i}=\bigvee_{j=1}^{k_{i}}\left\{I_{j}\right\}$.
For example, for $X=\left\{x_{1}, x_{2}, x_{3}\right\}$, a CNF formula is

$$
\phi=\left(x_{1} \vee \bar{x}_{3}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{2} \vee \bar{x}_{3}\right) \wedge\left(x_{2} \vee x_{3}\right)
$$

Boolean formulas: normal forms

- A literal is a Boolean variable x or a negation of a Boolean variable \bar{x}.
- A clause is a disjunction (conjunction) of literals.
- A Boolean formula ϕ in Conjunctive Normal Form (CNF) is a conjunction of clauses, $\phi=\bigwedge_{i=1}^{m}\left(C_{i}\right)$, where each clause $C_{i}=\bigvee_{j=1}^{k_{i}}\left\{I_{j}\right\}$.
For example, for $X=\left\{x_{1}, x_{2}, x_{3}\right\}$, a CNF formula is

$$
\phi=\left(x_{1} \vee \bar{x}_{3}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{2} \vee \bar{x}_{3}\right) \wedge\left(x_{2} \vee x_{3}\right)
$$

- A Boolean formula ϕ in Disjunctive Normal Form (DNF) is expressed as a disjunction of clauses, $\phi=\bigvee_{i=1}^{m}\left(C_{i}\right)$, where each clause $C_{i}=\bigwedge_{j=1}^{k_{i}}\left\{l_{j}\right\}$.

SAT problem and variations

Given a formula CNF formula ϕ on a set X of n variables,

- SAT: Is ϕ satisfiable?

SAT problem and variations

Given a formula CNF formula ϕ on a set X of n variables,

- SAT: Is ϕ satisfiable?
- k-SAT. Given a boolean formula in CNF $\phi=\bigwedge_{i=1}^{m}\left(C_{i}\right)$ in where each clause is a disjunction of exactly k literals, is ϕ satisfiable? Ex. 3-SAT
$\phi=\left(x_{1} \vee x_{2} \vee x_{4}\right) \wedge\left(x_{1} \vee \overline{x_{2}} \vee x_{4}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{4}}\right) \wedge\left(x_{1} \vee \overline{x_{3}} \vee \overline{x_{4}}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee\right.$ $\left.\overline{x_{3}}\right) \wedge\left(\overline{x_{2}} \vee x_{3} \vee x_{4}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee \overline{x_{3}}\right) \wedge\left(\overline{x_{2}} \vee x_{3} \vee \overline{x_{4}}\right) \wedge\left(x_{2} \vee \overline{x_{3}} \vee \bar{x}_{4}\right) \wedge\left(\overline{x_{2}} \vee \bar{x}_{3} \vee \bar{x}_{4}\right)$
$T\left(x_{1}\right)=1, T\left(x_{2}\right)=T\left(x_{3}\right)=T\left(x_{4}\right)=0$, satisfies the previous
instance.

SAT problem and variations

Given a formula CNF formula ϕ on a set X of n variables,

- SAT: Is ϕ satisfiable?
- k-SAT. Given a boolean formula in CNF $\phi=\bigwedge_{i=1}^{m}\left(C_{i}\right)$ in where each clause is a disjunction of exactly k literals, is ϕ satisfiable? Ex. 3-SAT
$\phi=\left(x_{1} \vee x_{2} \vee x_{4}\right) \wedge\left(x_{1} \vee \overline{x_{2}} \vee x_{4}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{4}}\right) \wedge\left(x_{1} \vee \overline{x_{3}} \vee \overline{x_{4}}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee\right.$ $\left.\overline{x_{3}}\right) \wedge\left(\overline{x_{2}} \vee x_{3} \vee x_{4}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee \overline{x_{3}}\right) \wedge\left(\overline{x_{2}} \vee x_{3} \vee \overline{x_{4}}\right) \wedge\left(x_{2} \vee \overline{x_{3}} \vee \bar{x}_{4}\right) \wedge\left(\overline{x_{2}} \vee \bar{x}_{3} \vee \bar{x}_{4}\right)$
$T\left(x_{1}\right)=1, T\left(x_{2}\right)=T\left(x_{3}\right)=T\left(x_{4}\right)=0$, satisfies the previous
instance.
Given a DNF formula ϕ on a set X of n variables,
- DNF-SAT: Is ϕ satisfiable?

