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5. Situated Agents (Robots)

Part 2: 
Planning and Motion. 
Multi Robot Systems
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Task Planning

• Usually most of the tasks are organized in behaviors
• Kicking, tracking, pushing, grabbing…

• Navigation through the environment is an special behavior to be 
managed

en
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)

ActionPerception

Sensors

Cognition

managed 

• Task Planning as behavior selection AND Navigation
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Actuators

External World

Sensors



Task Planning:  Behavior selection

R
not see ball timeout
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)

Score Search

Recover

next to ball

not see ball not see ball

timeout
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Approach see ballnot next to ball
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Motion

• Task Planning
• Motion Kinematics
• Walking Engine
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g g
• Frame-based motion



Behavior control: Motion

 We will use as example SONY Aibo’s motion engine.
 Four-legged walking (several joints with degrees of 

liberty)

en
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)

liberty)
 Head motion (2 joints, 3 degrees of liberty)

 How to generate complex behaviors (turning, kicking?)

 Kinematics: relation between the control inputs and the 
robot motion
 Forward kinematics problem 

• Given the control inputs, how does the robot move
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 Inverse kinematics problem
• Given a desired motion, which control inputs to choose

Forward Kinematics

e.g., What is the position & orientation of the tool (end 
effector) relative to the origin? 

• Determines position in space based on joint configuration

en
ts
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)

) g

Solve for a, b, q in terms of l1, l2, q1, and q2.
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(Figures by Nick Aiwazian)



Forward Kinematics 
Solution

Can be solved trigonometrically!

en
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)

a = l1cosq1 + l2cos q1 + q2

b = l1 sinq1 + l2sin q1 + q2

q = q1 + q2
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Inverse Kinematics

 Going backwards

 Find joint configuration given position & orientation of tool 
(end effector)

en
ts
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)  More complex (path planning & dynamics)

 Usually solved either algebraically or geometrically

 Possibility of no solution, one solution, or multiple solutions

Wh t i th fi ti f

Let’s assume l1 = l2
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What is the configuration of 
each joint if the end effector is 
located at (l1, l2, -)? 

(Solve for (θ1, θ2) when the tool 
is at {l1, l2, -}) 



Inverse Kinematics 
Solution

en
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)

Or

(Two Solutions)

q1 = 0, q2 = 90

q1 = 90, q2 = - 90
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(Two Solutions)

What is PID Control?

 Proportional, Integral, & Derivative Control

 Proportional: Multiply current error by constant to try to 

en
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)

p p y y y
resolve error 

 Integral: Multiply sum of errors by constant to resolve 
steady state error (error after system has come to rest)

 Derivative: Multiply time derivative of error change by 
constant to resolve error as quickly as possible
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PID Control

 The Basic Problem:
 We have n joints, each with a desired position which we have 

specified
 Each joint has an actuator which is given a command in units of 

en
ts
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)

j g
torque

 Most common method for determining required torques is by 
feedback from joint sensors

 The PID Control Loop:
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Defining movements
The Motion Interface in AIBO’s

Dynamic Walking Motion Static Frame-Based Motion

en
ts
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)

Walk Engine

Walk Parameters

Frame Interpolator

Motion Frames
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Defining movements
Coordinate Frames

x

a

en
ts
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)

0 1y

x

y Vision Coordinate Frame

a
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2 3

Motion Coordinate Frame

Defining movements
Motor Control

 In AIBO’s, each message to the motion library contains a 
set of target angles for the joints

en
ts
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)  Each target is used for a PID controller (part of the AIBO 
robot) that controls each motor

 Each target angle is used for one 8ms motor frame

 Each message contains at least 4 motor frames (32ms)
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Defining movements
The AIBO Walk Engine

 All of the inverse kinematics have been done for you!

