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5. Situated Agents (Robots)
Part 1: 

Introduction to Robotics. 
Vision and uncertainty
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Mobile Robotics

 “Robotics is an application area of AI where theoretical 
solutions have to cope with real problems”

 Problems in perception (incomplete, uncertain, noisy)
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p p ( p , , y)

 Problems in motion (drift, slippage, motion dynamics, 
obstacles)

 In Mobile Robotics some of those problems increase

 Large-scale space (regions of space larger than those 
observed from a single vantage point

 Local sensors
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 Local sensors

 Need for 
• space representation 
• positional error estimation
• Object and place recognition
• Real-time response
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The Syllabus

 Sensors

 Vision

 Actuators

 Inertia

 Torque

 Compass
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 Actuators

 Motion

 (Forward/Inverse) 
Kinematics

 Drift

 Localization

 Navigation

 Compass

 Joint

 Bumpers

 Landmark

 Geometric Map

 Topological Map
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 Basic behaviours

 Complex behaviours

 Multi-robot behaviours



Types of robots (I)

 Static Robots vs Mobile Robots

en
ts

 (
R

o
b

o
ts

)

Lunokhod
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Types of robots (II)

 Wheeled Robots VS Legged Robots

Sojourner (NASA)
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Types of robots (III)

 Robots, • Microbots, 
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– Small, cheap robots, 

– cheap sensors (no sonar or laser)

N b t
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• Nanobots

Types of robots (IV)

 Operational regimes

 Completely autonomous
 Semi-autonomous

Spirit (Mars)
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) • Telerobotic
• Teleoperated

Lunokhod (Moon)
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Back to theory: Wumpus World (I)

1 A breeze hole breeze
Actions:
• Forward  , 
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3

4

5

smell

W

breeze
smell

smell

breeze hole

breeze

breeze

breeze

hole breeze

• 900 right , 

• 900 left, 

• Shot, 

• Pick-up, 

• Leave, 

• Out
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1       2        3      4        5 gold

Hypothesis 1: discretized world.

Hypothesis 2: totally deterministic actions.

Out

Back to theory: Wumpus World (II)

 Agent cannot perceive anything in its own position

 In the square where the wumpus is and the 4 adjacent ones
(non diagonal) the agent will perceive an smell (s=1)
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) (non diagonal) the agent will perceive an smell (s=1).

 In squares adjacent to a hole, the agent will perceive a breeze
(b=1)

 The square containing he gold will show a glitter (g=1)

 When the agent smashes against a wall, it will perceive a
bump (u=1)
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bump (u=1)

 Perceptions are expressed in lists 
[smell (s), breeze (b), glitter (g), bump(u), cry(c)]

Hypothesis 3: limited perception but perfect, without noise.



Back to theory: Wumpus World (III)

1 [s,nil,nil,nil,nil]
ok v ok 

A A hole?
b

v
A A
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5

A = agent
ok= safe
v = visited
s   = smell
b  = breeze
g  = glitter

ok wumpus?

wumpus?

hole?As
v
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1       2        3      4        5

g g
u  = bump
c  = cry

What now?

Back to theory: Wumpus World (III)

1 [s,nil,nil,nil,nil]
ok v

hole?
ok v
b
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4

5

A = agent
ok= safe
v = visited
s   = smell
b  = breeze
g  = glitter

ok
hole?As

wumpus?

wumpus?
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1       2        3      4        5

g g
u  = bump
c  = cry

Memory:

In [2,1] there was no s =>
no wumpus in [2,2]



Back to theory: Wumpus World (III)

1 [s,nil,nil,nil,nil]
ok v

hole?
ok v
b
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) 2

3

4

5

A = agent
ok= safe
v = visited
s   = smell
b  = breeze
g  = glitter

ok
hole?As

wumpus?
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1       2        3      4        5

g g
u  = bump
c  = cry

In [1,2] there was no b =>
no hole in [2,2]

Back to theory: Wumpus World (III)

1 [s,nil,nil,nil,nil]
ok v

hole?
ok v
b

en
ts
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) 2

3

4

5

A = agent
ok= safe
v = visited
s   = smell
b  = breeze
g  = glitter

ok
As

Wumpus!Wumpus!

ok
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1       2        3      4        5

g g
u  = bump
c  = cry

no wumpus in [1,1] ^
no wumpus in [2,2] ^
wall in [0,2] ^
smell in [1,2] ^
I have heard no cry =>
Wumpus alive in [1,3]!!!



