
Branch and Bound for Boolean Optimization
and the Generation of Optimality Certificates

Javier Larrosa, Robert Nieuwenhuis,
Albert Oliveras, Enric Rodŕıguez-Carbonell?

Abstract. We consider optimization problems of the form (S, cost),
where S is a clause set over Boolean variables x1 . . . xn, with an arbi-
trary cost function cost : Bn → R, and the aim is to find a model A of S
such that cost(A) is minimized.
Here we study the generation of proofs of optimality in the context of
branch-and-bound procedures for such problems. For this purpose we
introduce DPLLBB, an abstract DPLL-based branch and bound algorithm
that can model optimization concepts such as cost-based propagation
and cost-based backjumping.
Most, if not all, SAT-related optimization problems are in the scope of
DPLLBB. Since many of the existing approaches for solving these problems
can be seen as instances, DPLLBB allows one to formally reason about them
in a simple way and exploit the enhancements of DPLLBB given here, in
particular its uniform method for generating independently verifiable
optimality proofs.

1 Introduction

An important issue on algorithms for Boolean satisfiability is their ability to
provide proofs of unsatisfiability, so that also negative answers can be verified
with a trusted independent proof checker. Many current SAT solvers provide
this feature typically by writing (with little overhead) a trace file from which a
resolution proof can be reconstructed and checked.

In this paper we address a related topic. We take a very general class of
Boolean optimization problems and consider the problem of computing the best
model of a CNF with respect to a cost function and, additionally, a proof of
its optimality. The purpose of the paper is to provide a general solving frame-
work that is faithful to state-of-the-art branch-and-bound solvers and where it
is simple to reason about them and to generate optimality proofs. We show how
branch-and-bound algorithms can provide proofs with little overhead, as in the
SAT case. To the best of our knowledge, no existing solvers offer this feature.

The first contribution of the paper is an abstract DPLL-like branch-and-
bound algorithm (DPLLBB) that can deal with most, if not all, Boolean optimiza-
tion problems considered in the literature. DPLLBB is based on standard abstract
DPLL rules and includes features such as propagation, backjumping, learning

? All authors from Technical Univ. of Catalonia, Barcelona, and partially supported by
Spanish Min. of Science and Innovation through the projects TIN2006-15387-C03-0
and TIN2007-68093-C02-01 (LogicTools-2).

or restarts. The essential difference between classical DPLL and its branch-and-
bound counterpart is that the rules are extended from the usual SAT context
to the optimization context by taking into account the cost function to obtain
entailed information. Thus, DPLLBB can model concepts such as, e.g., cost-based
propagation and cost-based backjumping. To exploit the cost function in the
search with these techniques, DPLLBB assumes the existence of a lower bound-
ing procedure that, additionally to returning a numerical lower bound, provides
a reason for it, i.e., a (presumably short) clause whose violation is a sufficient
condition for the computed lower bound, see [MS00,MS04].

The second contribution of the paper is the connection between a DPLLBB exe-
cution and a proof of optimality. We show that each time that DPLLBB backjumps
due to a soft conflict (i.e. the lower bound indicates that it is useless to extend
the current assignment) we can infer a cost-based lemma, which is entailed from
the problem. By recording these lemmas (among others), we can construct a
very intuitive optimality proof.

This work could have been cast into the framework of SAT Modulo Theories
(SMT) with a sequence of increasingly stronger theories [NO06]. However, the
generation of proofs for SMT with theory strengthening has not been worked out
(although the generation of unsatisfiable cores for normal SMT was analyzed in
[CGS07]), and would in any case obfuscate the simple concept of proof we have
here. Also, we believe that in its current form, the way we have integrated the
concepts of lower bounding and cost-based propagation and learning is far more
useful and accessible to a much wider audience.

This paper is structured as follows. In Section 2 we give some basic no-
tions and preliminary definitions. In Section 3 the DPLLBB procedure is presented,
whereas in Section 4 we develop the framework for the generation of proof cer-
tificates. Section 5 shows several important instances of problems that can be
handled with DPLLBB. Finally Section 6 gives conclusions of this work and points
out directions for future research.

2 Preliminaries

We consider a fixed set of Boolean variables {x1, . . . , xn}. Literals, denoted by the
(subscripted, primed) letter l are elements of the set {x1, . . . , xn,¬x1, . . . ,¬xn}.
A clause (denoted by the letters C,D, . . .) is a disjunction of literals l1∨ . . .∨ lm.
The empty clause will be noted 2. A (partial truth) assignment I is a set of
literals such that {x,¬x} ⊆ I for no x. A literal l is true in I if l ∈ I, false in I if
¬l ∈ I, and undefined in I otherwise. A clause C is true in I if at least one of its
literals is true in I, false in I if all its literals are false in I, and undefined in I
otherwise. Note that the empty clause is false in every assignment I. Sometimes
we will write ¬I to denote the clause that is the disjunction of the negations of
the literals in I. A clause set S is true in I if all its clauses are true in I. Then
I is called a model of S, and we write I |= S (and similarly if a literal or clause
is true in I). We sometimes write I |= ¬C to indicate that all literals of a clause
C are false in I.

