
Using Constraints with Memory to Implement Variable
Elimination

Martı́ Sánchez
�

and Pedro Meseguer
�

and Javier Larrosa
�

Abstract. Adaptive consistency is a solving algorithm for con-
straint networks. Its basic step is variable elimination: it takes a net-
work as input, and produces an equivalent network with one less vari-
able and one new constraint (the join of the variable bucket). This
process is iterated until every variable is eliminated, and then all so-
lutions can be computed without backtracking. A direct, naive imple-
mentation of variable elimination may use more space than needed,
which renders the algorithm inapplicable in many cases. We present
a more sophisticated implementation, based on the projection with
memory of constraints. When a variable is projected out from a con-
straint, we keep the supports which that variable gave to the remain-
ing tuples. Using this data structure, we compute a set of new fac-
torized constraints, equivalent to the new constraint computed as the
join of the variable bucket, but using less space for a wide range of
problems. We provide experimental evidence of the benefits of our
approach.

1 Introduction

Adaptive consistency (ADC) [3] is a solving algorithm for constraint
networks. It performs complete inference, solving the network with-
out searching its state space. Its basic step is variable elimination: it
takes as input a constraint network and produces an equivalent net-
work with one less variable and one new constraint, computed as
the join of the variable bucket (that is, all constraints that mention
that variable). This step is iterated until all variables are eliminated,
and then all solutions can be found without backtracking. Its basic
operations are projection and join of constraints (see Section 2). Its
temporal and spatial complexities are exponential in ��� , the width of
the induced constraint graph. This approach has been shown useful
in several contexts [1, 6, 4, 5].

Since solving constraint networks is an NP-complete problem,
finding an algorithm with exponential temporal complexity is not
a surprise. However, the exponential complexity in space renders it
difficult for general use. In addition, a naive implementation may
require more space than strictly needed. To overcome this, in this pa-
per we present a new form to implement variable elimination, which
allow us to save some space with respect to the naive implementa-
tion. Obviously, we cannot circumvent the exponential complexity
in space in the worst case, but we believe that our approach could
provide benefits in many problems not falling in such category.

To overcome this issue, we have pursued the following idea. When
eliminating a variable ��� , instead of computing a single new con-
straint 	 � , which could be very large, we compute a set of smaller

IIIA-CSIC, Campus UAB, 08193 Bellaterra, Spain�
IIIA-CSIC, Campus UAB, 08193 Bellaterra, Spain�
Dep. LSI, UPC, Jordi Girona 1-3, 08034 Barcelona, Spain

constraints which are equivalent –as set– to 	� . Only the forbidden
tuples (nogoods) of these constraints are stored. These constraints are
factorized, in the sense that if a tuple is forbidden, it appears in one
constraint only. In many cases, these constraints require less storage
than 	�� .

This is done using the projection with memory of constraints.
When a variable is projected out from a constraint, we keep the sup-
ports which that variable gave to the remaining tuples. When a vari-
able is going to be eliminated, the constraints in the variable bucket
are projected with memory. Looking the combinations of supports
with empty intersections, we compute the nogoods that form the new
factorized constraints. This process is detailed in Section 3.

The paper is organized as follows. In Section 2, we define the ba-
sic concepts and recall the algorithm of adaptive consistency. In Sec-
tion 3, we present the conceptual elements required for our approach.
We describe its practical usage in Section 4, while the experimental
results appear in Section 5. Finally, Section 6 contains some conclu-
sions of this work.

2 Preliminaries

A constraint network is defined by a triple ������������� , where ���� �
 ��������� ��!#" is a set of $ variables, �%� � �
 �������&���'!#" is a collec-
tion of finite domains such that each variable �(� takes values in �'� ,
and � is a set of constraints. A constraint)�*�� is a relation defined
on the subset of variables +-,#.���)/�102� (called its scope), declaring
the allowed value combinations. If +-,#.-��)&��� � �(�435���������6���879" , the
constraint) is a subset of the cartesian product � �43�: ����� : � � 7 . In
other words, a constraint) is a set of tuples over +-,#.���)/� .

