Tree Decomposition with Function Filtering

Marti Sdnchez!, Javier Larrosa?, and Pedro Meseguer!

! Institut d’Investigacié en Intel ligéncia Artificial
Consejo Superior de Investigaciones Cientificas
Campus UAB, 08193 Bellaterra, Spain.
{martilpedro}@iiia.csic.es
2 Dep. Llenguatges i Sistemes Informatics
Universitat Politécnica de Catalunya
Jordi Girona, 08028 Barcelona, Spain
larrosa@lsi.upc.es

Abstract. Besides search, complete inference methods can also be used
to solve soft constraint problems. Their main drawback is the high spatial
complexity. To improve its practical usage, we present an approach to
decrease memory consumtion in tree decomposition methods, a class of
complete inference algorithms. This approach, called function filtering,
allows to detect and remove some tuples that appear to be consistent
(with a cost below the upper bound) but that will become inconsistent
(with a cost exceeding the upper bound) when extended to other vari-
ables. Using this idea, we have developed new algorithms CTEf, MCTEf
and IMCTES, standing for cluster, mini-cluster and iterative mini-cluster
tree elimination with function filtering. We demonstrate empirically the
benefits of our approach.

1 Introduction

In constraint satisfaction, inference is widely used but in a very limited form. A
simple example is arc consistency: by the inspection of constraints and domains,
it is able to deduce that some values will never be in a solution so they can be
removed. Arc consistency is incomplete inference since 1t cannot always produce
a solution. Inference can also be complete. Some algorithms are adaptive con-
sistency [5], cluster tree methods [6] and bucket elimination [7]. Their temporal
and spatial complexities are exponential in some parameters of the constraint
graph (see [8] for details). When compared with search methods (exponential
complexity in time but lineal complexity in space), they look unattractive, espe-
cially when search is enhanced with the powerful machinery of local consistency
coupled with global constraints.

In the soft constraints realm, satisfaction is replaced by optimization. This
causes that problems with soft constraints become more difficult to solve than
their hard counterparts. The same solving ideas are recreated here. Search meth-
ods, based on a branch-and-bound schema, are combined with soft local consis-
tencies to filter domains [11]. Complete inference methods are easily adapted to
compute the optimum, at the cost of dragging large arity constraints. Their high

spatial complexity 1s the main drawback to be used in practice. Nevertheless,
this 1ssue is not always unavoidable: when there are ways to control the spatial
complexity, complete inference can provide excellent performance [10].

The simplest form to control spatial complexity is the use of an upper bound
of the optimal cost. This allows one to remove tuples whose cost exceed the
upper bound, because their will never contribute to the optimum. Good upper
bounds can be found by problem inspection, sampling or local search. In addi-
tion to upper bound usage, the basic operation of complete inference, constraint
combination, should be handled with extreme care due to its multiplicative na-
ture. Strategies that anticipate if some tuples will not produce a solution should
be used, to limit as much as possible the combinatorial explosion. This paper is
a step in that direction.

In this paper, we present a new strategy to decrease the memory consumption
of tree decomposition methods, a class of complete inference algorithms, when
applied to weighted CSP. Tree decomposition methods work on a decomposition
of the problem with a tree structure. They solve subproblems or “parts”, sending
the result of one part to the rest of the problem. The tree structure permits an
orderly exchange of information. The key idea we have pursued is as follows.
When combining constraints in one part of the problem, if it happens that some
of the resulting tuples would become unacceptable after sending them to another
part, would it not be better to detect those tuples before sending, and eliminate
them once and for all? In some cases we are able to detect that some tuples,
apparently acceptable when solving a subproblem (that is, with a cost below
the upper bound), will become unacceptable (with a cost exceeding the upper
bound) when used in another subproblem, so we can remove them and decrease
the memory usage. Obviously, it is possible to find problems where our method
causes no benefits, but in this case it causes no harm as well. !

This technique 1s called function filtering, and it has been applied to hard
constraints [12]. In the soft case, approximation techniques that limit the arity of
the subproblem to solve can be successfully combined with function filtering, so
successive iterations can increment the size of the subproblem to solve without
Increasing Mmemory usage.