All h t d l ith th “ ti t ”

en
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)  All you have to deal with are the “motion parameters”

 Your Goal: Create fluid, stable motion
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Defining movements
Dynamic Walking Motion

 In the AIBO, a 51-parameter structure is used to 
specify the gait of the robot.  

en
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)

Global Parameters:
Height of Body (1)
Angle of Body (1)
Hop Amplitude (1)
Sway Amplitude (1)

Leg Parameters:
Neutral Kinematic Position (3x4)

Lifting Velocity (3x4)
Lift Time (1x4)

Set Down Velocity (3x4)
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Walk Period (1)
Height of Legs (2)

Set Down Time (1x4)



Defining movements
Motion Parameters

 Neutral Kinematic Position (3D vector relative to the 
motion coordinate frame) - Position of the leg on the 
ground at some point during the walk cycle

en
ts

 (
R
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b

o
ts

) ground at some point during the walk cycle

 Think of it as the position the legs would be in if the dog 
was pacing in place using your walk parameters
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Path of the leg during 1 
cycle

Defining movements
Motion Parameters

 Lift Velocity (3D vector) – Velocity (mm/sec) with which 
the leg is lifted off the ground

D V l it (3D t ) V l it ( / ) ith hi h

en
ts
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)  Down Velocity (3D vector) – Velocity (mm/sec) with which 
the leg is placed on the ground

 Lift Time and Down Time – This controls the order of the 
legs by specifying a percentage of the time through the 
time cycle that each leg is moved
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Defining movements
Approaches for Parameter Setting

 Trial and error
 Tedious, but controlled, and provides knowledge of 

parameters

en
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)

parameters

 Search
 Large parameter space, local vs. global optima

 Adaptation
 Controlled change by feedback

5.
 S

it
u

at
ed

 A
g

jvazquez@lsi.upc.edu 19

Defining movements 
Frame-Based Motion

 Each motion is described by a series of “frames” which 
specify the position of the robot, and a time to interpolate 
between frames

en
ts
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)

between frames

 Movement between frames is calculated through linear 
interpolation of each joint

 E.g.: Kicking
 A series of set positions for the robot
 Linear interpolation between the frames

Ki ti d i t l ti id d b CMW lkE i
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• Kinematics and interpolation provided by CMWalkEngine
 Set robot in desired positions and query the values of the 

joints



Defining movements 
Frame-Based Motion

en
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)
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Defining movements
Example: Kicks Behavior

 Modeling effects of kicking motions
 Ball vision analysis
 Ball trajectory angle analysis

en
ts
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)  Kick strength analysis

 Kick selection for behaviors
 Selection algorithm
 Performance comparison
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Modeling effects of kicking motions 
Ball Trajectory Angle

 Estimate the angle of the ball’s trajectory relative to the 
robot

en
ts

 (
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) Track ball’s trajectory after the kick
Retain information about ball position in each vision 
frame
Calculate angle of trajectory using linear regression
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Modeling effects of kicking motions 
Kick Strength

 Estimate the distance the ball will travel after a kick.

Impossible to track entire path of the ball
C l l t l th fi l l ti f th b ll l ti t th

en
ts
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) Calculate only the final location of the ball relative to the 
kick position
Estimate failure rate of the kick using distance threshold
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Kick selection for behaviors 
Selection algorithm

 Incorporate the kick models into the selection 
algorithm

en
ts
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ts

)

 The robot knows its position on the field relative to the 
goal and the desired ball trajectory

 The robot selects appropriate kick by referencing the kick 
model

 If no kick fits desired criteria, robot selects closest 
matching kick and turns/dribbles ball to appropriate 
position 
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Kick selection for behaviors 
Performance analysis

Experiment Results

en
ts
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)

Experiment Results

Point

CMPack’02

(sec)

Modeling & 
Prediction

(sec)

P1 56.7 39.8

P2 42.5 27.2

P3 76.5 60.0
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P4 55.0 52.0

Total 57.8 44.8



Summary

 Effectively moving a four-legged robot is challenging

 Effectiveness of motion is highly sensitive to motion

en
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)  Effectiveness of motion is highly sensitive to motion 
parameters

 CMWalk provides the kinematics computations, so 
parameter setting can be at a high level of abstraction.

 Ideally, we would like to set parameters automatically.