We consider the following class of problems, which covers a broad spectrum
of instances (see Section 5):

Definition 1. A Boolean optimization problem is a pair (S, cost), where S is
a clause set, cost is a function cost : Bn → R, and the goal is to find a model A
of S such that cost(A) is minimized.

Definition 2. A cost clause is an expression of the form C ∨ c ≥ k where C is
a clause and k ∈ R.

A cost clause C ∨ c ≥ k may be better understood with its equivalent
notation ¬C −→ c ≥ k which tells that if C is falsified, then the cost function
must be greater than or equal to k.

Definition 3. Let (S, cost) be an optimization problem. A cost clause C∨c ≥ k
is entailed by (S, cost) if cost(A) ≥ k for every model A of S such that A |= ¬C.

Definition 4. Given an optimization problem (S, cost), a real number k is called
a lower bound for an assignment I if cost(A) ≥ k for every model A of S such
that I ⊆ A.

A lower bounding procedure lb is a procedure that, given an assignment I,
returns a lower bound k, denoted lb(I), and a cost clause of the form C ∨ c ≥ k,
called the lb-reason of the lower bound, such that C∨c ≥ k is entailed by (S, cost)
and I |= ¬C.

Any procedure that can compute a lower bound k for a given I can be
extended to a lower bounding procedure: it suffices to generate ¬I ∨ c ≥ k as
the lb-reason. But generating short lb-reasons is important for efficiency reasons,
and in Section 5 we will see how this can be done for several classes of lower
bounding methods.

3 Abstract Branch and Bound

3.1 DPLLBB Procedure

The DPLLBB procedure is modeled by a transition relation, defined by means of
rules over states.

Definition 5. A DPLLBB state is a 4-tuple I || S || k || A, where:
I is a sequence of literals representing the current partial assignment,
S is a finite set of classical clauses (i.e. not cost clauses),
k is a real number representing the best-so-far cost,
A is the best-so-far model of S (i.e. cost(A) = k).

Some literals l in I are annotated as decision literals and written ld.

Note that the cost function and the variable set are not part of the states,
since they do not change over time (they are fixed by the context).

Definition 6. The DPLLBB system consists of the following rules:

Decide :
I || S || k || A =⇒ I ld || S || k || A if

{
l is undefined in I

UnitPropagate :

I || S || k || A =⇒ I l || S || k || A if
{

C ∨ l ∈ S, I |= ¬C
l is undefined in I

Optimum :

I || S || k || A =⇒ OptimumFound if
{

C ∈ S, I |= ¬C
no decision literals in I

Backjump :

I ld I ′ || S || k || A =⇒ I l′ || S || k || A if
{

C∨l′ ∈ S, I |= ¬C
l′ is undefined in I

Learn :
I || S || k || A =⇒ I || S, C || k || A if

{
(S, cost) entails C ∨ c ≥ k

Forget :
I || S, C || k || A =⇒ I || S || k || A if

{
(S, cost) entails C ∨ c ≥ k

Restart :
I || S || k || A =⇒ ∅ || S || k || A

Improve :
I || S || k || A =⇒ I || S || k′ || I if

{
I |= S and cost(I) = k′ < k

As we will see, one can use these rules for finding an optimal solution to a
problem (S, cost) by generating an arbitrary derivation ∅ || S || ∞ || ∅ =⇒
It will always terminate with . . . =⇒ I || S′ || k || A =⇒ OptimumFound . Then
A is a minimum-cost model for S with cost(A) = k. If S has no models at all
then A will be ∅ and k =∞.

All the rules except Improve are natural extensions of the Abstract DPLL
approach of [NOT06]. In the following we briefly explain them.

– The Decide rule represents a case split: an undefined literal l is chosen and
added to I, annotated as a decision literal.

– UnitPropagate forces a literal l to be true if there is a clause C ∨ l in S whose
part C is false in I.

– The Optimum rule expresses that if in a state I || S || k || A in S there is
a so-called conflicting clause C (i.e., such that I |= ¬C), and there is no
decision literal in I, then the optimization procedure has terminated, which
shows that the best-so-far cost is optimal.

– On the other hand, if there is some decision literal in I and an entailed
conflicting clause, then one can always find (and Learn) a backjump clause,
an entailed cost clause of the form C ∨ l′ ∨ c ≥ k, such that Backjump
using C ∨ l′ applies (see Lemma 1 below). Good backjump clauses can be

found by conflict analysis of the conflicting clause [MSS99,ZMMM01], see
Example 3.2 below.

– By Learn one can add any entailed cost clause to S. Learned clauses pre-
vent repeated work in similar conflicts, which frequently occur in industrial
problems having some regular structure. Notice that when such a clause is
learned the c ≥ k literal is dropped (it is only kept at a metalevel for the
generation of optimality certificates, see Section 4).

– Since a lemma is aimed at preventing future similar conflicts, it can be
removed using Forget, when such conflicts are not very likely to be found
again. In practice this is done if its activity, that is, how many times it has
participated in recent conflicts, has become low.

– Restart is used to escape from bad search behaviors. The newly learned
clauses will lead the heuristics for Decide to behave differently, and hope-
fully make DPLLBB explore the search space in a more compact way.