A tuple ; is a set of values corresponding to a set of variables
+-,#.��<;<�=0>� . The pair �����6�6,#� means that variable ��� takes value
,?*@� � . The projection of tuple ; over the set ACBD+-,#.-�<;E� , noted
;GF AIH , is the subtuple which contains only the assignments to variables
in A . The projection over the empty set ;GF JKH produces the empty tupleL

. Given two tuples ; and ;EM with the same assignment to the common
variables, their join is a new tuple ;GN ;6M which contains the assignments
of both ; and ;EM . Clearly, +-,#.-�<;ON�;EMP�I�Q+-,#.-�<;E�SR�+-,#.-�<;EMT� . Solving a
constraint network means finding a tuple ; such that +-,#.-�<;E�U�?� and
for all)�*V� , ;GF +-,#.-��)&�WHX*�) .

We define two operations on constraints:

Y Projecting out a variable. Given a constraint) such that � � *
+-,#.-��)&� , projecting out variable �(� from) , noted)%Z�[-\ , is a
new constraint with scope +-,#.���)/�^] � �(�E" defined as

� ;`_ a9,b*
� � ��;(N5���c� ,#�U*�)&" .Y Join. Given two relations)�d and)&e , its join)`dgfC)&e is a new
relation with scope +-,#.-��)`d5�-R�+-,#.-��)&e9� defined as

� ;S�h; M N<; M M _�; M *
) dji ;EM M(*�) e " .

function ADC(����� �G�) return tuple
1 for each

� �h$c�8��� do
2 � ��� � �)�*V�'_�� � * +-,#.���)/� " ;
3 	 � � � �<f��	��
 \)&�OZ [-\ ;
4 if 	9�X� J then return NULL;
5 ��� � �gR � 	 � "�]� � ;
6 ;X� L
7 for each

� ���-�P� $ do
8 select , *��'� such that ;�N9���(�E� ,#�U*=�<f ����
 \�)&� ;
9 ;�� �@;cN-��� � �6,#� ;
10 return ;

Figure 1. ADC algorithm. It takes as input a constraint network,�������������
, and returns tuple � , a solution.

Adaptive consistency [3] is an algorithm to solve constraint net-
works. It is an instance of a more general algorithm called Bucket
Elimination [2]. ADC performs complete inference, replacing sub-
sets of constraints by new inferred constraints until the problem is
trivially solved. The algorithm of adaptive consistency appears in
Figure 1. Given a static variable ordering, variables are processed
from last to first. When processing variable � � , all constrains in the
problem mentioning � � form the set � � (called its bucket). All the
constraints in ��� are joined and ��� is projected out from the re-
sult, obtaining a new constraint 	 � that does not mention � � . If 	 � is
empty, the network has no solution and ADC stops, returning NULL.
Otherwise, � � and � � are substituted by 	 � , obtaining an equivalent
problem with one less variable. Because of this, this step is called
variable elimination. The process iterates, eliminating one variable
in turn, until no variables remain. If an empty constraint is gener-
ated, the problem has no solution. Otherwise, a solution is built in
a backtrack-free manner, instantiating variables from first to last and
getting values consistent with the new generated constraints. This last
step can easily be modified to compute all solutions of the network.

Usually, it is assumed that ADC uses constraints in positive form,
that is, storing permitted tuples. However, when constraints are very
loose this is not the best option. A better idea is to use constraints in
negative form, that is, storing forbidden tuples. A negative constraint�) is a constraint stored in negative form (if ;O* �) , ; is forbiden by the
constraint). A positive constraint can be negated �S) � �) � � ;! *�)&" .
Double negation produces the original set of tuples.

ADC can be redefined to work exclusively with negative informa-
tion. Join and projection need to be extended to negative constraints:

�) d f �) e � � ;S� ; M N&; M M _5; M * �) d�" ; M M * �) e "
�)`d Z([5\ � � ;�_ # , * �'�E��;(N5�����E� ,#�U* �)`d�"

This new version, called ADC-, is just like standard ADC but the set
of original constraints are assumed to be negative, and the negative
form of join and projection should always be used.