Back to theory: Situation Calculus

 Perceptual uncertainty problem
 solution: Situation Calculus

Allows the description of the world as a sequence of
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)  Allows the description of the world as a sequence of 
situations, and each one as a snapshot from a world 
state. 

 Problems: 
 Based in hypothesis 1 (discretizable environment)

 Additional hypothesis: environment won’t change without
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Hypothesis 4: static environment (it won’t change if I do not change it)  

Additional hypothesis: environment won t change without 

my action
•  clock is driven by my actions. 

Back to theory: Localization

Heading(Agent, S0) = 0o

next-location

en
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) p,l,S At(p,l,S) next-location(p,S) =
direction(l, Heading (p,S))

Adjacency
l1,l2 adjacent(l1,l2 ) d l1=direction(l2 ,d)

Wall
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x,y wall([x,y]) (x=0  x=lim  y=0  y=lim)

Problem: based in perfect knowledge about initial position + 
hypothesis in totally determinisic actions  
 Hypothesis 5: perfect knowledge about actual location.



Back to theory: Environment properties

 Partially accesible
 Partially observable 

 Partially accesible
 Partially observable 

Theory: Wumpus World Real world: Robots
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y
environment, but perfect 
perception

 Deterministic
 Predictable effect for 

actions

 Sequential (non episodic)

y
environment and inperfect 
perception (noise)

 Stocastic
 Unpredictable effect for  

actions (inertia, drift, 
slipage)

 Sequential (non episodic)
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 Static
 Clock driven by my 

actions

 Discrete

 Cumulative errors

 Dynamic

 Real time

 Continuous
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Levels of abstraction 

ActionPerception Cognition

COMPUTATIONAL LEVELCOMPUTATIONAL LEVEL
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)

PHYSICAL/HARDWARE LEVELPHYSICAL/HARDWARE LEVEL

DEVICE LEVELDEVICE LEVEL
Sensor Drivers

Or
Sensing Libraries

Actuator Drivers
Or

Motion Libraries
Communication

Interface
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Actuators

External World

Sensors Comm HW

Intelligent Robot (I)
Tasks
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) Action

Actuators

Perception

External World

Sensors

Cognition

Comm HW
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External World



Intelligent Robot (II) 
Tasks

 Perception
i d li f th ld

en
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)  sensing, modeling of the world
 Communication (listening)

 Cognition
 behaviors, action selection, planning, learning
 multi-robot coordination, teamwork
 response to opponent, multi-agent learning

 Action
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 motion, navigation, obstacle avoidance
 Communication (telling)

Intelligent Robot (III)
Architectural Paradigms
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Intelligent Robot (III)
Hierarchical Paradigm

 Used in early times of robotics

 Problem: time of reaction
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)  Example: Shakey (Standford Univ, 1970)
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Intelligent Robot (III)
Reactive Paradigm

 Reactive paradigm organizes the components vertically so 
that there is a more direct route from sensors to actuators. 

 Schematically Brooks (1986) depicts the paradigm as 

en
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y ( ) p p g
follows:
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 Problem: conflicting orders to Actuators 



Intelligent Robot (III)
Brooks’ Subsumption Architecture

 Components behaviors are divided into layers (modules) 
with inputs, outputs and a reset. 

 Arbitration scheme: a module at a higher level can 
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)

g
 suppress the input of a module at a lower level thereby 

preventing the module from seeing a value at its input. 
 inhibit the output of a module at a lower level thereby 

preventing that output from being propagated to other 
modules. 