SAT problem and variations

Given a formula CNF formula ϕ on a set X of n variables,

- SAT: Is ϕ satisfiable?
- k-SAT. Given a boolean formula in CNF $\phi=\bigwedge_{i=1}^{m}\left(C_{i}\right)$ in where each clause is a disjunction of exactly k literals, is ϕ satisfiable? Ex. 3-SAT
$\phi=\left(x_{1} \vee x_{2} \vee x_{4}\right) \wedge\left(x_{1} \vee \overline{x_{2}} \vee x_{4}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{4}}\right) \wedge\left(x_{1} \vee \overline{x_{3}} \vee \overline{x_{4}}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee\right.$ $\left.\overline{x_{3}}\right) \wedge\left(\overline{x_{2}} \vee x_{3} \vee x_{4}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee \overline{x_{3}}\right) \wedge\left(\overline{x_{2}} \vee x_{3} \vee \overline{x_{4}}\right) \wedge\left(x_{2} \vee \overline{x_{3}} \vee \bar{x}_{4}\right) \wedge\left(\overline{x_{2}} \vee \bar{x}_{3} \vee \bar{x}_{4}\right)$ $T\left(x_{1}\right)=1, T\left(x_{2}\right)=T\left(x_{3}\right)=T\left(x_{4}\right)=0$, satisfies the previous instance.

Given a DNF formula ϕ on a set X of n variables,

- DNF-SAT: Is ϕ satisfiable?
- k-DNF-SAT: Given a boolean formula in DNF $\phi=\bigvee_{i=1}^{m}\left(C_{i}\right)$ in where each clause is a conjunction of exactly k literals, is ϕ satisfiable?

CIRCUIT SAT \leq_{m}^{p} SAT

CIRCUIT SAT \leq_{m}^{p} SAT

Given any circuit C, we can rewrite it as a CNF formula ϕ_{C} : for each gate we associate a variable to the output connection. We model the effect of the gate using at most three clauses.

CIRCUIT SAT \leq_{m}^{p} SAT

Given any circuit C, we can rewrite it as a CNF formula ϕ_{C} : for each gate we associate a variable to the output connection. We model the effect of the gate using at most three clauses.

$$
(x \vee z) \wedge(\bar{x} \vee \bar{z})
$$

$$
(\bar{x} \vee y) \wedge(\bar{x} \vee z) \wedge(x \vee \bar{y} \vee \bar{z})
$$

$$
(\bar{y} \vee x) \wedge(\bar{z} \vee x) \wedge(z \vee y \vee \bar{x})
$$

Example.

$$
\begin{aligned}
& \left(x_{1}\right) \wedge \\
& \left(\bar{x}_{5} \vee x_{1}\right) \wedge\left(\bar{x}_{5} \vee x_{2}\right) \wedge\left(x_{5} \vee \bar{x}_{1} \vee \bar{x}_{2}\right) \wedge \\
& \left(\bar{x}_{2} \vee x_{6}\right) \wedge\left(\bar{x}_{3} \vee x_{6}\right) \wedge\left(x_{2} \vee x_{3} \vee \bar{x}_{6}\right) \wedge \\
& \left(\bar{x}_{7} \vee x_{3}\right) \wedge\left(\bar{x}_{7} \vee x_{4}\right) \wedge\left(x_{7} \vee \bar{x}_{3} \vee \bar{x}_{4}\right) \wedge \\
& \left(x_{8} \vee x_{5}\right) \wedge\left(\bar{x}_{8} \vee \bar{x}_{5}\right) \wedge \\
& \left(\bar{x}_{6} \vee x_{9}\right) \wedge\left(\bar{x}_{7} \vee x_{9}\right) \wedge\left(x_{6} \vee x_{7} \vee \bar{x}_{9}\right) \wedge \\
& \left(\bar{x}_{10} \vee x_{8}\right) \wedge\left(\bar{x}_{10} \vee x_{9}\right) \wedge\left(x_{10} \vee \bar{x}_{8} \vee \bar{x}_{9}\right) \wedge \\
& \left(x_{10}\right)
\end{aligned}
$$

