New Inference Rules for Efficient Max-SAT Solving *

Federico Herasand Javier Larrosa
Universitat Politecnica de Catalunya
Jordi Girona 1,3
Barcelona, Spain
fheras@lsi.upc.edu, larrosa@Isi.upc.edu

Abstract

In this paper we augment the Max-SAT solver of (Larrosa
& Heras 2005) with three new inference rules. The three of
them are specia cases of Max-SAT resolution with which bet-
ter lower bounds and more value pruning is achieved. Our ex-
perimental results on several domains show that the resulting
algorithm can be orders of magnitude faster than state-of-the-
art Max-SAT solvers and the best Weighted CSP solver.

I ntroduction

Max-SAT is an optimization version of the SAT problem
and it is known that many important problems can be nat-
urally expressed as Max-SAT instances. They include aca-
demic problems such Max-CUT or Max-CLIQUE, as well
as real problems in domains such as routing (H. Xu &
Sakallah 2002), bioinformatics (D.M. Strickland & Sokol
2005), scheduling (Vasquez & Hao 2001) or probabilistic
reasoning (Park 2002). In recent years, there has been a con-
siderable effort in finding efficient solving techniques (de
Givry et al. 2003; Shen & Zhang 2004; Xing & Zhang 2005;
Chu Min Li & Planes 2005). In all these works the core al-
gorithm is a simple depth-first branch-and-bound and their
contributions are good quality lower bounds. Most authors
describe lower bounds in a procedural way. The main draw-
back of such approach is that sometimes it is hard to see
the logic that is behind. A notable exception is (Larrosa
& Heras 2005), where a logical framework for Max-SAT
is developed and SAT solving techniques are extended to
Max-SAT. In that context, a fairly efficient solver that com-
bines search and inference is presented. Such solver can be
seen as Max-DPLL (namely, the extension of DPLL to Max-
SAT) enhanced with neighborhood resolution at each visited
node. Some of the ideas of this solver were borrowed from
weighted constraint satisfaction (Cooper & Schiex 2004;
Larrosa & Schiex 2004).

In this paper we improve the previous solver by adding
new forms of inference beyond neighborhood resolution.
In particular, we introduce three new inference rules, all
of them expressable as particular cases of resolution. The

*This research is supported by the MEC through project
TIN2005-09312-C03-02.
Copyright (© 2006, American Association for Artifi cia Intelli-
gence (www.aaai.org). All rights reserved.

first rule, that we call directed resolution, assumes an or-
der among variables and is used to derive clauses involving
small variables. The second and third rules are particular
instances of hyper-resolution in which a small sequence of
resolution steps derive a new clause smaller than any par-
ent clause. We provide experimental results in different do-
mains. The experiments indicate that our algorithm is or-
ders of magnitud faster than any competitor. This is espe-
cially true as the ratio between the number of clauses and
the number of variables increases. Note that these are the
hardest instances for Max-SAT.

Preliminaries

In the sequel X = {x,y, z, ...} is a set of boolean variables
taking values over the set {t, f}, which stands for true and
false, respectively. A literal is either a variable (e.g. x) or
its negation (e.g. z). We will use [, h, ¢, ... to denote liter-
als and var(l) to denote the variable related to I (namely,
var(x) = var(z) = xz). If variable x is instantiated to t,
literal x is satisfied and literal z is falsified. Similarly, if
variable z is instantiated to £, literal z is satisfied and literal
2 is falsified. An assignment is an instantiation of a subset of
X. The assignment is complete if it instantiates all the vari-
ables (otherwise it is partial). Aclause C =11 Vio V... Vi
is a disjunction of literals such that V1 <; j<, i»; var(l;) #
var(l;). The size of a clause, noted |C|, is the number of
literals that it has. var(C) is the set of variables that appear
in C (namely, var(C) = {var(l)|l € C}). An assignment
satisfies a clause iff it satisfies one or more of its literals. A
formula in conjunctive normal form (CNF) is a conjuction
of different clauses, normally expressed as a set. A satis-
fying complete assignment is called a model. Given a CNF
formula, the SAT problem consists in determining whether
there is any model for it or not.