– Improve allows one to model non-trivial optimization concepts, namely cost-
based backjumping and and cost-based propagation. If lb(I) ≥ k, the lower
bounding procedure can provide an lb-reason C∨c ≥ k. As explained above,
given this conflicting clause, Backjump applies if there is some decision literal
in I, and otherwise Optimum is applicable. A cost-based propagation of a
literal l that is undefined in I can be made if lb(I l) ≥ k ([XZ05]; for linear
cost functions, cf. the “limit lower bound theorem” of [CM95]). Then again
the corresponding lb-reason is conflicting and either Backjump or Optimum
applies.

Lemma 1. (See [NOT06] for proofs of this and other related properties.) Let
(S, cost) be an optimization problem, and assume

∅ || S || ∞ || ∅ =⇒ . . . =⇒ I || S′ || k || A

If there is some decision literal in I and C is entailed by (S′, cost) and conflicting
in I, then I is of the form I ′ ld I ′′ and there exists a backjump clause, i.e., a cost
clause of the form C ∨ l′ ∨ c ≥ k that is entailed by (S′, cost) and such that
I ′ |= ¬C and l′ is undefined in I ′.

The potential of the previous rules will be illustrated in Section 3.2. The
correctness of DPLLBB is summarized in Theorem 1:

Definition 7. A derivation ∅ || S || ∞ || ∅ =⇒ . . . is progressive if it contains
only finitely many consecutive Learn or Forget steps and Restart is applied with
increasing periodicity.

Theorem 1. Let (S, cost) be an optimization problem, and consider a progres-
sive derivation with initial state ∅ || S || ∞ || ∅. Then this derivation is finite.
Moreover, if a final state is reached, i.e., a state to which no rule can be applied,
then the derivation is of the form

∅ || S || ∞ || ∅ =⇒ . . . =⇒ I || S′ || k || A =⇒ OptimumFound

and then A is a minimum-cost model for S, where cost(A) = k. In particular, S
has no models if, and only if, k =∞ and A = ∅.

Of course the previous formal result provides more freedom in the strategy
for applying the rules than needed. Practical implementations will only generate
progressive derivations. Typically at each conflict the backjump clause is learned,
and from time to time a certain portion of the learned clauses is forgotten (e.g.,
the 50% of less active ones). Restarts are applied with increasing periodicity by,
e.g., restarting after a certain number N of conflicts and then increasing N .

3.2 DPLLBB Example

Consider the clause set S defined over x1, . . . x6 (denoting ¬xi by x̄i):

1. x2 ∨ x4 5. x1 ∨ x̄3 ∨ x̄6

2. x2 ∨ x̄5 6. x̄1 ∨ x̄3 ∨ x̄6

3. x4 ∨ x̄5 7. x2 ∨ x3 ∨ x5 ∨ x̄6

4. x5 ∨ x6 8. x2 ∨ x̄3 ∨ x5 ∨ x̄6

where cost(x1, . . . x6) = 1x1+2x2+. . .+6x6, i.e., subindices are cost coefficients.
We start an DPLLBB derivation, first deciding x6 to be false (setting high-cost
variables to false can be a good heuristic):

∅ || S || ∞ || ∅
=⇒Decide x̄d

6 || S || ∞ || ∅
=⇒UnitPropagate x̄d

6x5 || S || ∞ || ∅
=⇒UnitPropagate x̄d

6x5x2 || S || ∞ || ∅
=⇒UnitPropagate x̄d

6x5x2x4 || S || ∞ || ∅
=⇒Decide x̄d

6x5x2x4x̄
d
3 || S || ∞ || ∅

=⇒Decide x̄d
6x5x2x4x̄

d
3x̄

d
1 || S || ∞ || ∅

Now, since x̄6x5x2x4x̄3x̄1 is a model of S of cost 11 <∞, we can apply Improve
and the corresponding lb-reason, e.g., x̄2 ∨ x̄4 ∨ x̄5 ∨ c ≥ 11, then becomes a
conflicting clause. Intuitively, it expresses that any assignment where x2, x4 and
x5 are set to true must have cost at least 11. Now, a conflict analysis procedure
starting form this conflicting clause can be used to compute a backjump clause.
This is done by successive resolution steps on the conflicting clause, resolving
away the literals x̄4 and x̄2 in the reverse order their negations were propagated,
with the respective clauses that caused the propagations:

x̄2 ∨ x̄4 ∨ x̄5 ∨ c ≥ 11 x4 ∨ x̄5

x̄2 ∨ x̄5 ∨ c ≥ 11 x2 ∨ x̄5

x̄5 ∨ c ≥ 11

until a single literal of the current decision level (called the 1UIP) is left, yielding
x̄5 ∨ c ≥ 11. Learning the clause C = x̄5 allows one to jump from decision level
3 back to decision level 0 and assert x5. All this can be modeled as follows:

. . . =⇒Improve x̄d
6x5x2x4x̄

d
3x̄

d
1 || S || 11 || x̄6x5x2x4x̄3x̄1

=⇒Learn x̄d
6x5x2x4x̄

d
3x̄

d
1 || S, C || 11 || x̄6x5x2x4x̄3x̄1

=⇒Backjump x̄5 || S, C || 11 || x̄6x5x2x4x̄3x̄1

Now the derivation could continue, e.g., as follows:

. . . =⇒UnitPropagate x̄5x6 || S, C || 11 || x̄6x5x2x4x̄3x̄1

=⇒Decide x̄5x6x̄
d
4 || S, C || 11 || x̄6x5x2x4x̄3x̄1

=⇒UnitPropagate x̄5x6x̄
d
4x2 || S, C || 11 || x̄6x5x2x4x̄3x̄1

Now notice that x3 is not assigned, and that since x2 and x6 are true in the
current partial assignment any assignment strictly improving the best-so-far cost
11 must assign x3 to false. As explained above, this cost-based propagation can
be modeled as follows. The lower bounding procedure expresses the fact that
any solution setting x2, x3 and x6 to true has cost no better than 11 by means
of the lb-reason x̄2 ∨ x̄3 ∨ x̄6 ∨ c ≥ 11. This is an entailed cost clause that is
learned as C ′ = x̄2 ∨ x̄3 ∨ x̄6. Then literal x̄3 is propagated.

. . . =⇒Learn x̄5x6x̄
d
4x2 || S, C, C ′ || 11 || x̄6x5x2x4x̄3x̄1

=⇒UnitPropagate x̄5x6x̄
d
4x2x̄3 || S, C, C ′ || 11 || x̄6x5x2x4x̄3x̄1

If we now UnitPropagate x1 with clause 5, clause 6 becomes conflicting. As usual,
a backjump clause is computed by doing conflict analysis from the falsified clause,
using among others the clause C ′ that was learned to propagate x̄3:

x1 ∨ x3 ∨ x̄6 x̄1 ∨ x3 ∨ x̄6

x3 ∨ x̄6 x̄2 ∨ x̄3 ∨ x̄6 ∨ c ≥ 11
x̄2 ∨ x̄6 ∨ c ≥ 11

Learning C ′′ = x̄2 ∨ x̄6 allows one to jump back to decision level 0 asserting x̄2.

. . . =⇒UnitPropagate x̄5x6x̄
d
4x2x̄3x1 || S, C, C ′ || 11 || x̄6x5x2x4x̄3x̄1

=⇒Learn x̄5x6x̄
d
4x2x̄3x1 || S, C, C ′, C ′′ || 11 || x̄6x5x2x4x̄3x̄1

=⇒Backjump x̄5x6x̄2 || S, C, C ′, C ′′ || 11 || x̄6x5x2x4x̄3x̄1

Finally after unit propagating with clause 7 one gets a conflict with clause 8,
and as no decision literals are left, the optimization procedure terminates:

. . . =⇒UnitPropagate x̄5x6x̄2x3 || S, C, C ′, C ′′ || 11 || x̄6x5x2x4x̄3x̄1

=⇒Optimum OptimumFound 2

4 Certificates of Optimality

In the following, we show how from a certain trace of an DPLLBB execution one can
extract a formal proof of optimality in a proof system asserting “A is an optimal
model of S with respect to cost”. Our proof system relies on the following type
of resolution over cost clauses,

Definition 8. The Cost Resolution rule is the following inference rule with two
cost clauses as premises and another cost clause as conclusion:

x ∨ C ∨ c ≥ k ¬x ∨ D ∨ c ≥ k′

C ∨D ∨ c ≥ min(k, k′)
Cost Resolution

Cost Resolution behaves like classical resolution, except in that it further
exploits the fact that c ≥ k ∨ c ≥ k′ is equivalent to c ≥ min(k, k′). In what
follows, when needed a clause C from S will be seen as the trivially entailed cost
clause C ∨ c ≥ ∞.

Theorem 2. Cost Resolution is correct, that is, if x ∨ C ∨ c ≥ k and ¬x ∨
D ∨ c ≥ k′ are cost clauses entailed by an optimization problem (S, cost), then
C ∨D ∨ c ≥ min(k, k′) is also entailed by (S, cost).

Definition 9. Let S be a set of cost clauses and let C be a cost clause. A Cost
Resolution proof of C from S is a binary tree where:

– each node is (labeled by) a cost clause
– the root is C
– the leaves are clauses from S
– every non-leaf node has two parents from which it can be obtained in one

Cost Resolution step.

Together with a model A such that cost(A) = k, a k-lower-bound certificate
as we define now gives a precise k-optimality certificate for (S, cost):

Definition 10. A k-lower-bound certificate for an optimization problem (S, cost)
consists of the following three components:

1. a set of cost clauses S′

2. a Cost-Resolution Proof of the clause c ≥ k from S ∪ S′

3. for each cost clause in S′, a proof of entailment of it from (S, cost)

As we will see, the set of cost clauses S′ of component 1. of this definition cor-
responds to the different lb-reasons generated by the lower bounding procedure
that may have been used along the DPLLBB derivation. A very simple indepen-
dent k-lower-bound certificate checker can just check the cost resolution proof,
if the lower bounding procedure is trusted in that indeed all cost clauses of S′ are
entailed. Then, since by correctness of Cost Resolution the root c ≥ k of a Cost
Resolution proof is entailed if the leaves are entailed, a k-lower-bound certificate
guarantees that c ≥ k is indeed entailed by (S ∪ S′, cost), and the entailment of
c ≥ k by definition means that “cost(A) ≥ k for every model A of S”.