Although both ADC and ADC- have the same worst case time and
space complexity, the question is which one is more efficient in prac-
tice. We have observed that it depends on the problem to be solved.
Problems with very loose constraints are better solved with ADC-
because ADC generates large positive constraints, and the opposite
occurs for problems with not very loose constraints. This can be ob-
served in Figure 3 (left), which shows the relative performance of
ADC and ADC- with respect to the number of tuples generated, for
the random binary class $<$��&%�(' ��)9��*
 �+�-, and varying tight-
ness.

3 Constraints with Memory

We aim at a new implementation of variable elimination, which could
work in practice more efficiently than both ADC and ADC-. To do
this, we propose two new operations on constraints.

The first operation is projecting out a variable with memory. Given
a positive constraint) with ��� * +-,#.-��)&� , projecting out �(� from
) with memory,) Z/.[-\ , produces a set of pairs

� �10(e ��2�e-� " where
0 e is a non-empty subset of � � and 2 e is a non-empty subset of
tuples of)gZ [-\ , defined as follows. Tuple ;=*32 e iff # , *40 e ,
; N ��� � � ,#�'*) . If ; *52 e , 0 e is said to be its support set. Observe
that sets 2(e are mutually disjoint, although this is not necessarily
the case for sets 0 e . Projecting out a variable with memory differs
from standard projection in that it remembers for each tuple those
supporting values in � � . Besides, tuples with the same support set are
grouped together. In the following,) � denotes the result of projecting
out � � from constraint) with memory. We say that) � is a constraint
with memory about � � . Observe that) � always denotes a positive
constraint with memory. Abusing notation, we will write ;�*?) � �� �10�e ��2�e9� " meaning a�6 such that ;S*72�e .

The join operation can be extended to constraints with memory.
Given two constraints with memory) �d � � �1098 ��298�� " and) �e �� �10 M8 ��2 M8 � " , their join) �d f) �e is a new constraint with memory
) �: � � �10SM M8 ��2 M M8 � " . A tuple ;EM M *2 M M; iff ;<M Mc�Q;cN9;<M , ;I*2=<-��;EM *2 M>
such that 0=<@?A0SM> �B0SM M;DC� J .

The second operation is extracting nogoods from constraints with
memory, that can be applied to one or two constraints. Given a con-
straint with memory) � , its set of original nogoods, E�) � , is a set of
tuples ; with scope +-,#.-��) � � defined as

� ;�_-;F *=) � " , which is equiva-
lent to �)�Z�[-\ . Given two constraints with memory) �d � � �1098 ��298�� "
and) �e � � �10SM8 ��2 M8 � " , their inferred nogoods,) �d E) �e , is a set of
tuples with scope +-,#.���) �d ��R�+-,#.-��) �e � defined as,

� ; M M �h;(N5; M _&;O*A2=<-��; M *G2 M> �(0=<H?G0 M> �?J�"
In words, the inferred nogoods are those tuples that were permitted
by either) �d and) �e but are not permitted by their join. Observe that
the operation E produces a negative constraint.

Example 1 Let us consider the 3-queens problem with the usual
formulation (variables are rows and values are columns denoted as
, �JI&�)). It has three constraints with the following permitted tuples,

)

�
 � �
,)
) ,

) �
�
 � �
, II ,I)
) I

) �
� � � �
,)
) ,

Projecting out �
 with memory we get,
)

0K�-�
 2L��� �� ,#" �)&"�)/" � ,#"

)
�0M�-�
 2L��� �� , �)&" � I�"� I�" � , ��)&"
Its join)

 f)
� is empty. Original and inferred nogoods are,

E�)

� �I

E�)
�
� �

)

 E)
�
� � � �
) ,
))
, ,
,)

what means that value I is forbidden for � � because)
 , no value is
forbidden for � � because) � , and the pairs)�, �)�)-�<,9, ��,9) are forbid-
den for � � � � � because of the combined action of)
 and) � . N

4 Adaptive Consistency Revisited

We present ADC-F, a new implementation of adaptive consistency.
The idea is to work with negative constraints and constraints with
memory simultaneously. The bucket of a variable is formed by neg-
ative constraints only, and the result of variable elimination is a new
set of negative constraints. When processing a bucket, some of these
constraints are turned positive (when projecting out the variable to
eliminate), producing new negative constraints using E operation.