The empty clause, noted [J, cannot be satisfied. Conse-
quently, when a formula contains [ it does not have any
model and we say that it contains an explicit contradiction.
Sometimes it is convenient to think of clause C' as its equiv-
alent C'v .

The instantiation of a formula F by forcing the satisfac-
tion of literal [, noted F [I], produces a new formula gener-
ated as follows: all clauses containing ! are eliminated, and
[ is removed from all clauses where it appears.

A weighted clause is a pair (C, w) such that C'is a classi-



cal clause and w is the cost of its falsification. In this paper
we assume costs being natural numbers. A weighted for-
mula in conjunctive normal form (CNF) is a set of weighted
clauses. The cost of an assignment is the sum of weights of
all the clauses that it falsifies. -

The negation of a weighted clause (C, w), noted (C, w),
means that the satisfaction of C' has cost w, while its nega-
tion is cost-free. Note that (C, w) is not CNF when |C| > 1.
In classical SAT the De Morgan rule can be used to recover
the CNF syntax, but such rule is not sound (hamely, the
equivalence among formulas is not preserved) with weighted
clauses. Consider the expression (A v IV C,w) where
|A| >= 0and |C| >= 1. It can be transformed into clausal
form with the following recursion:

(AVIVC,w) = {(AV C,w),(AVIV C,w)}

Example 1 Find below the truth table of (z vV y V z, 1), the
truth table of {(x vV 7,1), (x V 2, 1)} (wrong transformation
using De Morgan) and the truth table of {(zV 2, 1), (x VgV
z,1)} (correct transformation using the previous recursive
definition).

zVy,l zVz1
zyz | (zVyVzl) gg(cvz,l)i (z{\(/gj\/z,l))}
fff 0 040=0 0p0=0
fft 1 1¢0=1 1¢0=1
ftf 1 0pl1=1 0pl1=1
ftt 1 1¢1=2 1¢0=1
tff 0 040=0 0p0=0
tft 0 040=0 060=0
ttf 0 040=0 0e0=0
ttt 0 040=0 060=0

Following (Larrosa & Heras 2005), we assume without
loss of generality the existence of a known upper bound T of
the optimal solution (T is a strictly positive natural number).
A model is a complete assignment with cost less than T. A
Max-SAT instance is a pair (F, T) and the task of interest is
to find a model of minimum cost, if there is any.

Observe that any weight w > T indicates that the associ-
ated clause must be necessarily satisfied. Thus, we can re-
place w by T without changing the problem. Consequently,
we can assume all costs in the interval [0..T]. The sum of
costs is defined as,

a®b=min{a+b, T}

in order to keep the result within the interval [0..T]. Let
v and w two costs such that w > w. Their subtraction is
defined as,

CJu—w o uFET
“@w—{ T @ ou=T

Essentially, © behaves like the usual subtraction except in
that T is an absorbing element. A clause with weight T is
called mandatory (or hard).

Note that in Max-SAT, truth tables are tables with a cost
associated to each truth assignments. Note as well that
clauses with cost 0 do not have any effect in the formula
and can be omitted.

A weighted CNF formula may contain (O, w). Since O
cannot be satisfied, w is added to the cost of any assign-
ment. Therefore, w is an explicit lower bound of the optimal
model. When the lower bound and the upper bound have the
same value (i.e., (0, T) € F) the formula does not have any
model and we call this situation an explicit contradiction.

Max-DPL L

In (Larrosa & Heras 2005) the basic solving techniques
from SAT have been extended to Max-SAT. Figure 1 (top)
presents the pseudo-code of a simplification algorithm. It
applies aggregation (line 4), subsumption (line 6), harden-
ing (line 8) or unit clause reduction (line 9) until detecting
a contradiction or quiescence. Function | nf er ence (line
10) will be developed later. Assume for the moment that it
returns unchanged the input formula along with the boolean
value true. Figure 1 (bottom) presents the extension of the
DPLL algorithm (Davis, Logemann, & Loveland 1962). Let
(F, T) be a Max-SAT instance. Max-DPLL(F, T) returns
the cost of the optimal model if there is any, else it returns
T. First, the input formula is simplified (line 1). If the sim-
plified formula contains a contradiction, the algorithm re-
turns T and backtracks (line 2). Else, if it does not contain
any variable the trivial cost of the optimal model is returned
(lines 3 and 4). Otherwise, a literal [ is selected (line 5). The
formula is instantiated with [ and [ and Max-DPLL is recur-
sively called with each case (lines 6 and 7). Observe that the
first recursive call is made with the T inherited from its par-
ent, but the second call uses the output of the first call. This
implements the typical upper bound updating of branch and
bound. Finally, the best value of the two recursive calls is
returned (line 8).