If one cannot trust the lower bounding procedure, then also component 3.
is needed. The notion of a “proof of entailment” from (S, cost) for each cost
clause in S′ of course necessarily depends on the particular lower bounding
procedure used, and an independent optimality proof checker should hence have
some knowledge of the deductive process used by the lower bounding procedure.
This aspect is addressed in detail in the next section.

4.1 Generation of k-lower-bound certificates

Each time an lb-reason is generated and used in an DPLLBB execution, it is written
to a file which we will call S′ since it corresponds to component 1. of the k-lower-
bound certificate. Now observe that any execution of DPLLBB terminates with a

step of Optimum, i.e., with a conflict at decision level 0. From a standard SAT
solver point of view, this means that S ∪S′ forms an unsatisfiable SAT instance
and a refutation proof for this contradiction can be reconstructed as follows (cf.
[ZM03] for details). All clauses in S and in S′ get a unique identifier (ID). Each
time a backjump step takes place, the backjump clause also gets a (unique)
ID and a line ID ID1 ... IDm is written to a trace file, where ID1 ... IDm
are the IDs of all parent clauses in the conflict analysis process generating this
backjump clause. A last line is written when the conflict at decision level 0 is
detected for the parents of this last conflict analysis which produces the empty
clause. By processing backwards this trace file, composing all the component
resolution proofs from each conflict analysis, a resolution proof from S ∪ S′ of
the last derived clause, i.e., the empty clause, can be constructed.

If we recover the cost literals of cost clauses (recall that the Learn rule of
DPLLBB drops the cost literal) in the refutation proof, it turns out that it becomes
a k-lower-bound certificate where k is the optimum of the problem. The reason is
that in a Cost Resolution proof the cost literal of the root clause is the minimum
among the cost literals of the leaf clauses. The following example illustrates the
whole process.

Example 1. For the DPLLBB derivation of Section 3.2, the initial clauses have
ID’s 1-8, the set the S′ will contain the the lb-reasons x̄2 ∨ x̄4 ∨ x̄5 ∨ c ≥ 11 and
x̄2 ∨ x̄3 ∨ x̄6 ∨ c ≥ 11 with ID’s 9 and 10 respectively. The two backjump clauses
x̄5 ∨ c ≥ 11 and x̄2 ∨ x̄6 ∨ c ≥ 11 and the final “empty” clause c ≥ 11 get ID’s
11,12,13 respectively, and the trace file will be:

11← 2, 3, 9
12← 5, 6, 10
13← 4, 7, 8, 11, 12

By processing this file backwards it is straightforward to produce a Cost Res-
olution proof of c ≥ 11. This is done below, where for lack of space the proof
has been split in two at the clause marked with (∗). This proof, together with
each lb-reason and its entailment certificate, will constitute an 11-lower-bound
certificate. The optimality certificate is finally obtained with the addition of the
11-upper-bound certificate x̄6x5x2x4x̄3x̄1.

x2 ∨ x3 ∨ x5 ∨ x̄6 x2 ∨ x̄3 ∨ x5 ∨ x̄6

x2 ∨ x5 ∨ x̄6

x1 ∨ x3 ∨ x̄6 x̄1 ∨ x3 ∨ x̄6

x3 ∨ x̄6 x̄2 ∨ x̄3 ∨ x̄6 ∨ c ≥ 11
x̄2 ∨ x̄6 ∨ c ≥ 11

x5 ∨ x̄6 ∨ c ≥ 11 (∗)

x5 ∨ x6 x5 ∨ x̄6 ∨ c ≥ 11 (∗)
x5 ∨ c ≥ 11

x̄2 ∨ x̄4 ∨ x̄5 ∨ c ≥ 11 x4 ∨ x̄5

x̄2 ∨ x̄5 ∨ c ≥ 11 x2 ∨ x̄5

x̄5 ∨ c ≥ 11
c ≥ 11

5 Instances of DPLLBB and Lower Bounding Procedures

In order to complete the method for generating optimality certificates, in this
section we show, for different classes of cost functions, several lower bounding
procedures together with ways for proving the entailment from (S, cost) for any
lb-reason C ∨ c ≥ k they generate.

Of course a general approach for this is to provide a list of all the models
A1, . . . , Am of S∧¬C, checking that each one of them has cost at least k, together
with a resolution refutation of S ∧¬C ∧¬A1 ∧ · · · ¬Am, which shows that these
A1, . . . , Am are indeed all the models of S ∧ ¬C.

But this will usually not be feasible in practice. Therefore, we now describe
some lower bounding procedures producing simple and compact certificates that
can be understood by ad-hoc proof checkers.

