
1. Introduction
(to Agents and Multiagent

em
s

(S
M

A
-U

P
C

)

(g g
Systems)

Javier Vázquez-Salceda

M
u

lt
ia

g
en

t
S

ys
te

https://kemlg.upc.edu

q

SMA-UPC

em
s

(S
M

A
-U

P
C

)

Origins

• Trends in Computer Science
• Agents and Multiagent Systems
• 2 views of the Field

M
u

lt
ia

g
en

t
S

ys
te

https://kemlg.upc.edu

Computing now-a-days

 Internet Technology
 Internet 2.0, Broadband access, exploding usage…

 Mobile “Telephony” Technology
 3G, iMode, WAP, Wireless PDAs, Bluetooth…

 Software Technology
 JavaBeans, Soap, UDDI, JINI…

 Web Technology
 XML RDF Servlets JavaBeans “Semantic Web”

1.
In

tr
o

d
u

ct
io

n

jvazquez@lsi.upc.edu 3

 XML, RDF, Servlets, JavaBeans, Semantic Web

 AI
 Reasoning, Knowledge Representation, Agents…

Origins of MAS

 Five ongoing trends have marked the history of
computing [M. Wooldridge]:

 ubiquity;

 interconnection;

 intelligence;

 delegation; and

 human-orientation

1.
In

tr
o

d
u

ct
io

n

jvazquez@lsi.upc.edu 4

5 trends (1 of 3)

 Ubiquity
 The continual reduction in cost of computing capability has

made it possible to introduce processing power into places and
d i th t ld h b idevices that would have once been uneconomic

 As processing capability spreads, computation (and
intelligence of a sort) becomes ubiquitous

 Interconnection
 Computer systems today no longer stand alone, but are

networked into large distributed systems

1.
In

tr
o

d
u

ct
io

n

jvazquez@lsi.upc.edu 5

 Since distributed and concurrent systems have become the
norm, some researchers are putting forward theoretical models
that portray computing as primarily a process of interaction

5 trends (2 of 3)

 Intelligence
 The complexity of tasks that we are capable of automating

and delegating to computers has grown steadily, to the limits
that we can define as intelligentthat we can define as intelligent.

 Delegation
 Computers are doing more for us – without our intervention
 We are giving control to computers, even in safety critical

tasks

 Human orientation

1.
In

tr
o

d
u

ct
io

n

jvazquez@lsi.upc.edu 6

 Human orientation
 The movement away from machine-oriented views of

programming toward concepts and metaphors that more
closely reflect the way we ourselves understand the world

 Programmers conceptualize and implement software in terms
of higher-level – more human-oriented – abstractions

5 trends (3 of 3)

 Delegation and Intelligence imply the need to build
computer systems that can act effectively on our behalf

 This implies: This implies:
 The ability of computer systems to act independently
 The ability of computer systems to act in a way that

represents our best interests while interacting with other
humans or systems

 Interconnection and Distribution have become core
motifs in Computer Science

 But Interconnection and Distribution coupled with the

1.
In

tr
o

d
u

ct
io

n

jvazquez@lsi.upc.edu 7

 But Interconnection and Distribution, coupled with the
need for systems to represent our best interests, implies:
 Systems that can cooperate and reach agreements (or even

compete) with other systems that have different interests
(much as we do with other people)

Computer Science progression

 These issues were not studied in Computer Science
until recently

 All of these trends have led to the emergence of a new All of these trends have led to the emergence of a new
field in Computer Science: multiagent systems

 Wooldridge says that programming has progressed
through:
 machine code;
 assembly language;
 machine-independent programming languages;

sub routines;

1.
In

tr
o

d
u

ct
io

n

jvazquez@lsi.upc.edu 8

 sub-routines;
 procedures & functions;
 abstract data types;
 objects;

to agents.

Agents and Multiagent Systems

 An agent is a computer system that is capable of
independent action on behalf of its user or owner
(figuring out what needs to be done to satisfy design(figuring out what needs to be done to satisfy design
objectives, rather than constantly being told)

 A multiagent system is one that consists of a number of
agents, which interact with one-another

 In the most general case, agents will be acting on behalf
of users with different goals and motivations

1.
In

tr
o

d
u

ct
io

n

jvazquez@lsi.upc.edu 9

of users with different goals and motivations

 To successfully interact, they will require the ability to
cooperate, coordinate, and negotiate with each other,
much as people do

Agents and Multiagent Systems

 Building Agents, we address questions such as:
 How do you state your preferences to your agent?
 How can your agent compare different deals from different

vendors? What if there are many different parameters?vendors? What if there are many different parameters?
 What algorithms can your agent use to negotiate with other

agents (to make sure you get a good deal)?

 In Multiagent Systems, we address questions such as:
 How can cooperation emerge in societies of self-interested

agents?
 What kinds of languages can agents use to communicate?

1.
In

tr
o

d
u

ct
io

n

jvazquez@lsi.upc.edu 10

 What kinds of languages can agents use to communicate?
 How can self-interested agents recognize conflict, and how can

they (nevertheless) reach agreement?
 How can autonomous agents coordinate their activities so as to

cooperatively achieve goals?