5.
 S

it
u

at
ed

 A
g

16/07/2012 jvazquez@lsi.upc.edu 25» Problem: complex set-up of modules to 
avoid low-level reaction problems
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Intelligent Robot (III)
Hybrid Architectures

 Tries to equilibrate deliberation and reactivity

 Usually deliberation UNLESS immediate reaction is needed
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REACTIVE LAYERREACTIVE LAYER

CONTROL LAYERCONTROL LAYER
Plan

Sense Act
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PHYSICAL LAYERPHYSICAL LAYER

ActuatorsSensors

Sense Act

Intelligent Robot (III)
Layers

INTELLIGENCE LAYERINTELLIGENCE LAYER

SOCIAL LAYERSOCIAL LAYER
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REACTIVE LAYERREACTIVE LAYER

INTELLIGENCE LAYERINTELLIGENCE LAYER

CONTROL LAYERCONTROL LAYER
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PHYSICAL LAYERPHYSICAL LAYER
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• Actuators and feedback
• Vision (segmentation, color)
• Localization

Perception: Non-visual sensors

 Bumpers / pressure sensors

 Sonar sensors
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)  Radar sensors

 Laser sensor

 Compass (brújula)

 Inclinometers

 Odometers
 wheeled

ti
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 optics



Perception: Actuators and feedback

 Junctions and motors may include sensors
 Step-by-step motors give an acceptable estimate of how 

many steps (discretized degrees) they have rotated
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)  Servo motors have high accuracy and give good estimate 
of degrees they have rotated.

 Some junctions have some sensors outside the 
servos/motors to estimate their position.

 The position of the junctions/servos/motors can be 
used as perception to estimate the position of the robot 
or parts of it (arms/limbs/head).
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Example: perception with 7 sonars
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Perception: Vision

 Vision is a way to relate measurement to scene structure
 Our human environments are shaped to be navegated by 

vision
• E g road lines
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• E.g., road lines
 Problem: vision technology is not well-developed

• Recognition of shapes, forms, ….
 Solution: in most of cases, we don’t need full recognition

• Use our knowledge of the domain to ease vision
– E.g.:  Green space in a soccer field means free (void) 

space.

 Two kinds of vision:
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 Passive vision: static cameras
• Processing of snapshots

 Active vision: the camera moves.
• Intricate relation between camera and the environment

Perception: Vision
Active Vision

 Important geometric relation between the camera and 
the enviroment

Movement of the camera should produce an (expected)

en
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)  Movement of the camera should produce an (expected) 
change in the image

 Useful to increase the visual information of an item
 Move to avoid another object that blocks the vision
 Move to have another viewpoint of the object, and ease 

recognition
 Move to measure distances by comparison of images

• An improvement: Stereo Vision
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An improvement: Stereo Vision

 Active Vision is highly  sensible to calibration
 Geometric calibration
 Color calibration



Perception: Vision
Active Vision

 Color calibration
 Identify the colors of landmarks 

and important objects
 Adaptation to local light condition
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 Adaptation to local light condition
 Saturation of color

• Colored blobs identified as objects
• Problem: threshold selection

 Geometric calibration
 Position of the camera related 

to the floor
 At least 3 coordinate systems
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y
• Egocentric coordinates
• Camera coordinates

– Translation matrix 
counting intermediate 
joints

Perception: Vision
Image Segmentation

 Sort pixels into classes
 Obstacle:

Red robot

en
ts
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)  Red robot
 Blue robot
 White wall
 Yellow goal
 Cyan goal
 Unknown color

 Freespace:
 Green field

 Undefined occupancy:
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y
 Orange ball
 White line



 Start with a single pixel p and wish to expand 
from that seed pixel to fill a coherent region. 

 Define a similarity measure S(i, j) such that it 

Perception: Vision
Image Segmentation by region growing

en
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) produces a high result if pixels i and j are 
similar 

 Add pixel q to neighbouring pixel p’s region  
iff S(p, q) > T for some threshold T. 

 We can then proceed to the other neighbours 
of p and do likewise, and then those of q.

 Problems: 
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 highly sensible to the selection of the seed 
and the Threshold.

 computationally expensive because the 
merging process starts from small initial 
regions (individual points).

(Example by L. Saad and C. Bordenade)
http://stuff.mit.edu/people/leonide/segmentation/

 SplitSplit the image. Start by considering the entire 
image as one region.
 If the entire region is coherent (i.e., if all pixels in 

the region have sufficient similarity) leave it

Perception: Vision
Image Segmentation by Split and Merge

en
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) the region have sufficient similarity), leave it 
unmodified.

 If the region is not sufficiently coherent, split it into 
four quadrants and recursively apply these steps to 
each new region.

 The “splitting” phase builds a quadtree 
 several adjacent squares of varying sizes might 

have similar characteristics.
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 MergeMerge these squares into larger coherent regions 
from the bottom up. 
 Since starts with regions (hopefully) larger than 

single pixels, this method is more efficient.