Max-RES

As shown by (Larrosa & Heras 2005), the notion of resolu-
tion can be extended to weighted formulas as follows,

(AV B,m),

(zVAuom),
(z VvV B,weom),
(xV AV B,m),
(zV AV B,m)

where A and B are arbitrary disjunctions of literals and m =
min{u, w}.

(x V A,u) and (Z V B,w) are called the prior clashing
clauses. (A Vv B,m) is called the resolvent. (zV A, u & m)
and (zV B, wom) are called the posterior clashing clauses.
(x VAV B,m)and (zV AV B,m) are called the com-
pensation clauses. The effect of Max-RES, as in classical
resolution, is to infer (namely, make explicit) a connection
between A and B. However, there is an important differ-
ence between classical resolution and Max-RES. While the
former yields the addition of a new clause, Max-RES is a
transformation rule. Namely, it requires the replacement of
the left-hand clauses by the right-hand clauses. The rea-
son is that some cost of the prior clashing clauses must be
substracted in order to compensate the new inferred infor-
mation. Consequently, Max-RES is better understood as a
movement of knowledge in the formula.

{(xV A u),(ZVB,w)} =



function Si npl i fy(F,T)
1. stop:= false
2. do

OO ~NOOUThhW

g

S0 =
—

oe

=2

az

Ew

w—/“:J

. C,
. esaf (I, T) € F then apply F|i]
10. else (F, stop) ;=1 nference(F,T)
11. until (((8,T) € F) V stop)
12. return (F)
endfunction

function Max- DPLL(F, T):nat
1. F:=Sinmplify(F,T)
2. if (0, T)e Fthenreturn T
3. if F=0 thenreturn0
4, if F={(0,w)} thenreturnw
5. [:=Sel ectLiteral (¥)
6. v:=Max-DPLL(F[!],T)
7. v :=Max- DPLL(F[[],v)
. returnv
endfunction

Figure 1: Max-DPLL. (F, T) is a Max-SAT instance. If it
has models, Max-DPLL returns the cost of the optimal one.
Else Max-DPLL returns T. The Si npl i f y(F, T) function
converts the input formula into a simpler one.

Observe that in the v = w < T case, the posterior
clashing clauses will have weight 0, hence they can be re-
moved. In the v # w case, one of the two posterior clash-
ing clauses will have weight 0, hence it can be removed. In
the u = w = T case, clashing clauses are not modified
and compensation clauses are subsumed. Hence, the rule
matches with classical resolution.

Max-DPLL with Inference

Similarly to what happens to DPLL, plain Max-DPLL does
not seem to be very effective in practice. However, its per-
formance can be improved dramatically if it is armed with
more sophisticated solving techniques. One possibility is to
let Max-DPLL perform a limited form of resolution at every
search. Such process will presumably facilitate the poste-
rior task of Max-DPLL. An example suggested in (Larrosa
& Heras 2005) is Neighborhod Resolution (NRES), which
is Max-RES restricted to the A = B case,

{(xVAu),(zVAw}=
={(4,m),(zvVAuom),(zVAwem)}
with m = min{u, w}.

Example2 Consider the formula {(g VvV z,1),(§ V
z,1),(y,1),(z,2)} with T = 3. Max-DPLL is un-
able to simplify the formula. Nevertheless, NRES can

function | nf erence(F,T)

stop := false

if {(xV A,u),(ZVAw)} CFthen
apply NRES

elseif var(l’) < var(l) and
{IVAu),(IVAVI,w)} CF
then apply DRES

deaf {(zVyVAu),(@VzVAv),(GVvezVvAw}
C F then apply 2-RES

dsaf {(zVyV Au),(TVzVAv),(TVAw),

10. (2V A, we)} C F then apply 3-RES

11. else stop := true

12. return (F, stop)

endfunction

N ~wpE

Figure 2: Inference.

be applied to the first and second clauses producing
{(g,1), (y,1),(Z,2)}. Now NRES can be applied between
the first and the second clauses producing {(CJ, 1), (z, 2) }.
The second clause can be made mandatory {(CJ, 1), (z, T)}
and subsequently unit clause reduction produces {(0J,1)}.
As can be observed Max-DPLL enhanced with NRES does
not need to do any search whatsoever.