5.1 Linear Cost Functions

A very important class of optimization problems is that with linear cost func-
tions, i.e., of the form cost(x1, . . . , xn) =

∑n
i=1 cixi for certain ci ≥ 0. In this

context ci is called the cost of variable xi. Note that this also covers the cases
of negative costs or costs associated to negated variables, which are harmlessly
reduced to this one.

Linear Boolean optimization has many applications, amongst others Auto-
matic Test Pattern Generation [FNMS01], FPGA Routing, Electronic Design
Automation, Graph Coloring, Artificial Intelligence Planning [HS00] and Elec-
tronic Commerce [San99]. In particular the case where ci = 1 for all 1 ≤ i ≤ n,
called the Min-Ones problem, appears naturally in the optimization versions of
important well-known NP-complete problems such as the maximum clique or
the minimum hitting set problems.

The problem of computing lower bounds for linear optimization problems in
a branch-and-bound setting has been widely studied in the literature. Here we
consider the two main techniques for that purpose: independent sets and linear
programming.

Independent Sets. Given a partial assignment I and a clause C, let undefI(C)
denote the set of literals in C which are undefined in I, i.e., undefI(C) = {l ∈
C | l 6∈ I and ¬l 6∈ I}. A set of clauses M is an independent set for I if:

– for all C ∈M , neither I |= C nor I |= ¬C;
– for all C ∈M , undefI(C) is non-empty and only contains positive literals;
– for all C,C ′ ∈M such that C 6= C ′, undefI(C) ∩ undefI(C ′) = ∅.

If M is an independent set for I, any total assignment extending I and satisfying
M has cost at least

K =
∑
xi∈I

ci +
∑

C∈M

min{cj | xj ∈ C and ¬xj 6∈ I}

since satisfying each clause C of M will require to add the minimum cost of the
positive non-false (in I) literals in C. Independent sets have been used in e.g.,
[Cou96,MS02]. In [FM06] they are precomputed in order to speed up the actual
branch-and-bound procedure.

In this case the lower bounding procedure generates the lb-reason ¬I ′∨c ≥ K,
where I ′ ⊆ I contains:

– the positive literals in I with non-null cost;
– the positive literals whose negations appear in M (which belong to I); and
– the negative literals ¬xi ∈ I such that xi ∈ C for some C ∈ M and ci <

min{cj | xj ∈ C and ¬xj 6∈ I}.
For this lower bounding procedure a proof of entailment of the lb-reason must of
course contain the independent set M itself. Then the proof checker can check
that M ⊆ S, that M is indeed independent for I and that K ≥ k.

Example 2. Consider the clause set S = { x1 ∨ x3 ∨ x5, x2 ∨ x4 ∨ x5 ∨ ¬x6,

¬x1 ∨¬x2 }, and the cost function cost(x1, x2, x3, x4) =
∑6

i=1 i · xi. It is easy to
see that M = {x1∨x3∨x5, x2∨x4∨x5∨¬x6} is an independent set for the partial
assignment I = {¬x5, x6}. The lower bound is 6+min(1, 3)+min(2, 4) = 9, and
the lb-reason x5 ∨ ¬x6 ∨ c ≥ 9 is produced. ut

Linear Programming [LD97,Li04]. This approach for computing lower bounds
relies on the fact that linear Boolean optimization is a particular case of 0-1
Integer Linear Programming. Indeed, such a Boolean optimization problem can
be transformed into an integer program by imposing for each variable x that
0 ≤ x ≤ 1 and x ∈ Z, and transforming each clause x1∨· · ·∨xn∨¬y1∨· · ·∨¬ym

into the linear constraint
∑n

i=1 xi +
∑m

j=1(1 − yj) ≥ 1. The current partial
assignment I is encoded by imposing additional constraints x = 1 if x ∈ I, x = 0
if ¬x ∈ I. Then a lower bound can be computed by dropping the integrality
condition and solving the resulting relaxation in the rationals with an LP solver.

If K is the lower bound obtained after solving the relaxation, an lb-reason
of the form ¬I ′ ∨ c ≥ K where I ′ ⊆ I can be computed using an exact dual
solution of multipliers [Sch86] (which may be computed by an exact LP solver
[Mak08]). Moreover, a proof of entailment of this lb-reason consists in the dual
solution itself, which proves the optimality of K.

Example 3. Consider again the clause set, the cost function and the partial as-
signment as in Example 2. In this case the linear program is

min{x1 +2x2 +3x3 +4x4 +5x5 +6x6 | x1 +x3 +x5 ≥ 1, x2 +x4 +x5−x6 ≥ 0,
−x1 − x2 ≥ −1, x5 = 0, x6 = 1, 0 ≤ x1, x2, x3, x4 ≤ 1},

whose optimum is 11. A proof of optimality (in fact, of the lower bound) is:

x1 +2 x2 +3 x3 +4 x4 +5 x5 +6 x6 −11 =
+ 3 (x1 + x3 + x5 −1)
+ 4 (x2 + x4 + x5 − x6)
+ 2 (− x1 − x2 +1)
− 2 x5