The paper structure is as follows. In Section 2 we summarize the notions used
in the rest of the paper. In Section 3, we present the idea of function filtering. In
Section 4 we apply function filtering to tree decomposition methods, producing
the CTEf, MCTEf and IMCTE(f algorithms, that stand for cluster, mini-cluster
and 1terative mini-cluster tree elimination with function filtering. Experimental
results appear in Section 5, showing the obtained benefits on a set of benchmarks.
Finally, Section 6 contains some conclusions.

1 A similarity with arc-consistency (AC) can be stated here. You can find problems on
which AC causes no change, but this does not invalidate AC as a extremely useful
notion in constraint reasoning.

2 Preliminaries

2.1 Weighted CSP

Valuation structures are algebraic entities to specify costs in valued CSP. We
use a particular structure S(k) [9], for weighted CSP. Formally,

Definition 1. A valuation structure is a triple S = (E,®, =), where E is the
set of costs totally ordered by =, and & s the binary internal operation to com-
bine costs. The marimum and minimum costs are denoted as T and L. & is
commutative, assoctative, monotone, L is the neutral element and T s the an-
nthilator.

Definition 2. The valuation structure S(k) is a triple {[0,1, ..., k], ®, >) where
T=k L=0and

—kell,..., o0,
— a®b=min{k,a+b}, and

— > 1s the standard order among naturals.

Definition 3. A Weighted CSP (WCSP) is a tuple (X, D, C, S(k)) where,

— X =A{ay,...,x,} is a sel of n variables;

— D ={Dy,...,D,} is a set of finite domains, each variable x; € X taking ils
values i D;;

— (' is a finite set of constraints as cost functions. Fach function f € C relates
a number of variables var(f) = {a;,,... %} called its scope, and assigns
costs to tuples t € [| D; such that,

z;€var(f)
0 if t 1s allowed
f@)=<[1... k-1] ift is partially allowed
k if t 1s totally forbidden

— S(k) is a valuation structure.

An assignment or tuple tg on a sequence of variables S = (x1,29,...,2g), is
a sequence of values (a1, as,...,a;) such that a; is the value for 21, as is the
value for x5 and so on. An assignment ¢5 is complete if S = X. Given S5’ C S,
t5[S’] is the tuple obtained removing from g the values of variables in S — 5. If
S is implicitly assumed or irrelevant, we write directly ¢. For clarity, we assume
that f(tg) (with var(f) C S) always means f(tg[var(f)]), so we select from
tuple ts the values of variables in f and ignore the others. The concatenation
of two tuples ts and 4., noted t.t’y r, is a new tuple on S UT formed by the
union of its values, and it is only defined if common variables coincide in their
corresponding values. A complete assignment ¢g 18 consistent if @fec ft) < k.
Else ts 1s inconsistent. A solution of a WCSP is a complete consistent assignment
with minimum cost. The problem of finding a solution is NP-hard. It is easy to

check that WCSP with & = 1 reduces to classical CSP.

We define two operations on functions:

— Projecting out. Given a function f, projecting out variable z € var(f),
denoted fy., is a new function with scope var(f) — z. Every tuple remov-
ing x component i1s present in the projection and its cost is the minimum
among all permitted z extensions: fy,(t) = min.ep, (f(a.t)). Projecting out
the variable of a unary function produces a constant. Any constant can be
considered an empty scope function.

— Sum. Given two functions f and g, its sum f + ¢ is a new function with
scope var(f)Uwvar(g) and Vt € Hx,Evar(f) D; V' € ijEUM(g) D; such that

t.t' is defined, (f + ¢)(t.t') = f(t) ® g(t).

Definition 4. Function g is a lower bound of function f, denoted ¢ < f, if
var(g) C var(f) and for all possible tuplest of f, g(t) < f(t). Abusing notation,
a set of functions G is a lower bound of function f iff (deGg) <f

Property 1. For any function f, (fys) is a lower bound of f.

Property 2. ZfeF(flix) < (ZfeF f)ye holds.