The algorithm suggested in (Larrosa & Heras 2005) is ob-
tained by activating function | nf er ence (Figure 2) dis-
carding lines 4-10.

New I nference Rules
Directed Resolution

Some times NRES cannot be applied in the current formula.
However, it may be still possible to use resolution to move
the knowledge where it can be used by NRES. Directed res-
olution (DRES) is one way to implement this idea. In the
following, and without loss of generality, we will assume
that the set of variables X is ordered.

DRES is the instantiation of Max-RES to the case in
which the two clashing clauses only differ in that one of
them has one additional literal » whose variable is smaller
than the variable of the clashing literal (i.e., var(h) <
var(l), which yields,

(AV h,m),
- IVAVhuSm),
(IVAVhu),(IVAw) = EZ\/A,w@m)7 )
(IVhV Am)

with m = min{wu, w}. The equivalence holds because the
resolvent is (A VvV h vV A, m) which is equivalent to (A Vv
h,m). The first compensation clauses instantiates to (I v
AV hV A;m). Clearly, it is trivially satisfied. Hence, it can
be removed. The second compensation clauses instantiates
to (IV AV hV A, m),whichisequivalentto {(IV AV h Vv
A;m),(IVAVAhV A m), (IVAVAhV A m)}. Clearly, the
first and second clauses can be removed and the third clause
is equivalentto (I vV h vV A,m).



Example3 Consider the formula {(z VvV y,1),(z V
2z, 1)(7g,1),(2,1),(z,2)} with T = 3andz < y < 2.
The formula cannot be simplified and NRES cannot be ap-
plied. However, we can apply DRES between the first and
the third clause, and between the second and the fourth one.
The result is {(z V 9,1),(zZ V z,1), (x,2),(Z,2)}. NRES
can be applied to the third and fourth clauses, producing
{(zVvyg,1),(xVZz1),(072)}. Finally, the binary clauses
can be made mandatory because 2 ® 1 = T producing
{(@vy,T),(@vzT)(02)}

In the next example we show the importance of establish-
ing an ordering between variables to avoid falling into cy-
cles:

Example 4 Consider the formula {(z Vv y,1), (Z,1)} with
T = 3. If we apply DRES without ordering we obtain
{(zVg,1),(x,1)}. Observe that we can apply again DRES
without ordering and then we return to the initial formula.

Hyper Resolution

In SAT, hyper resolution is a well known concept that refers
to the compression of several resolution steps into one sin-
gle step. We denote k-RES the compression of % resolution
steps. NRES is beneficial because it derives smaller clauses.
Pushing further this idea, we identify two situations where a
small number of resolution steps derive smaller clauses. The
first case corresponds to 2-RES. The initial situation is,

{(IvVhV A ), (IVqVAwv),(hVqVAw}

first, we apply Max-RES between the first and the second
clauses obtaining,

(fl\/q\/A,ml),(l\/h\/A,u@ml),
(IvgVvAvem),(IVhVqVvAm),
(IVhVgVAm), (hVqgVAw)

where m; = min{u,v}. Then, we apply NRES between
the first and the last clauses,

(gvAm),(hVqgVAm &m)
(hVgVAwem),(IVhVAucm)
(IvVgVvAvem),(IVhVqVvAm)
(IVhVqV A m)

where m = min{u, v, w}. Note that resolvent (¢ A, m)
is smaller than any original clause.

Example5 Consider the formula {(zVy, 1), (xVz,1), (gV
z,1),(x,2)} with T = 3and z < y < 2. It cannot be sim-
plified and NRES and DRES cannot be applied. However,
we can apply the previous 2-RES transformation and we ob-
tain {(x,3),(x VyV z,1),(ZV gV z1)} The resulting
formula can be simplified to {(g V z,1)}.