CIRCUIT SAT \leq_{m}^{p} SAT

- Any truth assignment to the ? gates of C determines a truth assignment to the variables of ϕ_{C}

CIRCUIT SAT \leq_{m}^{p} SAT

- Any truth assignment to the ? gates of C determines a truth assignment to the variables of ϕ_{C}
- To insure that the satisfying truth assignment of the resulting SAT formula is in 1-to-1 correspondence with the assignments on the gates in the given instance of CIRCUIT-SAT, we add a clause holding the variable corresponding to the output gate. Call this CNF formula $f(C)$.

CIRCUIT SAT \leq_{m}^{p} SAT

- Any truth assignment to the ? gates of C determines a truth assignment to the variables of ϕ_{C}
- To insure that the satisfying truth assignment of the resulting SAT formula is in 1-to-1 correspondence with the assignments on the gates in the given instance of CIRCUIT-SAT, we add a clause holding the variable corresponding to the output gate. Call this CNF formula $f(C)$.
- C is satisfiable iff there is an assignment T of truth values such that the circuit outputs true iff the assignment obtained extending the truth values of T to coincide with the output of the gates in C is a satisfying assignment to $f(C)$.

CIRCUIT SAT \leq_{m}^{p} SAT

- Any truth assignment to the ? gates of C determines a truth assignment to the variables of ϕ_{C}
- To insure that the satisfying truth assignment of the resulting SAT formula is in 1-to-1 correspondence with the assignments on the gates in the given instance of CIRCUIT-SAT, we add a clause holding the variable corresponding to the output gate. Call this CNF formula $f(C)$.
- C is satisfiable iff there is an assignment T of truth values such that the circuit outputs true iff the assignment obtained extending the truth values of T to coincide with the output of the gates in C is a satisfying assignment to $f(C)$.
Therefore, CIRCUIT SAT \leq SAT.

CIRCUIT SAT \leq_{m}^{p} SAT

- It remains to show that the formula $f(C)$ can be obtained in polynomial time.

CIRCUIT SAT \leq_{m}^{p} SAT

- It remains to show that the formula $f(C)$ can be obtained in polynomial time.
- A circuit is directed acyclic graph, we can compute a topological sort in $O(|V|+|E|)$.

CIRCUIT SAT \leq_{m}^{p} SAT

- It remains to show that the formula $f(C)$ can be obtained in polynomial time.
- A circuit is directed acyclic graph, we can compute a topological sort in $O(|V|+|E|)$.
- The topological sort provides an order to assign numbers to the variables.

CIRCUIT SAT \leq_{m}^{p} SAT

- It remains to show that the formula $f(C)$ can be obtained in polynomial time.
- A circuit is directed acyclic graph, we can compute a topological sort in $O(|V|+|E|)$.
- The topological sort provides an order to assign numbers to the variables.
- We can obtain, from each gate, its number and the numbers of their input gates.

CIRCUIT SAT \leq_{m}^{p} SAT

- It remains to show that the formula $f(C)$ can be obtained in polynomial time.
- A circuit is directed acyclic graph, we can compute a topological sort in $O(|V|+|E|)$.
- The topological sort provides an order to assign numbers to the variables.
- We can obtain, from each gate, its number and the numbers of their input gates.
- Then write, for each gate in order, the corresponding set of clauses.