The pseudocode for ADC-F appears in Figure 2. Given a con-
straint network ��������� ��� , where � is a set of negative constraints,
ADC-F works as follows. As for ADC, we assume a static variable
ordering given by the variable indexes. First, there is a loop to ex-
tract original nogoods from initial constraints (linea 1-4). Variables
are processed from last to first (line 1). For each variable � � , we ex-
tract in

� � the original nogoods of constraints mentioning � � when
projecting out �(� (lines 2, 3), and those constraints are removed from
� (line 4). After processing all variables, the set � is set to the origi-
nal � plus the original nogoods (line 5). Second, there is other loop to
extract inferred nogoods from those constrains composing the bucket
of each variable. Variables are processed again from last to first (line
6). For each variable ��� , its bucket ��� is computed as the set of all
(negative) constraints having � � in their scope (line 7). Next, for ev-
ery constraint in ��� , its elimination with memory is computed and
stored in � � (line 8), and the set � � is initialized (line 9). Now, the al-
gorithm enters a loop (lines 10-14). In each iteration two constraints
from � � are selected (line 11). Their inferred nogoods are computed;
if they forbid everything in the corresponding scope, there is no so-
lution and NULL is returned (line 12). Otherwise, they are added to
� � (line 13). Their join is computed and added to � � (line 14). The
process is repeated until � � contains a singleton. At this point the
set � � contains all the relevant negative information, without men-
tioning variable �(� . Thus, � � can replace ��� in � (line 15). Third,
there is the initialization of ; (line 16) and another loop (lines 17-19)
to reconstruct a solution, which is finally returned (line 20).

function ADC-F(� �/�����) return tuple
1 for each

� �h$c�8��� do
2 � � � � � �) : _ �) : *V��� � � *V+-,#.-� �) : � " ;
3

� � � � � E�) �: � �) : Z [5\ _ �) : *�� � " ;
4 ��� � �?]��'� ;
5 ��� �2�<R !���
 � � ��R �<R !���
 � � � ;
6 for each

� �h$c�8��� do
7 � ��� � � �) : _ �) : *���� � �O* +-,#.�� �) : � " ;
8 � ��� � �) �: � �) : Z .[-\ _ �) : *D����" ;
9 � � � �?J ;
10 while _ � � _
	�� do
11 ��) �d �) �e � :=popTwo ��� ��� ;
12 if �U��) �d E) �e � �?J then return NULL;
13 � � � ��� � R �) �d E) �e " ;
14 � � � �� � R �) �d f) �e " ;
15 ��� �h� R�� �(]� � ;
16 ;c� L
17 for each

� ���-�P� $ do
18 select , *��'� such that ;�N9���(�E� ,#�U*=�<f ����
 \�)&� ;
19 ;�� �@;cN5��� � �6,#� ;
20 return ;

Figure 2. ADC-F implementation of adaptive consistency.
�

is the set of
constraints in negative form.