2.2 Tree decomposition

A tree decomposition of a WCSP is a clustering of the functions in C' such
that clusters are linked if they share variables and form an acyclic tree network.
Formally,

Definition 5. A tree decomposition for a WCSP (X, D,C,S(k)) is a triplet
(T, x, ¥y, where T = (V,E) is a tree. x and v are labelling functions which
associate with each vertex v € V two sets, x(v) € X and ¢(v) C C that satisfy
the following conditions:

1. For each function f € C, there 1s exactly one vertex v € V such that f €
¥(v). In addition, var(f) C x(v).

2. For each variable x € X, the set {v € V|z € x(v)} induces a connected
subtree of T

Tree decompositions for CSP often relax condition (1) by requiring that any
function f € C' must appear in at least one vertex v € V of the decomposition
(see [8]). For WCSP, if function f appears in two vertices, tree decomposition
methods could add twice its contribution. For this reason, the eractly condition
is required.

Definition 6. The tree-width of a tree decomposition is the marimum number
of variables in a vertexr minus one tw = maxyev|x(v)|— 1. Let (u,v) be an edge
of a tree-decomposition, the separator of u and v is sep(u,v) = x(u) N x(v),
formed by the common variables between two vertices of the decomposition. We
will call s the mazimum separator size s = max(y v)ee|sep(u, v)|. The eliminator
of uw and v is defined as elim(u, v) = x(u)—sep(u,v), and represent the variables
wmn u that are not present in v.

In [3] tree decomposition is defined only for binary graphs and hyper-tree
decomposition for hyper-graphs. Following [8] we use the concept of tree decom-
position of a CSP referring to an hyper-tree decomposition of the hyper-graph
formed by the functions of the CSP. We also extend this definition for WCSP
imposing that every constraint must appear exactly once in all clusters.

Ezample 1. The crossword puzzle of Figure 1is a WCSP ({xq, ..., 29}, {a,..., 2},
{f1,..., fa}, S(k)), with a variable per cell, functions correspond to vertical and
horizontal slots and accepts words of numbers from ”zero” to ”ten”, that can
also be reversed. The cost of each word is its number or its number plus one, if
reversed. Any other word costs k.

For example: fi (21, #2, 3, #4)= {(zero,0), (orez,1), (four,4), (rouf,5), (five,5),
(evif,6), (nine,9), (enin,10)} and fo(x7,28,29)= {(one,1), (eno,2), (two,2), (owt,3),
(six,6), (xis,7), (ten,10), (net,11)}. An optimal solution tuple is {(zo, 2), (%1, 2),
(za,€), (x3,7), (24,0), (x5,7), (x6,n), (x7,0), (2s,n), (x9, e)} with cost 2.

fi|z1 22 22 4 fo|o7 28 29 fa|vo 2 w5 x7 fa|ra T6 B9
0lz e r o 1o n e 0|z e r o llo n e
llo r e z 2le n o llo r e z 2le n o
4f o u r 2|1t w o 41f o u r 21t w o
5|r w o f 3lo w t 5/r u o f 3lo w t
51f 1+ v e 6|s 1 =x 5/f 1+ v e 6|ls @1 =
6le v 1 f 7Tl 1 s 6le v t f Tl & s
9in 2 n e 10|t e n 9In 2 n e 10|t e n
10le n 1 n 11ln e ¢ 10le n 1 n 11ln e ¢
Yu = {f1, 2}
Xu = {21, 22,23,
T4,T7,Ts,To}
u v
b = {fo. fa)
Xv = {x0, x2, x5

T7,T4,Te,To}

Fig. 1. Upper: crossword functions. Lower left: the crossword puzzle. Lower right: a
possible tree decomposition.

procedure CTE({X, D, C, k), ({V, E), x,¥))

1 for each (u,v) € £ s.t. all m(;), # v have arrived do
2 Beplu)U{mpu | (1,u) € i # vl

3 M(u,v) (ZfeB f) Uelim(u,v)§

4 send m(y,q;

Fig.2. The CTE algorithm. (X, D,C k) is a WCSP instance and {(V, E), x, ¢) is its

tree decomposition.