CIRCUIT SAT \leq_{m}^{p} SAT

- It remains to show that the formula $f(C)$ can be obtained in polynomial time.
- A circuit is directed acyclic graph, we can compute a topological sort in $O(|V|+|E|)$.
- The topological sort provides an order to assign numbers to the variables.
- We can obtain, from each gate, its number and the numbers of their input gates.
- Then write, for each gate in order, the corresponding set of clauses.
- All this process can be done in polynomial time.

CIRCUIT SAT \leq_{m}^{p} SAT

- It remains to show that the formula $f(C)$ can be obtained in polynomial time.
- A circuit is directed acyclic graph, we can compute a topological sort in $O(|V|+|E|)$.
- The topological sort provides an order to assign numbers to the variables.
- We can obtain, from each gate, its number and the numbers of their input gates.
- Then write, for each gate in order, the corresponding set of clauses.
- All this process can be done in polynomial time.
- Therefore, CIRCUIT SAT \leq_{m}^{p} SAT.

SAT is NP-complete

Theorem
SAT is NP-complete

Proof.

- As CIRCUIT SAT \leq_{m}^{p} SAT, SAT is NP-hard
- It remains to show that $S A T \in N P$

SAT is NP-complete

Theorem
SAT is NP-complete

Proof.

- As CIRCUIT SAT \leq_{m}^{p} SAT, SAT is NP-hard
- It remains to show that $S A T \in N P$
- The certificate is a truth assignment.

SAT is NP-complete

Theorem

SAT is NP-complete

Proof.

- As CIRCUIT SAT \leq_{m}^{p} SAT, SAT is NP-hard
- It remains to show that $S A T \in N P$
- The certificate is a truth assignment.
- Evaluating a CNF formula on a particular truth assignment, requires to check that each clause gets at least one literal that evaluates to true.

SAT is NP-complete

Theorem

SAT is NP-complete

Proof.

- As CIRCUIT SAT \leq_{m}^{p} SAT, SAT is NP-hard
- It remains to show that $S A T \in N P$
- The certificate is a truth assignment.
- Evaluating a CNF formula on a particular truth assignment, requires to check that each clause gets at least one literal that evaluates to true.
- This can be done in polynomial time.

The 3-SAT

- Recall that the 3-SAT problem is a restricted version of SAT where each clause has exactly 3 literals.

The 3-SAT

- Recall that the 3-SAT problem is a restricted version of SAT where each clause has exactly 3 literals.
- Let $\phi=\left\{C_{i}\right\}_{i=1}^{m}$ be a CNF formula on a set X of variables. let z_{i} be the literal x_{i} or \bar{x}_{i}.
- We construct a formula $\phi^{\prime}=f(\phi)$ on a set X^{\prime} of variables $\left(X \subseteq X^{\prime}\right)$ having all clauses with 3 literals.

The 3-SAT

- Recall that the 3-SAT problem is a restricted version of SAT where each clause has exactly 3 literals.
- Let $\phi=\left\{C_{i}\right\}_{i=1}^{m}$ be a CNF formula on a set X of variables. let z_{i} be the literal x_{i} or \bar{x}_{i}.
- We construct a formula $\phi^{\prime}=f(\phi)$ on a set X^{\prime} of variables $\left(X \subseteq X^{\prime}\right)$ having all clauses with 3 literals.
- For each clause in ϕ, f determines a set of equivalent clauses, in the sense that the clause can be satisfied iff the formula corresponding to the set is satisfiable, to be included.
- We add some variables when needed.

The 3-SAT

- Recall that the 3-SAT problem is a restricted version of SAT where each clause has exactly 3 literals.
- Let $\phi=\left\{C_{i}\right\}_{i=1}^{m}$ be a CNF formula on a set X of variables. let z_{i} be the literal x_{i} or \bar{x}_{i}.
- We construct a formula $\phi^{\prime}=f(\phi)$ on a set X^{\prime} of variables $\left(X \subseteq X^{\prime}\right)$ having all clauses with 3 literals.
- For each clause in ϕ, f determines a set of equivalent clauses, in the sense that the clause can be satisfied iff the formula corresponding to the set is satisfiable, to be included.
- We add some variables when needed.
- The replacements depend on the size k of clause C_{j}.