Example 2 Let us see how the process works in the 4-queens prob-
lem, with the usual formulation: rows are variables and columns are
values , �(I&�)-��� . The initial constraints of the problem are:

�
�� ���
 ��� � ���� � ����������� �
� � �������������

�
�� ���
 ��� � ������J����� ����� ��� � �
� �J� � ����� ����� � �

�
�! ���
 ��� ! �� ���J��� � ����� ��� � �
� �J� � � ��� �J��� � �

� � � ��� � ��� � ���� � ����������� �
� � �������������

� ��! ��� � ��� ! ������J����� ����� ��� � �
� �J� � ����� ����� � �

� ��! ��� � ��� ! �� � � ����� �������
� � ��� ���������

None of them generates original nogoods (E�)
� d � J). Elimination
of �
 :

�

��"$# �
 % # � ������ � � ���� ����� �����
� � ��� � �����
��� � �����

�

��"&# �
 % # � ���� � � � ���J�����
���J����� ����� � �

�

�!"$# �
 % # � !�������J� � � � � ���� � � ����� �����
� ��� �����
� � � �����

'
)(�

��+* �

��"$# �
 % # � � � ������ � � �J� � � ��� �J������������ ����� ��� � �� � � �����J����� �
� ��� ��������� � ����� ��� � �

,-
 ��� � ��� � � (�

��/. �

�������J����� � � � � ��� �

,- � ��� � ��� � ��� ! � ('
 . �

�!������� ������� ����� � ��� � � �� � � ����� � ������� ������� �� � � ��� � � � � ����� � ��� �
� ��� � � �����������J������� ������ ��� � �J�0����� ���������

Bucket � � =
� �) � � � �) ��! � �$
 ��� � � � � �`� �$ � ��� � � � � ��� ! � " . Two con-

straints have the same scope, �) � � and �$
 ��� � � � � � , so we per-
form its join as their union, producing �	
 ��� � � � � � . Now, � � =� �	
 ��� � � � � �`� �) ��! � �$ � ��� � �6� � � � ! � " . Elimination of � � :

1 �
 ��� � �2� � �"3# � � % # � ������ � � ���������� ���������
� ���!"$# � � % # � !����� � � ���J�����

���J����� ��� � � �
- �� ��� � ��� � ��� ! �"$# � � % # � � � !��� ����� ����� ��� ������� �������

��� ���J� � � �����J� � ������J� � ����� ��� � ��� � �� � ��� � ����� � � � ����� � � � �
' �4(1 �
 ��� � ��� � � * � ���!"$# � � % # � � � !����� � � �J� � � �0���J���������� � ��������� � ����� ��� � �

,- � ��� � ��� ! � (1 �
 ��� � ��� � � . � ���!�����J����� �����J����� � � � � ��� ��������� � �

,- ! ��� � ��� ! � (' � . - �� ��� � ��� � ��� ! ������ � � ���

Bucket � � � � �) ��! � �$ � ��� � � � ! �`� �$! ��� � � � ! � " . The three constraints
have the same scope, so we perform its join as their union, producing�	 � ��� � � � ! � . Now, � � � � �	 � ��� � � � ! � " . Elimination of � � :

1 �� ��� � ��� ! �"&# � � % # � !����� � � ������ �����

The � ! variable is trivially eliminated. The problem has solution
which can be obtained assigning variables in reverse order. N

We are going to show that ADC-F is equivalent to ADC. First,
we prove a technical lemma to show that joining two constraints and
projecting out variable � with memory is equivalent to projecting out
� from each constraint with memory and subsequently performing
the join.

Lemma 1 ��) f)&MP�SZ .[�) Z .[f)&M#Z .[.

Proof. Notation:)UZ .[� � �10��E��2��<� "�) M Z .[� � �10 Md ��2 Md � " ,
) Z .[f) M Z .[� � �10 M Me ��2 M Me � "� ��) f) M �cZ .[� � � : ��� : "�) If � *�� : and ,g* � : , then � N#���c�<,#� *) f2)&M . We can write
��� ;ON&; M , where ; ��� F +-,#.-��)&�] � ��"/H and ; M ��� F +-,#.-��) M �O] � ��"�H .
Then, ;U*72�� , ; M * 2 Md , and ,�*0�� ?70 Md ��0 M Me . So, � �2;cN5; M * 2 M Me
and , *D0SM Me .�) If ;<M M * 2 M Me and ,�* 0OM Me , then ;EM Mc� ;cN5;EM , with ; *K2 � , ;<MO* 2 Md ,
, * 0 � ?G0 Md . Then, ; M M N5���c� ,#� *�) f) M , so ; M M *	� : and , * � : . N
Theorem 1 The set of constraints

� � R � � is equivalent to (forbids
the same tuples as) 	 � �2�<f��	��
 \)/�cZ [5\ .