+ 10 (x6 −1)

which witnesses that x1 + 2x2 + 3x3 + 4x4 + 5x5 + 6x6 ≥ 11 for all x1, x2, x3,
x4, x5, x6 such that x1 + x3 + x5 ≥ 1, x2 + x4 + x5 − x6 ≥ 0, −x1 − x2 ≥ −1,
x5 ≤ 0 and x6 ≥ 1. This can be used as a proof of entailment of the lb-reason
x5 ∨ ¬x6 ∨ c ≥ 11 (notice that none of the literals of the assignment is dropped
in the lb-reason since both x5 ≤ 0 and x6 ≥ 1 are used). ut

5.2 Max-SAT

In a (partial weighted) Max-SAT problem (S, cost), the cost function is defined
by a set of so-called soft clauses S′ with a weight function ω : S′ → R. Then
the cost of a total assignment A is the sum of the weights of the clauses in S′

that are false in A. Note that S′ is disjoint from the (possibly empty) set of
clauses S, which are called hard clauses in this context. Max-SAT has many ap-
plications, among others Probabilistic Reasoning [Par02], Frequency Assignment
[CdGL+99], Computer Vision, Machine Learning and Pattern Recognition (see
the introduction of [Wer05]).

Max-SAT as a non-linear polynomial cost function. Given a clause C =
y1 ∨ . . . ∨ yp ∨ ¬z1 ∨ . . . ∨ ¬zq over a set of variables {x1 . . . xn}, the polynomial
pC(x1, . . . , xn) =

∏p
i=1(1 − yi) ·

∏m
j=1(zj) fulfills for any total assignment A

that pC(A) = 1 if A |= ¬C, and pC(A) = 0 otherwise. Therefore we have that
cost(A) =

∑
C∈S′ pC(A) · ω(C).

Linear Boolean optimization vs Max-SAT. Linear Boolean optimization
can be cast as an instance of Max-SAT by having one soft unit positive clause for
each variable with non-null cost, with this cost as weight. Reciprocally, Max-SAT
can be expressed as a linear optimization problem by adding slack variables to
soft clauses. However, this translation is normally unpractical, making the SAT
solver extremely slow, since, e.g., it hinders the application of unit propagation
[ANORC08].

Branch and bound for Max-SAT. But most of the research in recent years
in the Max-SAT community has been devoted to the computation of good qual-
ity lower bounds to be used within a branch-and-bound setting. As shown in
[LHdG08], most of these lower bounding procedures can be seen as limited forms
of Max-resolution (see below). Since Max-resolution is sound, theoretically one
can in fact use it to certify optimality in any Max-SAT problem. But the growth
in the number of clauses makes this unpractical except for small problems. How-
ever, one can use it for the proof of entailment for individual lb-reasons.

For simplicity, we show here Max-resolution for soft clauses of the form (l1 ∨
l2, w) , where w denotes the weight:

(x ∨ a, u) (¬x ∨ b, v)
(a ∨ b, m)(x ∨ a, u−m)(¬x ∨ b, v −m)(x ∨ a ∨ ¬b, m)(¬x ∨ b ∨ ¬a,m)

where m = min(u, v) and the conclusions replace the premises instead of being
added to the clause set.

Example 4. Consider a Max-SAT problem without hard clauses and where soft
clauses are S′ = { (x1 ∨x2 ∨x3, 1), (x1 ∨¬x2 ∨x3, 2), (¬x1 ∨x2 ∨x3, 3), (¬x1 ∨
¬x2 ∨ x3, 4) }. Given the partial assignment I = {¬x3, x4}, by means of the
following steps of Max-resolution

(x1 ∨ x2 ∨ x3, 1) (x1 ∨ ¬x2 ∨ x3, 2)
....

(x1 ∨ x3, 1)

(¬x1 ∨ x2 ∨ x3, 3) (¬x1 ∨ ¬x2 ∨ x3, 4)
....

(¬x1 ∨ x3, 3)
(x3, 1)

one gets clause x3 with weight 1. Taking into account the partial assignment
I = {¬x3, x4}, this clause implies that 1 is a lower bound and a lb-reason is
¬x3 ∨ c ≥ 1. Moreover, the proof of Max-resolution above proves the entailment
of the lb-reason. ut

6 Conclusions

Our abstract DPLL-based branch-and-bound algorithm, although being very
similar to abstract DPLL, can model optimization concepts such as cost-based
propagation and cost-based learning. Thus, DPLLBB is natural to SAT practition-
ers, but still faithful to most state-of-the-art branch-and-bound solvers. Inter-
estingly, several branch-and-bound solvers, even state-of-the-art ones, still do
not use cost-based backjumping and propagation, which appear naturally in
DPLLBB. Our formal definition of optimality certificates and the description of
how a DPLLBB trace can be used to generate them turns out to be elegant and
analagous to the generation of refutation proofs by resolution in SAT.

We think that DPLLBB will help understanding and reasoning about new
branch-and-bound implementations and extensions. For example, it is not diffi-
cult to use it for computing the m best (i.e., lowest-cost) models for some m, or
for computing all models with cost lower than a certain threshold, and also the
certificates for these can be derived without much effort.