SAT $\leq 3-S A T$

- If $k=1, C_{j}=z$, we add variables $\left\{y_{j 1}, y_{j 2}\right\}$ and clauses

$$
C_{j}^{\prime}=\left\{\left(z \vee y_{j 1} \vee y_{j 2}\right),\left(z \vee \bar{y}_{j 1} \vee y_{j 2}\right),\left(z \vee y_{j 1} \vee \bar{y}_{j 2}\right),\left(z \vee \bar{y}_{j 1} \vee \bar{y}_{j 2}\right)\right\} .
$$

Observe that C_{j} is satisfiable iff C_{j}^{\prime} is satisfiable.

SAT $\leq 3-S A T$

- If $k=1, C_{j}=z$, we add variables $\left\{y_{j 1}, y_{j 2}\right\}$ and clauses

$$
C_{j}^{\prime}=\left\{\left(z \vee y_{j 1} \vee y_{j 2}\right),\left(z \vee \bar{y}_{j 1} \vee y_{j 2}\right),\left(z \vee y_{j 1} \vee \bar{y}_{j 2}\right),\left(z \vee \bar{y}_{j 1} \vee \bar{y}_{j 2}\right)\right\} .
$$

Observe that C_{j} is satisfiable iff C_{j}^{\prime} is satisfiable.

- If $k=2, C_{j}=z_{1} \vee z_{2}$, we add variable y_{j} and clauses

$$
C_{j}^{\prime}=\left\{\left(z_{1} \vee z_{2} \vee y\right),\left(z_{1} \vee z_{2} \vee \bar{y}\right)\right\}
$$

Again, C_{j} is satisfiable iff C_{j}^{\prime} is satisfiable.

SAT $\leq 3-S A T$

- If $k=1, C_{j}=z$, we add variables $\left\{y_{j 1}, y_{j 2}\right\}$ and clauses

$$
C_{j}^{\prime}=\left\{\left(z \vee y_{j 1} \vee y_{j 2}\right),\left(z \vee \bar{y}_{j 1} \vee y_{j 2}\right),\left(z \vee y_{j 1} \vee \bar{y}_{j 2}\right),\left(z \vee \bar{y}_{j 1} \vee \bar{y}_{j 2}\right)\right\} .
$$

Observe that C_{j} is satisfiable iff C_{j}^{\prime} is satisfiable.

- If $k=2, C_{j}=z_{1} \vee z_{2}$, we add variable y_{j} and clauses

$$
C_{j}^{\prime}=\left\{\left(z_{1} \vee z_{2} \vee y\right),\left(z_{1} \vee z_{2} \vee \bar{y}\right)\right\}
$$

Again, C_{j} is satisfiable iff C_{j}^{\prime} is satisfiable.

- If $k=3$, we add $C_{j}=\left(z_{1} \vee z_{2} \vee z_{3}\right)$ to ϕ^{\prime}.

SAT $\leq 3-S A T$

- If $k>3, C_{j}=\left(z_{1} \vee z_{2} \vee \cdots \vee z_{k}\right)$, add variables $\left\{y_{j 1}, y_{j 2}, \ldots, y_{j k-3}\right\}$ and the clauses

$$
C_{j}^{\prime}=\left\{\left(z_{1} \vee z_{2} \vee y_{j 1}\right),\left(\bar{y}_{j 1} \vee z_{3} \vee y_{j 2}\right), \ldots,\left(\bar{y}_{j k-3} \vee z_{k-1} \vee z_{k}\right)\right\}
$$