Proof. In this proof, ��� and 	�� refer to the bucket and the join pro-
jecting out variable � � of the ADC algorithm. By construction, the
set � � (line 2 of Figure 2) is included in the bucket � � . Then,

� �
contains those forbidden tuples by constraints in � � , for all values of
��� . These tuples are obviously forbidden by the join 	� . Therefore,
we rest to consider the set � � and 	 � .

Applying lemma 1 we see that the unique constraint that remains
in � � is 	�� , with memory about ��� . At each point that two constraints
) �d and) �e are joined, we extract in) �d E) �e those tuples which can-
not belong to the join because there is no common support in the
eliminated variable. Therefore, the set

� � contains the tuples that are
forbidden by the initial constraints, and the set � � contains the tuples
that are discovered forbidden in the join process. So its union forbids
the same tuples as 	 � . N
Theorem 2 If constraints

�)
 ���������)J8�" are processed ordered by in-
creasing arity, the set

� ��R � � is factorized: a tuple forbidden by a
constraint is not forbidden by any other constraint.

Proof. Let us assume that tuple ; is found forbidden when) �e�

 en-
ters the join process. This means that ; was allowed by) �e�

 and by
f) �
 ���������) �e , but ; did not have a common support in � � . If ; was al-
lowed by f) �
 ���������) �e , it was not found forbidden in a previous step.
If tuple ; has been eliminated when joining)Ke�

 , it will not appear
in the new join (f?) �
 �&�������6) �e�

). Therefore, it cannot be eliminated
in the future. The condition that constraints must be considered by
increasing arity is to assure that forbidden tuples are generated by
increasing arity. N

ADC-F, as presented in Figure 2, admits some improvements.
First, in the last iteration of the loop of lines 10-14, the join) �d fg) �e
(line 14) is not needed because its result will not be used in the next
iteration. So it can be saved. Second, if) �e is one of the constraints
to be processed in the last iteration of the loop of lines 10-14, the
unique operation to be done is the inferred nogoods (line 13). In this
case, the tuples of) �e which are supported by every value of ��� are
not needed: they will not generate any tuple in the result becausetheir
support will never have an empty intersection with the support of any
other tuple of other constraint. Therefore, we know that from the set
��� , we can choose one constraint for which universally supported
tuples should not be generated. As a direct heuristic, we choose the
constraint of highest arity in � � as the last one to be processed.

5 Experimental Results

We have evaluated ADC, ADC- and ADC-F on random binary prob-
lems, SAT problems, $ -queens and Schur’s lemma. In all the prob-
lems and instances tested, space was a more important concern than
time. A constraint can quickly grow to an intractable size. So we have
tested all the instances until the program ran out of memory.

When eliminating a variable ADC-F adds up to a linear number
of new constraints with respect to the size of the bucket. So the se-
quence of joins is an important decision. We have worked on several
heuristics and two showed to bring substantial benefits: minimum re-
sulting arity and maximum expected nogoods generated. The first
one selects the two functions of smaller scope. The second one se-
lects the two functions that have smaller support sets in its tables of
memory projection, smaller supports are intended to produce more
empty intersections.

5.1 SAT and Random Problems

A binary random problem class is defined by the tuple $<$c�(' ��*
 ��* � , ,
where $ is the number of variables, ' is the number of values per
variable, *
 is the problem connectivity and * � is the constraint tight-
ness. With random problems the advantages of ADC-F with respect
to ADC can be controlled by the tightness and the connectivity of the
generated problems. ADC-F has its greater gain when the tightness
is inferior to 0.5 and connectivity is close to 1. In that case, a gain
of 3 orders of magnitude is reached. Connectivity is also an impor-
tant parameter because combined with loose constraints can make a
variable elimination very expensive for ADC. We observed in our
experiments that no matter the connectivity of the graph, the positive
representation is more advantageous when tightness is greater than
0.5 . This can be seen in Figure 3 on the left where ADC and ADC-F
lines cross.