(Example by C. Urdiales)



Perception: Localization

 Where am I?

 Given a map, determine the robot’s location
 Landmark locations are known, but the robot’s position 
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p
is not

 From sensor readings, the robot must be able to infer its 
most likely position on the field

 Example :  where are the AIBOs on the soccer field?
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Visual Sonar

White wall
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0.5 m 
increments

Unknown

Robot Heading
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Unknown
obstacles



Visual Sonar Algorithm

1) Segment image by colors

2) Vertically scan image at fixed increments 
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) 3) Identify regions of freespace and obstacles in each scan 

line

4) Determine relative egocentric (x,y) point for the start of 

each region

5) Update points 
1) Compensate for egomotion
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p g

2) Compensate for uncertainty

3) Remove unseen points that are too old

Scanning Image for Objects
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)

Scanlines projected 
from origin for 
egocentric coordinates 
in 5 degree increments
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in 5 degree increments

Top view
of robot

Scanlines projected onto RLE image



Measuring Distances with the AIBO’s Camera

 Assume a common ground plane

 Assume objects are on the ground plane
 Elevated objects will appear further away
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 Elevated objects will appear further away

 Increased distance causes loss of resolution
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Identifying Objects in Image

 Along each scanline:

 Identify continuous line of object colors

Filter out noise pixels
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)  Filter out noise pixels

 Identify colors out to 2 meters
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Differentiate walls and lines

 Filter #1
 Object is a wall if it is a 

least 50mm wide
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 Filter #2
 Object is a wall if the 

number of white pixels in 
the image is greater than 
the number of green 
pixels after it in scanline
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Keeping Maps Current

 Spatial:
 All points are updated according to the robot’s estimated 

egomotion
 Position uncertainty will increase due to odometric drift and

en
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)

 Position uncertainty will increase due to odometric drift and 
cumulative errors due to collisions

 Positions of moving objects will change

 Temporal:
 Point certainty decreases as age increases
 Unseen points are “forgotten” after 4 seconds
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Interpreting the Data

 Point representations
 Single points are very noisy
 Overlaps are hard to interpret

en
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)  Point clusters show trends

 Occupancy grids
 Probabilistic tessellation of space
 Each grid cell maintains a probability 

(likelihood) of occupancy
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Calculating Occupancy of Grid Cells

 Consider all of the points found in a grid cell
 If there are any points at all, the grid is marked as being 

observed

en
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)  Obstacles increase likelihood of occupancy
 Freespace decreases likelihood of occupancy
 Contributions are summed and normalized
 If the sum is greater than a threshold (0.3), the cell is 

considered occupied with an associated confidence
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Open Questions

 How easy is it to follow boundaries?

 Odometric drift will cause misalignments

 Noise merges obstacle & non-obstacle points

en
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) • Where do you define the boundary?

 How can we do path planning?

 Local view provides poor global spatial awareness

 Shape of robot body must be taken into account in order to 

avoid collisions and leg tangles
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Bayesian Filter

 Why should you care?
 Robot and environmental state estimation  is a 

fundamental problem!

en
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)  Nearly all algorithms that exist for spatial reasoning 
make use of this approach
 If you’re working in mobile robotics, you’ll see it over and 

over!
 Very important to understand and appreciate

 Efficient state estimator
 Recursively compute the robot’s current state based on 
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the previous state of the robot

What is the robot’s state?



Bayesian Filter

 Estimate state x from data d
 What is the probability of the robot being at x?

 x could be robot location map information locations of

en
ts
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)

 x could be robot location, map information, locations of 
targets, etc…

 d could be sensor readings such as range, actions, 
odometry from encoders, etc…)

 This is a general formalism that does not depend on 
the particular probability representation

 Bayes filter recursively computes the posterior 
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y y p p
distribution:

)|()( TTT ZxPxBel 

Derivation of the Bayesian Filter 

)|()( ZxpxBel 

Estimation of the robot’s state given the data:

en
ts

 (
R

o
b

o
ts

)

)|()( Ttt ZxpxBel 

),...,,,,|()( 0211 oaoaoxpxBel tttttt 

The robot’s data, Z, is expanded into two types: 
observations oi and actions ai

Invoking the Bayesian theorem
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Invoking the Bayesian theorem