- A satisfying assignment for C_{j} must made $T\left(z_{i}\right)=1$ for at least one z_{i}. Then the assignment T^{\prime} such that, $T\left(z_{i}\right)=1$, $T^{\prime}\left(y_{j 1}\right)=\cdots=T^{\prime}\left(y_{j i-2}\right)=1$ and $T^{\prime}\left(y_{j i-1}\right)=\cdots=T^{\prime}\left(y_{j k-3}\right)=0$ satisfies C_{j}^{\prime}.
- On the other hand, if T^{\prime} satisfies C_{j}^{\prime}, there is z_{i} such that $T^{\prime}\left(z_{i}\right)=1$ (otherwise there would be a $y_{j \ell}$ such that $T^{\prime}\left(y_{j \ell}\right)=1=T^{\prime}\left(\bar{y}_{j \ell}\right)$)

Example

Input to SAT: $\phi=\left(\overline{x_{1}}\right) \wedge\left(\overline{x_{1}}, \overline{x_{2}}\right) \wedge\left(\overline{x_{1}}, x_{3}, \overline{x_{4}}\right) \wedge\left(x_{1}, x_{2}, \overline{x_{3}}, x_{4}, x_{5}\right)$
$C_{1}^{\prime}=\left(\overline{x_{1}}, y_{11}, y_{12}\right) \wedge\left(\overline{x_{1}}, \bar{y}_{11}, y_{12}\right) \wedge\left(\overline{x_{1}}, y_{11}, \bar{y}_{12}\right) \wedge\left(\bar{x}_{1}, \bar{y}_{11}, \bar{y}_{12}\right)$
$C_{2}^{\prime}=\left(\overline{x_{1}}, \overline{x_{2}}, y_{2}\right) \wedge\left(\overline{x_{1}}, \overline{x_{2}}, \overline{y_{2}}\right)$
$C_{3}^{\prime}=\left(\overline{x_{1}}, x_{3}, \overline{x_{4}}\right)$
$C_{4}^{\prime}=\left(x_{1}, x_{2}, y_{41}\right) \wedge\left(\bar{y}_{41}, x_{3}, y_{42}\right) \wedge\left(\bar{y}_{42}, x_{4}, x_{5}\right)$
Then $f(\phi)=C_{1}^{\prime} \wedge C_{2}^{\prime} \wedge C_{3}^{\prime} \wedge C_{4}^{\prime}$ with $X^{\prime}=\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, y_{11}, y_{12}, y_{2}, y_{3}, y_{41}, y_{42}\right\}$

3-SAT is NP-complete

Theorem
3-SAT is NP-complete

Proof.

- The above construction can be done in polynomial time, therefor SAT $\leq_{m}^{p} 3-S A T, 3-S A T$ is NP-hard
- On the other hand 3-SAT is a subproblem of SAT, do 3-SAT \in NP

The k-SAT problem

Theorem
For $k \geq 3, k$-SAT is NP-complete

Proof.

- We have just show that 3-SAT is NP-complete.
- Assume that ℓ-SAT is NP-complete.
- To reduce ℓ-SAT $\leq_{m}^{p}(\ell+1)$-SAT, for each clause C_{j} (with ℓ literals)
- Add variable $\left\{y_{j}\right\}$
- and add clauses

$$
C_{j}^{\prime}=\left\{\left(C_{j} \vee y_{j}\right),\left(C_{j} \vee \bar{y}_{j}\right)\right\} .
$$

- C_{j} is satisfiable iff C_{j} is satisfiable.

The 2-SAT problem

2-SAT: Given a Boolean formula ϕ, where each clause has exactly 2 literals, is ϕ satisfiable?

- A clause in a 2-SAT instance has the form $(y \vee z)$ for some literals y, z.

The 2-SAT problem

2-SAT: Given a Boolean formula ϕ, where each clause has exactly 2 literals, is ϕ satisfiable?

- A clause in a 2-SAT instance has the form $(y \vee z)$ for some literals y, z.
- Recall that $p \rightarrow q$ is equivalent to $\bar{p} \vee q$.

The 2-SAT problem

2-SAT: Given a Boolean formula ϕ, where each clause has exactly 2 literals, is ϕ satisfiable?

- A clause in a 2-SAT instance has the form $(y \vee z)$ for some literals y, z.
- Recall that $p \rightarrow q$ is equivalent to $\bar{p} \vee q$.
- So, $(y \vee z)$ is equivalent to $\bar{y} \rightarrow z$ and to $\bar{z} \rightarrow y$.