2.3 Cluster and mini-cluster tree elimination

Cluster-Tree Elimination (CTE) is a generic algorithm that can be used for CSP
solving and unifies other inference algorithms such as Bucket Elimination [1,7].
CTE also solves a constraint optimization problem by sending messages along
every edge of a tree decomposition of the problem. Concepts of this Section are
more extensively described in [8].

Given a tree decomposition (V| E), x, ¥), every edge (u,v) € E has associ-
ated two C'TE messages that we denote m(y .y, from u to v, and m, u), from
v to u. Message m, ,) is a function computed summing all functions in v(v)
with all incoming CTE messages except from m(, ,) and then projecting out
the variables in v not mentioned by v, that is variables in elim(u, v). m(,) has
scope sep(u,v).

In Figure 2 we present the CTE algorithm. Line 1 is a loop that looks for
edges such that all their incoming messages but one have arrived. Lines 2 gathers
the set of functions to be summed. Line 3 performs the sum and projection.

Let T'(u,v) (resp. T(v,u)) denote the subtree of T' containing the connected
component containing vertex u (resp. v) after the removal of edge (u, v).

Property 8. my)(t) is equal to the minimum cost of extending tuple ¢ to the
subproblem induced by T'(u,v). This is guaranteed by the correctness of the
algorithm.

The complexity of CTE is time O(d"™*1) and space O(d®) where tw is the
tree-width, d is the largest domain size and s is the maximum separator size.

In Figure 3 we can see an execution of CTE on example 1. Original functions
have size 8. Once the messages have been sent we can compute the solution in
any of the two nodes. For example, in v the minimum cost of f2 + f3 + my v) is
the optimal solution.

Mini-Cluster-Tree Elimination (MCTE(r)) is an approximation schema for
the CTE algorithm. When the number of variables in a cluster is too high, it

) B 2.0 :

Fig. 3. The 2 CTE messages of edge (u,v) of example 1.

is not possible to compute a single message that captures the joint effect of all
functions of the cluster plus all incoming messages due to memory limitations.
In this case, MCTE(r) computes a lower bound of the problem by limiting by
a constant 7 the arity of the functions sent in the messages. This is because we
can not afford to compute one single function that will be of high arity and then
project 1t.

A MCTE(r) message, noted M, ,), is a set of functions that approximate
the corresponding CTE message my 1) (namely My < m(uyv)). It is com-
puted as m,) but instead of summing all functions of set B (line 2 of CTE
algorithm in Figure 2), it computes a partition P = {B1, By, ..., B,} of B such
that the sum of the functions in every B; does not exceed arity . We compute
My vy from P by summing all functions in every partition and project out from
each resulting function the variables not mentioned by node v. The MCTE(r)
algorithm is obtained replacing line 3 of the CTE algorithm by the following lines,

3.1 P « partitioning(B, r);
32 M {2 sep,) Uelim(u,v)|Bi € Pl

MCTE(r) time and space complexity is O(d").

3 Function Filtering

A nogood 1s a tuple ¢ that cannot be extended into a complete consistent assign-
ment. Nogoods are useless for solution generation, so they can be eliminated as
soon as are detected.

Typically, a cost function f is stored in an array 7T, where tuples ¢ are the in-
dexes and T [¢] stores f(t), the cost oft. The space use.d by Ty is @(HiEwT.(f) | Ds1).
Costs can be retrieved in constant time. An alternative is to store function f as
a set Sy containing all pairs (¢, f(£)) with cost less than k, Sy = {(¢, f(¥)| t €
Hx,Evar(f) D;, f(t) < k}. We define the size of a function f, denoted |f], as the
number of tuples with cost less than k. The space used by Sy is ©(|f]), which
can be smaller than the space of T} if f contains many inconsistent tuples. If S
is implemented as a hash table, f(#) can be retrieved in constant time.