References

[ANORC08] R. Aśın, R. Nieuwenhuis, A. Oliveras, and E. Rodŕıguez-Carbonell. Effi-
cient Generation of Unsatisfiability Proofs and Cores in SAT. In Proc. of
LPAR’08, vol. 5330 of LNCS, pp. 16–30. Springer, 2008.

[CdGL+99] B. Cabon, S. de Givry, L. Lobjois, T. Schiex, and J.P. Warners. Radio
Link Frequency Assignment. Constraints, 4:79–89, 1999.

[CGS07] A. Cimatti, A. Griggio, and R. Sebastiani. A Simple and Flexible Way of
Computing Small Unsatisfiable Cores in SAT Modulo Theories. In Proc.
of SAT’07, vol. 4501 of LNCS, pp. 334–339. Springer, 2007.

[CM95] O. Coudert and J. C. Madre. New Ideas for Solving Covering Problems.
In Proc. of DAC’95, pp. 641–646. ACM, 1995.

[Cou96] O. Coudert. On Solving Binate Covering Problems. In Proc. of DAC’96,
pp. 197–202. ACM, 1996.

[FM06] Z. Fu and S. Malik. Solving the Minimum Cost Satisability Problem Using
SAT Based Branch-and-Bound Search. In Proc. of ICCAD’96, pp. 852 –
859, 2006.

[FNMS01] P. F. Flores, H. C. Neto, and J. P. Marques-Silva. An Exact Solution
to the Minimum Size Test Pattern Problem. ACM Trans. Des. Autom.
Electron. Syst., 6(4):629–644, 2001.

[HS00] H. H. Hoos and T. Sttzle. SATLIB: An Online Resource for Research
on SAT. In Proc. of SAT’00, pp. 283–292. IOS Press, 2000. SATLIB is
available online at www.satlib.org.

[LD97] S. Liao and S. Devadas. Solving Covering Problems Using LPR-Based
Lower Bounds. In Proc. of DAC’97, pp. 117–120. ACM, 1997.

[LHdG08] J. Larrosa, F. Heras, and S. de Givry. A Logical Approach to Efficient
Max-SAT Solving. Artif. Intell., 172(2-3):204–233, 2008.

[Li04] X. Y. Li. Optimization Algorithms for the Minimum-Cost Satisfiability
Problem. PhD thesis, Dept. Comp. Sc., N. Carolina State Univ., 2004.

[Mak08] A. Makhorin. GNU Linear Programming Kit, 2008.
http://www.gnu.org/software/glpk/glpk.html.

[MS00] V. M. Manquinho and J. P. Marques Silva. Search Pruning Conditions
for Boolean Optimization. In Proc. of ECAI’00, pp. 103–107. IOS Press,
2000.

[MS02] V. M. Manquinho and J. P. Marques Silva. Search Pruning Techniques in
SAT-Based Branch-and-bound Algorithms for the Binate Covering Prob-
lem. IEEE Trans. on CAD of Integ. Circ. and Syst., 21(5):505–516, 2002.

[MS04] Vasco M. Manquinho and João P. Marques Silva. Satisfiability-Based
Algorithms for Boolean Optimization. Ann. Math. Artif. Intell., 40(3-
4):353–372, 2004.

[MSS99] J. Marques-Silva and K. A. Sakallah. GRASP: A Search Algorithm for
Propositional Satisfiability. IEEE Trans. Comput., 48(5):506–521, 1999.

[NO06] R. Nieuwenhuis and A. Oliveras. On SAT Modulo Theories and Opti-
mization Problems. In Proc. of SAT’06, vol. 4121 of LNCS, pp. 156–169.
Springer, 2006.

[NOT06] R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Solving SAT and SAT Modulo
Theories: from an Abstract Davis-Putnam-Logemann-Loveland Procedure
to DPLL(T). Journal of the ACM, 53(6):937–977, November 2006.

[Par02] J. D. Park. Using Weighted Max-SAT Engines to Solve MPE. In Proc. of
AAAI’02, pp. 682–687, Edmonton, Alberta, Canada, 2002.

[San99] T. Sandholm. An Algorithm for Optimal Winner Determination in Com-
binatorial Auctions. In IJCAI-99, pp. 542–547, 1999.

[Sch86] A. Schrijver. Theory of Linear and Integer Programming. John Wiley &
Sons, Chichester, 1986.

[Wer05] T. Werner. A Linear Programming Approach to Max-Sum Problem: A
review. Technical Report CTU-CMP-2005-25, Center for Machine Per-
ception, Czech Technical University, 2005.

[XZ05] Z. Xing and W. Zhang. Maxsolver: An Efficient Exact Algorithm for
(Weighted) Maximum Satisfiability. Artif. Intell., 164(1-2):47–80, 2005.

[ZM03] L. Zhang and S. Malik. Validating SAT Solvers Using an Independent
Resolution-Based Checker: Practical Implementations and Other Applica-
tions. In Proc. of DATE’03), pp. 10880–10885. IEEE Computer Society.

[ZMMM01] L. Zhang, C. Madigan, M. Moskewicz, and S. Malik. Efficient Conflict
Driven Learning in Boolean Satisfiability Solver. In Proc. of ICCAD’01,
pp. 279–285, 2001.