The 2-SAT problem

2-SAT: Given a Boolean formula ϕ, where each clause has exactly 2 literals, is ϕ satisfiable?

- A clause in a 2-SAT instance has the form $(y \vee z)$ for some literals y, z.
- Recall that $p \rightarrow q$ is equivalent to $\bar{p} \vee q$.
- So, $(y \vee z)$ is equivalent to $\bar{y} \rightarrow z$ and to $\bar{z} \rightarrow y$.
- A 2-SAT formula can be seen as a collection of implications.

The 2-SAT problem

2-SAT: Given a Boolean formula ϕ, where each clause has exactly 2 literals, is ϕ satisfiable?

- A clause in a 2-SAT instance has the form $(y \vee z)$ for some literals y, z.
- Recall that $p \rightarrow q$ is equivalent to $\bar{p} \vee q$.
- So, $(y \vee z)$ is equivalent to $\bar{y} \rightarrow z$ and to $\bar{z} \rightarrow y$.
- A 2-SAT formula can be seen as a collection of implications.
- To show that 2-SAT $\in P$, we construct a kind of reduction to a problem related to the strongly connected components of a digraph.

Strongly connected components of a digraph

- A digraph G is strongly connected iff $\forall u, v \in V$, there is a path from u to $v(u \rightsquigarrow v)$ and there is a path from v to $u(v \rightsquigarrow u)$.
- We can determine if G is strongly connected in $O(n+m)$ time.
- When \vec{G} not strongly connected, we can find its strongly connected components in $O(n+m)$ steps.

Strongly connected components of a digraph

- A digraph G is strongly connected iff $\forall u, v \in V$, there is a path from u to $v(u \rightsquigarrow v)$ and there is a path from v to $u(v \rightsquigarrow u)$.
- We can determine if G is strongly connected in $O(n+m)$ time.
- When \vec{G} not strongly connected, we can find its strongly connected components in $O(n+m)$ steps.
- Recall, that by collapsing each strongly connected component of \vec{G} to a node, and removing multiple edges and loops, the remaining digraph is acyclic.

$2-S A T \leq P$

Let ϕ be a 2-SAT instance on a set X of n variables and with m clauses $(|\phi|=2 m)$.

$2-S A T \leq P$

Let ϕ be a 2-SAT instance on a set X of n variables and with m clauses ($|\phi|=2 m$).
Define G_{ϕ} as follows:

- V : $2 n$ nodes, two for each variable (x and \bar{x}).
- \vec{E}, has $2 m$ edges, for each $C_{i}=(\alpha \vee \beta)$, add edges $\bar{\alpha} \rightarrow \beta$ and $\bar{\beta} \rightarrow \alpha$.
Notice that G_{ϕ} collects all implications in ϕ.

Examples

$\left(x_{1} \vee \bar{x}_{2}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{3}\right) \wedge\left(x_{1} \vee x_{2}\right)$ $\wedge\left(\bar{x}_{3} \vee x_{4}\right) \wedge\left(\bar{x}_{1} \vee x_{4}\right)$ which is satisfiable.
$\phi=\left(x_{1} \vee \bar{x}_{2}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{2}\right) \wedge$ $\left(x_{3} \vee x_{2}\right) \wedge\left(\bar{x}_{3} \vee x_{2}\right) \wedge\left(x_{2} \vee x_{4}\right)$ which is not satisfiable.

Correctness of the reduction

Exercise

ϕ is satisfiable iff no strongly connected component in G_{ϕ} contains nodes x and \bar{x}, for $x \in X$

Correctness of the reduction

Exercise

ϕ is satisfiable iff no strongly connected component in G_{ϕ} contains nodes x and \bar{x}, for $x \in X$

Theorem
$2-S a t \in P$

Proof.
To build G_{ϕ} takes $O(m)$.
The strongly connected components of G_{ϕ} can be obtained in $O(m+n)$.