In the following, we will assume that functions are stored as sets of pairs.
Then, computing f |, has time complexity O(|f]). Regarding the sum of two
functions f + g, there are two basic ways to compute it: (i) iterate over all the
combinations of (¢, f(t)) € Sy and (¢, g(¢')) € Sy and, if they match, compute
(t-t, f(t)®g(t")), which has complexity O(|f]|g|), and (%) compute every tuple
t over var(f) U var(g) and retrieve from Sy and S, the f(¢) and g(t) values,
which has complexity O(exp(|var(f) U var(g)])). Since one can choose the best
option beforehand, the cost is O(min{|f||g|, exp(|var(f) U var(g)|)}). Observe
that the efficiency of computing the previous operations depends on the size of
the functions.

We now introduce the function filtering operation, which allows us to reduce
the size of a function f before operating with it. The idea is to anticipate the
detection of nogoods of f in order to remove them from S} as soon as possible.

Definition 7. The function filtering operation applied to a function f from a

. —=H . . .
set of functions H, noted f |, is the process of performing a consistency test to
every tuple t of f after adding the contribution of every function in H. Fvery
tuple that reaches the upper bound k is removed from S .

7 FO) i (A1) @ ft) <k

(t) = heH
k otherwise

Suppose that we know that f will be eventually summed with g. If there 1s a
tuple ¢, (¢, f(t)) € S such that ¢t - ¢’ will become a nogood after the sum for
any t', (t',g(t')) € Sy, we can safely remove (¢, f(t)) from S right away. The
following Property formalizes the previous observation.

Property 4. Let f (resp. g) be a function and F (resp.) a lower bound. When
summing f and g, if previously we filter each function with the lower bound of
the other function, the result is preserved. Namely,

e _
F T +7" =F+y
Besides, the sum is done with functions of smaller size. Thus, it is presumably
done more efficiently.

Ezample 2. Consider node u of tree decomposition of example 1 with ¢, =
{f1, f2}. Potentially |f1]| = 26* but as we record consistent tuples only (k = o)
we have |fi| = |f2| = 8. They do not share any variable so |f1 + fa| = 64. If
we set k = b, this causes that some tuples of f; and fo become nogoods and
they can be eliminated. Now, |fi]| = 3, | f2| = 4. To make |fi + f2| = 8, we need
3% 4 = 12 operations. To use Property 4, we take as G the set formed by the
function fa |} {x7,zs, e}, that is, G = {fo | {w7, 2s,29}} = {1} (G is a lower
bound of fa2 by Property 1). |EG| = 2. Filtering with G allows us to add 1 to
every tuple of fi, which causes that tuple (four,4) becomes a nogood (it reaches
k = 5) and can be eliminated. Therefore, we only need 2 x4 = 8 operations to
compute the sum.

The following property shows that filtering functions can be safely brought in-
side summations, anticipating the detection of nogoods and reducing the size of
functions.

Property 5. Let f and g be two functions, and H a set of functions, f ¢ H,g ¢ H.
We have that,

— H
—H ZH _
Frg =1 +3"

Ezrample 3. Property b is better understood taking H as a lower bound of a

function & that has to be added with f and g. In the example 1 solved by CTE,

functions f1 and f2 of node u have to be added with m,). Functions in node v
projecting out variables in elim(v, u) form a set that is a lower bound of m, u

(see Properties 1 and 2). So we take H = {fs | {xo, 25}, fa J {®6}}, which are
as follows,

fa Wag,z51 |72 27 Ja Uag |24 2o
0 e o 1 o €

1 r oz 2 e o

4 o r 2 t o

5 u f 3 o t

5 1 e 6 s x

6 v f 7 |z s

10 nn 10 t n

11 |n ¢

To compute f; + sz, we first compute fi + fo. Since they have no variables in
common |f1+ fo| = 64. Applying filtering with H, we realize that values z, r, f for
24 are not permitted by f4 |, so all tuples including them are eliminated (32
tuples). We also realize that values ¢, s, x are not permitted by f3 {1z, 2.3, 50 all

remaining tuples including them are eliminated (16 tuples). Now |f; + f2H| = 16.
As Property b says, we could realize this fact by filtering functions f; and fs in
advance, and then filtering their sum. Filtering f; removes tuples with forbidden

values for x4, |EH| = 4, and filtering f; removes tuples with forbidden values

for x7, |EH| = 4. Then, |EH + f2 | = 16, and additional filtering causes no
removals. So the application of Property 5 allows us to save 64 — 16 = 48 tuples,
a 75% of the initial memory.