5.
 S

it
u

at
ed

 A
g

jvazquez@lsi.upc.edu 27

)
te

m
s 

(S
M

A
-U

P
C

Planning and Motion

• Motion Planning and Navigation
• Mapping
• Motion Planning with Uncertainty 
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g y
(Probabilistic Robotics)



World Models (I)

 Representations of the environment are usually built by 
means of:

en
ts
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ts

) • Metric mapsMetric maps: explicitly reproduce 
the metrical structure of the domain

• good for location, hard for planning 
• e.g., Evidence gridsEvidence grids

• Topological mapsTopological maps: represent the 
environment as a set of meaningful 
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 Best solution: use both representations

regions.
• good for planning, hard for location

World Models (II)
Topological Map Extraction

 (a) Metric map thresholdingMetric map thresholding
ll l

en
ts
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)  cell occupancy values

 (b) Hierarchical splitHierarchical split
 piramidal cell structure

 (c) Interlevel mergingInterlevel merging
 homogeneous cells fusion

 (d) Intralevel mergingIntralevel merging
h ll
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 homogeneous cell 
classification



Navigation (I)

 NavigationNavigation consists of 
fi di d t ki f

en
ts
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) finding and tracking a safe 
path from a departure point 
to a goal.

 Navigation architecturesarchitectures
belong to three broad 
categories: deliberative, 
reactive and hybrid.
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Navigation (II)

 Deliberative schemesDeliberative schemes require extensive world knowledge 
to build high-level plans
 Usually they use the sensesense--modelmodel--planplan--actact cycle
 problem 1: inability to react rapidly

en
ts
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)

 problem 1: inability to react rapidly 
 problem 2: not suitable for (partially) unknown environments.

 Reactive schemesReactive schemes try to couple sensors and actuators to 
achieve a fast response.
 Easily combine several sensors and goals, 
 problem 1: the emergent behaviour may be unpredictable

problem 2: the emergent behaviour may be inefficient (prone

5.
 S

it
u

at
ed

 A
g

jvazquez@lsi.upc.edu 32

 problem 2: the emergent behaviour may be inefficient (prone 
to fall in local traps).

 Hybrid schemasHybrid schemas get the best of both approaches.



Path Planning

Deliberative ArchitecturesDeliberative Architectures Reactive ArchitecturesReactive Architectures

en
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ts

)

 Global sensor info
 Builds a global world model 

based on sensing the 
environment.

 Pros
• Guaranteed to find an 

existing solution
 Cons

• Computationally heavy

 Local sensor info
 Navigate using sensors 

around local objects
 Pros

• Much simpler to implement
 Cons

• Not guaranteed to converge 
– will get stuck in a local 
minima with no hope of 
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Computationally heavy
• Requires frequent 

localization

p
escape

• We want something on the middle: Hybrid ArchitecturesHybrid Architectures

•get the best of both approaches.

Hybrid Architectures (I)

 Combine local with global information

en
ts

 (
R

o
b

o
ts

)  Guaranteed to converge if a solution exists

Drive to Follow an 
b t l

Encounter
obstacle
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goal obstacle

“Leaving condition”



The hybrid architecture
en

ts
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Deliberative Layer 

 Path planning algorithm (A*A*) 
works at topological level

 Resulting path of nodespath of nodes linked

en
ts

 (
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)  Resulting path of nodespath of nodes linked 
to the metric map

 Extraction of points of maximum 
curvature
 Partial goalsPartial goals

 The reactive layer flexibly moves the robot from one partial
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 The reactive layer flexibly moves the robot from one partial 
goal to the next

 Works also with partially exploredpartially explored environments.



Reactive Layer (I)
Classic approach

 Potential fieldsPotential fields: Artificial repulsion field around 
obstacles plus attraction field around the goal.

en
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)
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Reactive Layer (II)
Classic approach

 Advantages:
• Simple and efficient method
• No model of the environment is required.

en
ts
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)

No model of the environment is required.

 Drawbacks:
• Oscillations, local traps
• The robot always tries to keep as far from obstacles as 

possible
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Mobile Robot Mapping

 What does the world look like?

 Robot is unaware of its environment

 The robot must explore the world and determine its

en
ts
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)  The robot must explore the world and determine its 
structure

 Most often, this is combined with localization

 Robot must update its location wrt the landmarks
 Known in the literature as Simultaneous Localization and 

Mapping, or Concurrent Localization and Mapping : 
SLAM (CLM)
E l AIBO l d i k i t
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 Example : AIBOs are placed in an unknown environment 
and must learn the locations of the landmarks

2D Mapping for Mobile Robots

 Extract meaningful spatial 
data from sensors

 Metric

en
ts
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)  Metric
 Accurate 

sensing/odometry
 Relative positions of 

landmarks
 Sensors identify 

distinguishable features 

 Topological
Od t l i t t
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 Odometry less important
 Qualitative relationships 

between landmarks
 Sensors identify locations
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Multi-Robot Systems