Derivation of the Bayesian Filter

)|()|()|()(  dxoaxpaxxpxopxBel 
First-order Markov assumption shortens middle term:
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) 101111 ),...,|(),|()|()(  ttttttttt dxoaxpaxxpxopxBel 

1111 )(),|()|()(  tttttttt dxxBelaxxpxopxBel 

Finally, substituting the definition of Bel(xt-1):
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The above is the probability distribution that must 
be estimated from the robot’s data

Iterating the Bayesian Filter

 Propagate the motion model:

 )()|()( dxxBelxaxPxBel
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 Update the sensor model:

   1111 )(),|()( tttttt dxxBelxaxPxBel
Compute the current state estimate before taking a sensor reading 
by integrating over all possible previous state estimates and 
applying the motion model
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)()|()( tttt xBelxoPxBel 
Compute the current state estimate by taking a sensor reading 
and multiplying by the current estimate based on the most recent 
motion history



Perception: Localization with Uncertainty

Initial state
detects nothing:
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Moves and 
detects landmark:

Moves and 
detects nothing:
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Moves and 
detects landmark:

Bayesian Filter : Requirements for 
Implementation

 Representation for the belief function

en
ts

 (
R

o
b

o
ts

)  Update equations 

 Motion model

 Sensor model

 Initial belief state
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Representation of the Belief Function

Parametric 
representations

Sample-based 
representations
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e.g. Particle filters
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Example of a Parameterized Bayesian Filter :  
Kalman Filter

Kalman filters (KF) represent posterior belief by a 
Gaussian (normal) distribution
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Gaussian (normal) distribution
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A 1-d Gaussian 
distribution is given by:
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An n-d Gaussian 
distribution is given by:
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Kalman Filter : a Bayesian Filter

 Initial belief Bel(x0) is a Gaussian distribution
 What do we do for an unknown starting position?

 State at time t+1 is a linear function of state at time t:
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 Observations are linear in the state:

 Error terms are zero-mean random variables which are normally 
distributed

 These assumptions guarantee that the posterior belief is Gaussian

)(1 actiontttt BuFxx 

)( nobservatiottt Hxo 
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 These assumptions guarantee that the posterior belief is Gaussian
 The Kalman Filter is an efficient algorithm to compute the posterior
 Normally, an update of this nature would require a matrix inversion 

(similar to a least squares estimator)
 The Kalman Filter avoids this computationally complex operation

The Kalman Filter

 Motion model is Gaussian… 

 Sensor model is Gaussian…
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)  Each belief function is uniquely characterized by its 
mean  and covariance matrix 

 Computing the posterior means computing a new 
mean and covariance  from old data using actions 
and sensor readings

 What are the key limitations?
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1) Unimodal distribution
2) Linear assumptions



The Kalman Filter

Linear discrete time dynamic system (motion model)

State Control input Process noise
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Measurement equation (sensor model)

State transition
function

Control input
function

Noise input
function with covariance Q
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1111   tttt nxHz

StateSensor reading Sensor noise with covariance R

Sensor function

What we know…
What we don’t know…

 We know what the control inputs of our process are
 We know what we’ve told the system to do and have a model 

for what the expected output should be if everything works right
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 We don’t know what the noise in the system truly is
 We can only estimate what the noise might be and try to put 

some sort of upper bound on it

 When estimating the state of a system, we try to find a 
set of values that comes as close to the truth as 
possible
 There will always be some mismatch between our estimate of 
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y
the system and the true state of the system itself.  We just try to 
figure out how much mismatch there is and try to get the best 
estimate possible



…but what does that mean in English?!?

Propagation (motion model):

- State estimate is updated from system dynamicsuBxFx  ˆˆ
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Update (sensor model):

p y y

- Covariance matrix for the state
 Uncertainty estimate GROWS

- Sensor estimate: expected value of sensor reading

- Compute the difference between expected and “true” 

- Compute covariance matrix of sensor reading
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p g

- Compute the Kalman Gain (how much to correct est.)

- Multiply residual times gain to correct state estimate

- Uncertainty estimate SHRINKStttt
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3. More information on AIBO robots and OPEN-R 
http://openr.aibo.com

4. Robocup league
http://www.robocup.org

These slides are based mainly in [2], [1] and material from M. Veloso and E. Rybski
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