Previous discussion implicitly assumes k = co. Lower values of k causes fur-
ther savings. For instance, let us assume k = 5. Then, |f; + f2| = 8. Filtering with
H causes to remove all tuples with z for x4 and ¢ for #7 (5 tuples). In addition,
the cost of two tuples reaches k so they are eliminated. Now, |f; + f2H| = 1.
Applying Property 5, we first filter f; and f; with H, which leaves a single tuple

in each function |f; | = |fo | = 1, and additional filtering causes no removals.
So the application of Property 5 allows us to save 8 — 1 = 7 tuples, a 87% of the
initial memory.

4 CTE and MCTE with Function Filtering

Now we integrate the idea of filtering into the CTE schema. First, we define a
filtering tree-decomposition which adds a new labelling ¢ to a tree-decomposition
that will be used for filtering purposes.

Definition 8. A filtering tree-decomposition of a WCSP is a tuple (T, x, ¢, ¢)
where:

— (T, x,v¢) is a tree-decomposition as in definitions.

— ¢ is a labelling. ¢(u,v) is a set of functions associated to edge (u,v) €
with scope included in sep(u,v). ¢(u,v) must be a lower bound of the corre-
sponding m(y vy CTE message (namely, ¢(u,v) < mey).

The new algorithms CTEf and MCTEf(r) use a filtering tree decomposi-
tion. They are essentially equivalent to CTE and MCTE(r) except in that they
use ¢(u, v) for filtering functions before computing the message My vy OF My v)-
The pseudo-code of CTE(f is obtained by replacing line 3 of the algorithm by line,

= ¢(u,v)
3 M (u,0) ZfeB f Uelim(u,v)§

Besides, the computation of the new line 3, will make discretional use of Prop-
erty 5. Similarly for MCTEf(r) we replace line 3 by two lines,

3.1 P « partitioning(B, r);
% (u,v)
32 M) < {(XZsen, f) Yetim(u,v) |Bi € Ph

The effectiveness of the new algorithms will depend on the ability of finding good
lower bounds ¢(u,v) for the messages m,) (resp. My ,)). If we use dummy
lower bounds (i.e, ¢(u,v) = @, for all (u,v) € E), CTEf (resp. MCTEf(r)) is
clearly equivalent to CTE (resp. MCTE(r)). It is important to note that the
algorithms will be correct as long as ¢(u, v) is a true lower bound which can be
computed with either a domain-specific or general technique (see [3] [2] [4] for a
collection of general lower bound techniques). An option is to include in ¢(u,v)
all the original functions used to compute m(, . properly projected,

o(u,v) ={f s | f € ¥(w),w € T(u,v), S = var(f) — x(u)}

Our CTEf and MCTEf implementations use this lower bound.

Another option for CTEf is to include in ¢(u,v) a message M, . from a
previously computed execution of MCTE(r). When we apply the previous idea
to MCTEf, we obtain a recursive algorithm which naturally produces an elegant
iterative approximating method that we call iterative MCTEf (IMCTEf). The

r—1

idea is to execute MCTEf(r) using as lower bounds ¢(u, v) the messages M,

r—

computed by MCTEf(r — 1) which, recursively, uses the messages M(ij) com-
puted by MCTEf(r — 2), an so on. Algorithm 4 develops this idea. Starting from
dummy lower bounds (line 1), we execute MCTEf(r) for increasing values of r
(line 4). The lower bounds computed by MCTEf(r) will be used to detect and
filter nogoods during the execution of MCTEf(r 4 1) (line 5). The algorithm fol-
lows this process until the exact solution is computed (namely, MCTEf does not
break messages into smaller functions), or the available resources are exhausted.