• Coordination, Competition
• Strategy
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gy
• Social Models, Roles, Task Allocation,     

Teamwork
• Mutual Perception

Intelligent Robot (III)
Layers

SOCIAL LAYERSOCIAL LAYER

en
ts
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b
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ts

)

REACTIVE LAYERREACTIVE LAYER

INTELLIGENCE LAYERINTELLIGENCE LAYER

CONTROL LAYERCONTROL LAYER
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PHYSICAL LAYERPHYSICAL LAYER

REACTIVE LAYERREACTIVE LAYER



General Coordination of
Multiple Robots 

 Cooperative Sensing

en
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)  Cooperative Self-Localization with landmarks

 Stigmergy

 Distributed Problem Solving
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Cooperative Sensing

 Communicate sensor data to increase quality of the 
ld d l

en
ts
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) worldmodel

 Use Kalman filters to fuse measurements
 A Kalman filter is an optimal estimator - it infers 

parameters of interest from indirect, inaccurate and 
uncertain observations. It is recursive so that new 
measurements can be processed as they arrive.
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Kalman Filters

 Why is Kalman Filtering so popular?
G d lt i ti d t ti lit d t t

en
ts
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)  Good results in practice due to optimality and structure.
 Convenient form for online real time processing.
 Easy to formulate and implement given a basic 

understanding.
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Cooperative Self-Localization

 Robots often use landmarks to know where they are.

en
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)  When you have multiple robots you can use other 
robots as temporary landmarks.

 Useful in situations where the starting positions of a 
group of robots are known and the goal is to explore an 
unknown territory.
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Using other robots as landmarks
en

ts
 (
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Communication Problems

 Agents might not always be able to communicate

en
ts
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)  Bandwith restraints

 Physically impossible because of objects blocking 
communication (in Robocup Rescue)

 Possible solution: Stigmergy
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Stigmergy

 Stigmergy means that agents put signs, called stigma 
i G k i th i i t t t ll i fl

en
ts

 (
R

o
b

o
ts

) in Greek, in their environment to mutually influence 
each other's behavior.

 Useful for indirect communication since no explicit 
rendezvous amongst the agents is needed.

 Humans use it all the time.
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Ants Example

 Multiple ants walk around randomly till they find food.

en
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)  They go back with the food, leaving a pheromone trail.

 Other ants will pick up the trail and go back for the rest 
of the food, strengthening the pheromone trail. 

 When the food is gone, the pheromone trail will vanish 
since it won’t be strengthened anymore and the ants 
will walk around randomly again.

H th h t il i th ti
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 Here the pheromone trail is the stigma.



Ants Example

 The individual ants are not exposed to the complexity 
d d i f th it ti

en
ts
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ts

) and dynamics of the situation.

 They don't need to keep a worldmodel.

 They don't have to communicate amongst each other 
about the world.

 They use the world itself to solve the problem.
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Stigmergy for Robots

 You could use the same kind of system for robots 
i t d f t

en
ts
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) instead of ants.

 Exploring an unknown terrain and finding objects works 
pretty good using this technique.

 It's also possible to use it for other problems than 
exploring.

 Used in a production line, where every tool, robot and 
object is considered an agent
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object is considered an agent.



Distributed problem solving

 Demands group coherence (agents need to have the 
incentive to work together faithfully)

en
ts
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)  Demands group competence (agents need to know 
how to work together well)

 Coherence is hard when agents are really self-
interested. Agents have to be designed to work 
together to really make it work.
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Advantages of
Distributed problem solving

 Speedup in problem solving because of parallelism.

en
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)  Possible to use expertise of different agents.

 Certain agents are better suited for certain jobs.

 Beliefs and other data can be distributed.

 The agents can hold their own beliefs and only 
communicate what they think is necessary. (as 
opposed to a central based system)
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Task Sharing or Task Passing

 When an agent has many tasks to do, it should enlist 
th h l f t ith f t k

en
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) the help of agents with few or no tasks.

1. Task decomposition

2. Task allocation

3. Task accomplishment

4. Result synthesis

5.
 S

it
u

at
ed

 A
g

jvazquez@lsi.upc.edu 55

Open Questions

 How to divide tasks among team members?

en
ts
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)  How to position robots to fulfill their roles without 
interferring with their teammates?