An extreme case of loose constraints is the SAT problem mod-
elled as a CSP using the model of one variable per logical variable,
and each clause a constraint with a single negative tuple (the com-
bination that forbids the clause) [7]. In Figure 3 on the right we can
appreciate a gain of 3 to 1 orders of magnitude as the number of
clauses grows (in this case the connectivity of the graph also grows).
It is interesting to notice that ADC-F maintains a constant gain of
one order of magnitude even when the number of clauses grows, that
is because there is a single forbidden tuple in every constraint.

 10

 100

 1000

 10000

 100000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

m
ax

 tu
pl

es
 p

er
 s

ol
vi

ng

p2 (tightness)

random n=7, m=5, p1 = 1

ADC
ADC-

ADC-F

 1

 10

 100

 1000

 10000

 100000

 0 50 100 150 200 250 300

m
ax

 tu
pl

es
 p

er
 s

ol
vi

ng

number of clauses

sat n=15, length of a clause = 5

ADC
ADC-

ADC-F

Figure 3. On the left: results for the random binary class� - (� ��� (�� ���
 (���
. On the right: results for 5-SAT instances.

5.2 Shur’s Lemma and � -queens

The problem is to put $ balls labelled from 1 to $ into 3 boxes so
that for any triple of balls �c��� ��� with ��������� , not all are in the
same box. 23 is the greater number of balls that can be placed into

three boxes. The problem is modelled having
� $ binary variables

each one indicating whether there is a ball in a particular box. In
the model a particular variable appears in few constraints (usually
$�]M� constraints) of arity 3, but of different scopes. In this case the
heuristic minimum arity caused the best performance. ADC-F could
solve one more instance than ADC. When $g� % , ADC-F requires� � ��� times less tuples and is � �5� � times faster.

The $ -queens problem is to place $ queens into a $: $ chessboard
in such a way that none of them attack each other. The $ -queens is
modelled with $ variables each one with $ values. In each elimina-
tion we have to build a constraint involving all the variables because
each variable is related to all other variables. In this case the heuristic
minimum arity did not have much benefits. The heuristic minimum
number of expected tuples reduced considerably the number of tu-
ples, a bit less than an order of magnitude. The factorization does not
have any effect for small arity constraints because when $ grows,
nogoods also grow in size. For example, the smallest nogoods dif-
ferent from those contained in the original constraints for 8-queens
are of arity 4. Figure 5 reports the results of this experiment. ADC-F
generates � � � � times less tuples and is about 30 times faster. In the
8-queens the first elimination is the most expensive. We have tested
all the instances until the program ran out of memory. ADC-F could
solve one more instance than ADC, that is shown in Figure 4 as the
line execution corresponding to $ ��� does not appear in the ADC
plots.

 1

 10

 100

 1000

 10000

 100000

 1e+006

 0 1 2 3 4 5

tu
pl

es

variable eliminations

ADC n-queens (n=4..n=7)

n=4
n=5
n=6
n=7

 0.01

 0.1

 1

 10

 0 1 2 3 4 5

cp
u

variable eliminations

ADC n-queens (n=5..n=7)

n=5
n=6
n=7

 1

 10

 100

 1000

 10000

 100000

 1e+006

 1 2 3 4 5 6 7

tu
pl

es

variable eliminations

ADC-F n-queens (n=4..n=8)

n=4
n=5
n=6
n=7
n=8

 0.01

 0.1

 1

 10

 100

 1 2 3 4 5 6 7

cp
u

variable eliminations

ADC-F n-queens (n=5..n=8)

n=5
n=6
n=7
n=8

Figure 4. Results for the - -queens problem.On top, ADC tuples and CPU
time. On bottom, ADC-F tuples and CPU time.