5 Experimental Results

Experiments are focused in two aspects:

1. Showing that CTEf versus state of the art CTE uses less tuples to find the
exact solution.

2. Inside an approximation schema we show that MCTEf(r), exhausts resources
at a smaller 7 and finds worst LB than the iterative version IMCTEf where

the previous messages of MCTEf(r)Y? execution are used as filters.

procedure IMCTE((X,D,C k), ((V,E), x, ¥))
1 for each (u,v) € E do ¢(u,v) :={0};
2r:=1;

3 repeat

4 MCTEL(r);

5 for each (u,v) € £ do ¢(u,v) := My .);
6 ri=r41;

7 until exact solution or exhausted resources

Fig.4. The IMCTE algorithm. (X, D, C, k) is a WCOSP instance and {({(V, E), x, ¢) is

its tree decomposition.

We have tested CTE, CTEf, MCTEf(r) and IMCTEf on DIMACS dubois
Max-Sat instances, Borchers Weigthed Max-Sat instances and SPOT instances.
Tree decompositions of tested instances where computed using the ToolBar li-
brary that implements a min fill heuristic for this purpose. This library 1s avail-
able at http://carlit.toulouse.inra.fr/cgi-bin/awki.cgi/Soft CSP.

The efficiency of inference algorithms strongly relies on achieving a good tree
decomposition of the problem, ideally one with small maximum separator size,
the bottleneck of CTE based algorithms. State of the art CTE always assumes
that the memory spent by the algorithm is always equal to the worst case d°
for every sent message. Here we want to prove that assuming that functions
only store consistent tuples with the joint effect of applying filtering techniques
to anticipate inconsistent tuples, the memory stored in the solving process is
actually much less than the worst case space complexity assumed by usual CTE.

When d* is small usual CTE is feasible. For example in dubois100 we have
23 = 8 and we can hardly see the improvement of CTEf. In instances where both
CTE and CTEf are feasible (see the first Borchers and first SPOT instances)
the latter solves the problem with one order of magnitude less tuples. As the
separator size increases CTE becomes at some point infeasible. This happens in
wp2200 where we have d* = 2'% and however CTES is still feasible spending 733k
tuples. In instances wp2250 and wp2300 an interesting thing happens; neither
CTE nor CTEf can solve them, but the iterative version IMCTEf can solve it.
In figure 5 the execution of the algorithm is plotted for instance wp2250 and we
can see that there 1s a critical arity where a maximum of tuples is generated.
Iterations corresponding to last r’s generate less tuples and so, they are quicker
to compute.

When the separator size increases and instances cannot be optimally solved
by any algorithm (CTE, CTEf, MCTEf, IMCTEf) the latter approximates the
problem with a higher lower bound in all cases and reaches a higher arity in
some of them.

When sending a particular message an important fact is how we sum all
the available functions for that message. The direct way is to sum them two by
two if the arity limit permits, applying filtering at each sum with all possible

MCTEf(r) IMCTEf
||X| ||c| |d |Sep||CTE |CTEf r LB r LB UB
dubois100|75 (200 (2 |3 |3k 2k 1*
wp2100 (50 (95 |2 |9 |6k 1k 16*
wp2150 (50 (138 |2 |15 ([302k [40k 34%
wp2200 [50 |186 |2 |19 ||- 733k 69*
wp2250 (50 (233 |2 |24 ||- - 23 |71 25 196 96*
wp2300 [50 |261 |2 |26 ||- - 22 |84 26 (132 132%*
wp2350 [50 (302 |2 |30 (|- - 21 (129 21 (159 212
wp2400 (50 |340 |2 |30 ||- - 20 |70 20 (137 212
wp2450 (50 |378 |2 (31 ||- - 20 (130 20 (187 257
wp2500 (50 |418 |2 |34 ||- - 20 |168 20 |251 318
spot54 |67 [271 |4 |11 ||754k |16k 37*
spot29 (82 462 |4 |14 ||- 63k 8059*
spot503 |143 (635 |4 (8 ||- 34k 11113*
spot505 240 (2242(4 |22 ||- - 12 (8044 |15 [19217 ||21254
spot42 (190 |1394|4 |26 ||- - 13 (116001 |15 [127050(|155051