 What if a different robot becomes more suitable for the 
task?

 Solution 1: Software Agent algorithmsSoftware Agent algorithms for 
di ti
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coordination

 Good if there is enough CPU resources and time

 Solution 2: Adapt Artificial Potential FieldsArtificial Potential Fields for 
coordination



Artificial Potential Fields for coordination (I)

 Low computational overhead compared to higher level 
h lik th l i
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) approaches like path planning

 Require simple, local knowledge about the 
environment

 Robust in dynamic situations
 No expensive replanning when environment changes

Lik l t id b t t l l i i
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 Likely to guide robots to local minima
 But, no major problem in highly dynamic environments

Artificial Potential Fields for coordination (II)

 Potentials encode heuristic information about the 
i t
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) environment

 Used to position robots for particular roles
 Roles must be assigned first!

 Continuous auction with bidding with suitability

 Robot with highest bid wins the task

 If robot becomes unavailable, the robot with next 
hi h t bid dd th t k
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highest bid addresses the task



Artificial Potential Fields
Shared Information

 Small number of robots are collaborating, so just 
broadcast messages to share information
 Does not scale to large numbers of robots
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)

 x times per second, each robot broadcasts a message 
to its teammates, containing:
 Position of the robot according to its localization system

 Estimate of the uncertainty in that position

 Robot’s estimation of the ball’s position

 The uncertainty associated with that measurement
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 The uncertainty associated with that measurement

 Robot is the goalie?

 Robot sees the ball?

Artificial Potential Fields
Role Assignment

 Possible role 
i t
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) assignment:

 Primary attacker

 Offensive supporter
 Defensive supporter
 Goalie (fixed)
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Artificial Potential Fields
Role Assignment

 Robots first calculate their own suitability using local 
i f ti f th i ld d l
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) information from their world models

 Use same function to calculate bids of teammates using only 
shared information

 Compare bids of each teammate; assume best role

 No synchronization needed
 All robots perform same calculation on same shared data
 Bid functions are self-reinforcing
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Artificial Potential Fields
Coordination

 Robots use same mechanism for both coordination and 
obstacle avoidance

 Robots sample local points and follow the gradient of the 
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)

p p g
potential field until they reach a local minimum

 The components of the field should create local minima at 
positions from which the robots can support primary attacker
 The offensive supporter is guided to a good position to receive 

passes or recover the ball if the shot on goal goes wide
 The defensive supporter is guided to a position where it blocks 

its own goal and can recover the ball if it is intercepted by the 
opposing team

 Primary attacker does not use the potential field
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 Primary attacker does not use the potential field
 Always seek out the ball
 Count on teammates to move out of the way instead of avoiding 

them



Artificial Potential Fields
Illustration Example

 Offensive supporter  Defensive supporter
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Artificial Potential Fields
Coordination

 Potential field is sum of several linear components
Th t ith t h i ti
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)  These components either represents heuristic 
information about the world or obstacle information

 Typically the components of the potential functions are 
bounded at zero
 Makes the effect of the terms local
 Helps prevent undesirable interactins between terms
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Artificial Potential Fields
Coordination

 Only teammates are included in list of robots to avoid
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)  High fidelity information about locations of opponents is 
not available

 This is a perceptual problem
 Composite nature of the functions makes it trivial to add 

terms for opponents when the perceptual system is able 
to provide that information
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1. Russell, S. & Norvig, P. “Artificial Intelligence: A Modern Approach”
Prentice-Hall Series in Artificial Intelligence. 1995 
ISBN 0-13-103805-2

2 Recommended book:[  ]

[  ]
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2. Recommended book:

Computational Principles of Mobile RoboticsComputational Principles of Mobile Robotics
Gregory Dudek, Michael JenkinGregory Dudek, Michael Jenkin
Cambridge University Press 2000

3 More information on AIBO robots and OPEN R
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3. More information on AIBO robots and OPEN-R 
http://openr.aibo.com

4. Robocup league
http://www.robocup.org

These slides are based mainly in [2], [1] and material from M. Veloso and N. Aiwazan. 
Special thanks to C. Hees, B. Steunebrink and T. Slijkerman.
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