The second case corresponds to 3-RES. Given the initial
situation,

{(IVhV A ), (hV Aw),(IVqVAw),(GV A w)}

we apply Max-RES to the first and second clauses (first step)
and to the third and fourth clauses (second step) obtaining,

(IVAm), (hVAw &m),(hVIVAuwSm)
(h\/l Aml) (l\/A,mQ),((j\/A,wQGmg)
(qVIVAvems),(@VIVAms)

where m; = min{u,w;} and my = min{v,ws}. Fi-
nally, we apply NRES (third step) to the first and fifth
clauses,

(A,m), (hV Ajwr ©my), (R VIV A uem)
(h\/l\/A,ml),(zj\/A,wg@mQ)
(qVIVAvEms), (GVIV A M)

(IV A,myom),(IV A my©m)

where m = min{my,mo}. Observe that (A4, m) is
smaller than any original clause. Note that the two first reso-
lution steps are similar to DRES, but regardless of the order
between the variables.

Example6 Consider the formula {(z V y,1),(g,1),(Z V
x,1),(z,1)} with T = 2and z < y < z. It cannot be
simplified and NRES, DRES and the previous 2-RES rule
cannot be applied. However, we can apply the 3-RES rule.
It produces {(0, 1), (Vv 7, 1), (2 V&, 1)} which is simplified
to {(0,1), (Vv gy, T),(2Vz,T)}

The algorithm that incorporates the new inference rules
is obtained by considering all the lines in the Si npl i fy
function.

Experimental Results

In this Section we evaluate the performance of Max-DPLL
enhanced with the three new inference rules against some
state-of-the-art Max-SAT solvers. Our C implementation
as well as problem instances are freely available as part of
the TOOLBAR software. 1 Although, our implementation
is conceptually equivalent to the pseudo-code of Figures 1
and 2 it should be noted that such code aimed at clarity and
simplicity. Thus, a direct translation into C is highly in-
efficient. The main source of inefficienty is the time that
Si mpl i fy and I nf er ence spend searching for clauses
that match with the left-hand side of the simplification and
inference rules. This overhead, which depends on the num-
ber of clauses, takes place at each iteration of the do-loops.
One way to decrease it is to restrict the set of clauses un-
der consideration. Our current implementation only takes
into account clauses of arity less than or equal to two (the
number of such clauses is O(n?) where n is the number
of variables). Another way to decrease such overhead is to
idenfity those events that may raise the applicability of the
transformations. For instance, a clause may be made manda-
tory (line 5 of Figure 1) only when its weight or the weight
of the empty clause increases. Similarly, a unit clause can
be reduced (line 9 of Figure 1) only when a unit clause is
made mandatory (by a cost increment) or a binary manda-
tory clause becomes unary (by a previous unit clause re-
duction). Then, our implementation reacts to these events

http://carlit.toul ouse.inra.fr/cgi-bin/
awki . cgi / Sof t CSP



and triggers the corresponding rules. Such approach is well-
known in the contraint satisfaction field and it is usually im-
plemented with streams of pending events (Bessiére 1994;
de Givry et al. 2005).

We compared our implementation, that we call MAX-
DPLL, with the following solvers:

e MAXSOLVER (Xing & Zhang 2005). It is restricted to
instances with less than 200 variables and 1000 clauses.
Unlike the others, a local search pre-process computes an
initial good quality upper bound.

e LB4A (Shen & Zhang 2004). It is restricted to Max-
2-SAT problems with unit weights and without repeated
clauses.

e UP (Chu Min Li & Planes 2005). It is restricted to prob-
lems with unit weights.

e MEDAC (de Givry et al. 2005). Solves Max-SAT in-
stances by transforming them to Weighted CSPs. Then, it
performs a depth-first search and maintains a local consis-
tency property called EDAC. There is a very close relation
between MEDAC and Max-DPLL enhanced with NRES,
DRES and the 3-RES rule introduced in this paper.