5.3 Discussion

Although ADC is highly inefficient with loose constraints, ADC- of-
fers no improvements in practice. Only when constraints to join are
really loose (for example in random problems when tightness is be-
low 0.1), ADC- improves over ADC. The intuitive reason is that,
when ADC joins two constraints the resulting number of tuples is
bounded by _)&�E_ � _)`d5_ . This is not the case for ADC-, where the neg-
ative version of join generates an exponential number of tuples with
respect to the non-common variables.

ADC-F deals also with negative information. The difference with
ADC- is that at every two by two join it generates a negative con-
straint filled with nogoods that will in fact factorize other bigger no-

goods that will not appear lately. ADC-F can perform a linear number
of those factorizations at every bucket. This set of factorized negative
constraints when joined together are equal to the negation of the posi-
tive constraint that ADC would generate. Imagine a variable linked to
many loose constraints. ADC generates a single constraint containing
all the allowed combinations. Instead, ADC-F generates a set of neg-
ative constraints that contain the factorized forbidden combinations.
For example, if a single value is forbidden at any moment it only ap-
pears once inside a unary constraint. Moreover it can be proved that
in very special cases, the elimination of a variable may not generate a
constraint of arity equal to all its neighbors when performing ADC-F,
but a smaller arity constraint. This advantage of factorizing nogoods
raises the power of eliminating a variable linked to loose constraints
and can reach gains of several orders of magnitude in random prob-
lems and SAT, and of one order of magnitude in $ -queens and Shur’s
lemma.

ADC-F joins constraints in the bucket and generates constraints of
nogoods at the same time. At the last join, when only two constraints
remain, ADC-F only needs to generate nogoods as the positive join
is subsumed by all the generated nogoods. Because of this fact we
can always choose a constraint of the bucket that when computing
its projection with memory its completely permitted tuples (the ones
that are supported by every value of the eliminated variable) will
be skipped. This constraint will be the one of largest arity. When
projecting with memory a negative constraint, we can compute at the
same time the E operation (that is the tuples that are fobidden by all
values of the eliminated variable) and also the tuples supported by all
values of the eliminated variable.

6 Conclusions

The theoretical complexity of ADC is exponential with respect to the
width of the induced graph, which is very sensitive to the arity of con-
straints and does not take into account its tightness. In this work, we
show how sensitive is ADC not only to the arity but also to the tight-
ness of constraints. Especially, very loose constraints and variables
linked to many loose constraints can make the algorithm impractical
in many cases. We have described ADC-F that eliminates a variable
by returning a set of constraints that does not mention that variable
and that represent a set of factorized nogoods in such a way that vari-
ables are eliminated in a compact way, sometimes with exponential
savings. As general conclusion, when constraints have more permit-
ted than forbidden tuples, ADC-F is the preferred choice. Otherwise,
when constraints have more forbidden that permitted tuples, classical
ADC may perform better.

REFERENCES
[1] U. Bertele and F. Brioschi, Nonserial Dynamic Programming, Academic

Press, 1972.
[2] R. Dechter, ‘Bucket elimination: A unifying framework for reasoning’,

Artifical Intelligence, 113, 41–85, (1999).
[3] R. Dechter and J. Pearl, ‘Network-based heuristics for constraint satis-

faction problems’, Artifical Intelligence, 34, 1–38, (1987).
[4] G. Gottlob, N. Leone, and F. Scarcello, ‘A comparison of structural

csp decomposition methods’, Artificial Intelligence, 124(2), 243–282,
(2000).

[5] J. Larrosa and E. Morancho, ‘Solving still life with soft constraints and
variable elimination’, in Proc. CP-2003, pp. 466–479, (2003).

[6] J. Pearl, Probabilistic Inference in Intelligent Systems. Networks of Plau-
sible Inference, Morgan Kaufmann, San Mateo, CA, 1988.

[7] T. Walsh, ‘Sat v csp’, in Proc. CP-2000, pp. 441–456, (2000).