Table 1. Columns are: instance, number of variables, number of constraints, maximum
domain size, maximum separator size, tuples consumed by CTE algorithm, tuples con-
sumed by CTEf algorithm (- denotes exhausted memory), arity r reached by MCTE(r),
LB computed by MCTE(r), arity r reached by IMCTEf, LB computed by IMCTE (be-
fore resources exhausted), optimal UB of the problem. When marked with (*) means
that the instance is optimally by at least one of the algorithms.

available filters. We must be careful with summing first functions with low cost,
because they can quickly exhaust memory since almost no tuple will reach the
level to be detected as inconsistent. So at this point some heuristics have been
tested to select the pairs of functions to be summed. The two giving the best
results are the following ones: (i) minimize mean cost of function tuples and (ii)
minimum arity of the generated function. When minimum arity coincides then
we minimize cost.

6 Conclusions

We have presented the idea of function filtering for WCSP case, where constraints
are cost functions, inside a complete inference schema. This idea has been nicely
combined with tree decomposition algorithms, producing new algorithms which
experimentally require far less memory than their original counterparts. This
represent an important step forward the practical applicability of complete in-
ference for WCSP solving.

instance wp2250 1X1=50, ICI=233, d=2 instance wp2250 [X1=50, ICI=233,d=2

1e+007 T . T T T 70 100 Ib'
uples)
time 60 90
o . 80 F
1e+006 ¢ Y 0 . w0f
> =]
5 40 =z Z ©Of
£ 100000 & g 50
Z 0 g E oawf
[. < 0 = - 30 b
10000 20
p 10 10
1000 x x C n n % 0 O n L " I
5 10 15 20 25 5 10 15 20 25
1 (increasing arity) 1 (increasing arity)

Fig.5. IMCTESf execution in Borchers instance wp2250. On the left, y-axis is the total
number of computed tuples and time respectively. On the right, y-axis is the lower
bound achieved for each arity r.

So far, the use of upper and lower bounds for WCSP solving was limited
to search methods, namely branch-and-bound search. This is the first time that
bounds are used inside complete inference methods, to speed up their execution
and to reduce their memory consumption. As results show, this combination has
been quite beneficial. Combining other inference methods with bounds usage
seems a promising line of research, which deserves further exploration in the
future.

References

1. U. Bertele and F. Brioschi. Nonserial Dynamic Programming. Academic Press,
1972.

2. B. Cabon, S. Givry, and G. Verfaillie. Anytime lower bounds for constraint vio-
lation minimization problems. In Proceedings of the 4th Conference on Principles
and Practice of Constraint Programmang, volume 1520, pages 117-131, 1998.

3. S. de Givry, G. Verfaillie, and T. Schiex. Bounding the optimum of constraint
optimization problems. In Proceedings of the 3th Conference on Principles and
Practice of Constraint Programming, pages 405-419, Schloss Hagenberg, Austria.

4. R. Dechter, K. Kask, and J. Larrosa. A general scheme for multiple lower bound
computation in constraint optimization. In Proceedings of the 6th Conference on
Principles and Practice of Constraint Programmaing, pages 346-360, 2001.

5. R. Dechter and J. Pearl. Network-based heuristics for constraint satisfaction prob-
lems. Artificial Intelligence, 34:1-38, 1987.

6. R. Dechter and J. Pearl. Tree clustering for constraints networks. Artifical Intel-
ligence, 38, 1989.

7. Rina Dechter. Bucket elimination: A unifying framework for reasoning. Artifical
Intelligence, 113:41-85, 1999.

8. Rina Dechter. Constraint Processing. Elsevier Science, 2003.

9. J. Larrosa. Node and arc consistency for weighted csp. In Proc. AAAI 2002.

10. J. Larrosa, E. Morancho, and D. Niso. On the practical applicability of bucket
elimination: Still-life as a case study. Journal of Artificial Intelligence Research,
23:421-440, 2005.

11. J. Larrosa and T. Schiex. Solving weighted csp by maintaining arc consistency.
Artificial Intelligence, 159, 2004.

12. M. Sanchez, P. Meseguer, and J. Larrosa. Improving the applicability of adaptive
consistency. In Proceedings of the 10th Conference on Principles and Practice of
Constraint Programming, Toronto, Canda, 2004.