In (de Givry et al. 2003) it was shown that solving Max-SAT
instances as Weighted CSPs was superior to pseudo-boolean
solvers (OPBDP (Barth 1995) and PBS (F. Aloul & Sakallah
2002)) or MIP solvers (CPLEX). Given that MEDAC was
shown to be much more efficient than the algorithm used
in (de Givry et al. 2003), we have discarded those solvers
in our comparison. In (Larrosa & Heras 2005) it was also
shown that MEDAC was vastly superiorto MAX-DPLL with
NRES. Thus, we also omit it in the comparison. We have
considered the following classes of problems:

e Random Max-2-SAT instances of 80 variables and Max-
3-SAT instances of 40 variables with varying number of
clauses generated with Cnfgen. 2, a random k-SAT gener-
ator that allows repeated clauses.

e Random Max-2-SAT instances of 100 variables with
varying number of clauses using the generator of (Shen
& Zhang 2004) that does not allow repeated clauses.

e Max-Cut instances from random graphs of 60 nodes with
varying number of edges. Instances were formulated as
Max-2-SAT without repeated clauses problems as pro-
posed in (Shen & Zhang 2004).

o Max-Clique instances from the DIMACS challenge 3.

In all the random cases, samples had 30 instances. The num-
ber of clauses varied from 400 to 1000 because instances
with less than 400 clauses were solved almost instantly (less
than 1 second) with all the solvers while larger problems
could not be solved by MaxSolver because of its own size
limitations. Executions were made on a 3.2 Ghz Pentium 4
computer with Linux.

%ftp: // di macs. rut gers. edu/ pub/ chal | enge/
satisfiability/contributed/ UCSC i nstances

% tp://di macs. rutgers. edu/ pub/ chal | enge/
gr aph/ benchmar ks/ cl i que

Figure 3 presents the results on Max-2-SAT with and
without repeated clauses. Plots report the mean cpu time
required by each solver for the different number of clauses.
It can be seen that, as the number of clauses increases, prob-
lems become harder and harder. MAX-DPLL is the only
algorithm that can solve the problems within a reasonable
time. In problems with repetitions, it can be up to 35 times
faster than MEDAC the second best option, and more than 70
times faster than the rest. In problems without repetitions the
differences are smaller, but still MAX-DPLL is more than 7
times faster than the rest.

Figure 4 presents the results on Max-3-SAT and Max-
CUT. As before, plots report the mean cpu time required
by each solver for the different number of clauses. It can be
seen again that, as the number of clauses increases, problems
become harder. Regarding Max-3-SAT, we observe that
MEDAC and MAX-DPLL are one order of magnitude faster
than the rest. MAX-DPLL is slightly faster than MEDAC.
Regarding Max-CUT, MAX-DPLL is again the fastest al-
gorithm, nearly 20 times faster than its follower LB4A.

The DIMACS Max-Clique benchmark includes 66 in-
stances that we tried to solve with a time limit of 2 hours.
MEDAC solved 32 instances. Other Max-SAT solvers could
not be used because of their limitations. MAX-DPLL solved
37 instances. For comparison purposes, note that Max-
Clique dedicated algorithms (Ostergard 2002) and (Régin
2003) solved 36 and 54 instances, respectively. Although
they used different computers and implementations, our time
limit was set in order to make a fair comparison.

Conclusions and Future Work

Max-SAT is an important problem with wide practical appli-
cability and many recent works have been devoted to solving
it efficiently. In the work of (Larrosa & Heras 2005), DPLL
and resolution were extended from SAT to Max-SAT. It was
also shown that Max-DPLL enhanced with a certain form
of resolution, called NRES, provided a simple, yet fairly ef-
ficient algorithm. In this paper we have introduced three
additional inference rules. The three of them are particular
cases of resolution. Our experiments show that Max-DPLL
augmented with these rules yields, probably, the best cur-
rent Max-SAT solver. The performance of DPLL has been
dramatically improved in the last years by incorporating fea-
tures such as clause learning or restarts. Since Max-DPLL
is so close to DPLL, we plan to investigate in the future the
extension of these techniques to the Max-SAT context.

References

Barth, P. 1995. A davis-putnam based enumeration algo-
rithm for linear pseudo-boolean optimization. In Tech. Rep.
MPI-1-95-2-003, Max-Plank Institut Fr Informatik, 346—
353.

Bessiere, C. 1994. Arc-consistency and arc-consistency
again. Artificial Intelligence 65(1):179-190.

Chu Min Li, F. M., and Planes, J. 2005. Exploiting unit
propagation to compute lower bounds in branch and bound
max-sat solvers. In Proc. of the 11t* CP.



(a) Max-2-SAT, 80 vars
1000

100 ¢

(]
£
3
g

10 b

400 500 600 700 800 900 1000
n. of clauses
(c) Max-2-SAT, 100 vars
1000

100
(]
£
3
g

10 ¢

400 500 600 700 800 900 1000
n. of clauses

Figure 3: Results on Max-2-SAT with (top) and without
(bottom) repeated clauses. Note the logarithmic scale.

Cooper, M., and Schiex, T. 2004. Arc consistency for soft
constraints. Artificial Intelligence 154(1-2):199-227.

Davis, M.; Logemann, G.; and Loveland, G. 1962. A

machine program for theorem proving. Communications
of the ACM 5:394-397.

de Givry, S.; Larrosa, J.; Meseguer, P.; and Schiex, T. 2003.
Solving max-sat as weighted csp. In Proc. of the 9¢* CP,
363-376. Kinsale, Ireland: LNCS 2833. Springer Verlag.
de Givry, S.; Heras, F.; Larrosa, J.; and Zytnicki, M. 2005.
Existential arc consistency: getting closer to full arc con-
sistency in weighted csps. In Proc. of the 19*" 1JCAI.
D.M. Strickland, E. B., and Sokol, J. 2005. Optimal protein
structure alignment using maximum cliques. Operations
Research 53:389-402.

F. Aloul, A. Ramani, I. M., and Sakallah, K. 2002. Pbs: A
backtrack-search pseudo boolean solver and optimizer. In
Proc. of Symp. on the Theory and Applications of Satisfia-
bility Testing (SAT), 346-353.

H. Xu, R. R., and Sakallah, K. 2002. sub-sat: A formu-
lation for relaxed boolean satisfiability with applications in
rounting. In Proc. Int. Symp. on Physical Design.

Larrosa, J., and Heras, F. 2005. Resolution in max-sat and
its relation to local consistency for weighted csps. In Proc.
of the 19" 1JCAI.

Larrosa, J., and Schiex, T. 2004. Solving weighted csp by

(b) Max-3-SAT, 40 vars
1000

Max-DPLL &

Q
E
3
Q
o
400 500 600 700 800 900 1000
n. of clauses
(d) Max-CUT, 60 vars
1000 T T T T T T
/ "/’“"xﬂ“',if",",i“f,”",‘,“f
e e
TR O . ’
XTI e
100 g : D ’
£ —
3
Q
o

10 ¢ ST ——

T

420 430 440 450 460 470 480 490 500
n. of edges (x 2 = n. of clauses)

Figure 4: Results on Max-3-SAT (top) and Max-CUT (bot-
tom). Note the logarithmic scale.

maintaining arc-consistency. Artificial Intelligence 159(1-
2):1-26.

Ostergard, P. R. J. 2002. A fast algorithm for the maximum
clique problem. Discrete Applied Mathematics 120:197—
207.

Park, J. D. 2002. Using weighted max-sat engines to solve
mpe. In Proc. of the 18" AAAI, 682—687.

Régin, J.-C. 2003. Using constraint programming to solve
the maximum clique problem. In Proc. of the 9t CP, 634—
648. Kinsale, Ireland: LNCS 2833. Springer Verlag.

Shen, H., and Zhang, H. 2004. Improving exact algorithms
for max-2-sat. In Proc. of the 8" International Symposium
on Artificial Intelligence and Mathematics.

Vasquez, M., and Hao, J. 2001. A logic-constrained knap-
sack formulation and a tabu algorithm for the daily photo-
graph scheduling of an earth observation satellite. Journal
of Computational Optimization and Applications 20(2).

Xing, Z., and Zhang, W. 2005. Maxsolver: An efficient
exact algorithm for (weighted) maximum satisfiability. Ar-
tificial Intelligence 164(1-2):47-80.