Agent Design, Society Design

 Two key problems:

 How do we build agents capable of independent, autonomous
action so that they can successfully carry out tasks weaction, so that they can successfully carry out tasks we
delegate to them?

 How do we build agents that are capable of interacting
(cooperating, coordinating, negotiating) with other agents in
order to successfully carry out those delegated tasks,
especially when the other agents cannot be assumed to
share the same interests/goals?

1.
In

tr
o

d
u

ct
io

n

jvazquez@lsi.upc.edu 11

• The first problem is agent design [in this course we cover this in
3. Reasoning in Agents].

• The second is society design (micro/macro) [in this course we
cover this in 4. Multiagent Systems Design].

Multiagent Systems is Interdisciplinary

 The field of Multiagent Systems is influenced and inspired
by many other fields:
 Philosophyp y

 Logic

 Game Theory

 Economics

 Social Sciences

 Ecology

Thi b b th t th (i f i ll f d d

1.
In

tr
o

d
u

ct
io

n

jvazquez@lsi.upc.edu 12

 This can be both a strength (infusing well-founded
methodologies into the field) and a weakness (there are
many different views as to what the field is about)

2 Views of the Field

 Agents as a paradigm for software engineering:
Software engineers have derived a progressively
better understanding of the characteristics of

l it i ft It i id l i dcomplexity in software. It is now widely recognized
that interaction is probably the most important single
characteristic of complex software

 Over the last two decades, a major Computer
Science research topic has been the development of
tools and techniques to model, understand, and
i l t t i hi h i t ti i th

1.
In

tr
o

d
u

ct
io

n

jvazquez@lsi.upc.edu 13

implement systems in which interaction is the norm

2 Views of the Field

 Agents as a tool for understanding human societies:
Multiagent systems provide a novel new tool for
simulating societies, which may help shed some light g , y p g
on various kinds of social processes.

 This has analogies with the interest in “theories of the
mind” explored by some artificial intelligence
researchers

1.
In

tr
o

d
u

ct
io

n

jvazquez@lsi.upc.edu 14

Standards: FIPA (www.fipa.org)

 International Agent Standard
 Started in 1996 to provide agent technology specifications.
 Part of IEEE (since 2005) as 11th standards committee.

 Includes standards for Includes standards for
 Communication: Agent Communication Languages,

Content Languages, Semantic Framework
 Infrstructure: directories, message transport, naming, etc…

 Recent trends
 Moved toward web technology (XML, RDF, HTTP)
 Plug and Play architectures
 Moves for Java standard

1.
In

tr
o

d
u

ct
io

n

jvazquez@lsi.upc.edu 15

 Moves for Java standard

 Next phase
 Verification
 Significant take-up
 Demonstration of Value

Hot topic: Open Service Environments

 Explosion of Agent technology with new uses for Open
Service Environments

A t ti f S i Automation of Services
 Proactive, responsible, intelligent, peer to peer

 Dynamic Composition of Services
 Automated discovery, automated coordination,

“Just in Time” Enterprises, Virtual Companies

 Semantics
 HTML won’t do anymore

1.
In

tr
o

d
u

ct
io

n

jvazquez@lsi.upc.edu 16

 “Semantic Web”
 Service-level semantics
 Semantics for E-commerce
 Service-Oriented Architectures’ frameworks

em
s

(S
M

A
-U

P
C

)

Agent types and architectures

• Agent properties
• Environment properties
• Agent types

Ab t t hit t

M
u

lt
ia

g
en

t
S

ys
te

https://kemlg.upc.edu

• Abstract architecture

Agent Properties
Autonomy

 An agent is a computer system
capable of autonomous action
i i t i d t

EE
NN
VV

sensors

perception

in some environment in order to
meet its design objectives

 Usually the environment is
complex and dynamic, and
agents should interact with it in
real time.

VV
II
RR
OO
NN
MM
EE
NN
TT

Agent

actuators

1.
In

tr
o

d
u

ct
io

n

jvazquez@lsi.upc.edu 18

o Main property: Autonomous
capable of acting independently, exhibiting

control over their
internal state

action

Agent Properties
Autonomy, Flexibility

 Trivial (non-interesting) agents:

 thermostat

 Def. 2: An intelligent agent is a computer system
capable of flexible autonomous action in some
environment

 By flexible, we mean:
 reactive (response capability)

1.
In

tr
o

d
u

ct
io

n

jvazquez@lsi.upc.edu 19

 pro-active (taking initiative)

 social (interacting with others)

Agent Properties
Reactivity

 If a program’s environment is guaranteed to be fixed, the
program need never worry about its own success or failure –
program just executes blindlyp g j y
 Example of fixed environment: compiler

 The real world is not like that: things change, information is
incomplete. Many (most?) interesting environments are
dynamic

 Software is hard to build for dynamic domains: program must
take into account possibility of failure – ask itself whether it is
worth executing!

1.
In

tr
o

d
u

ct
io

n

jvazquez@lsi.upc.edu 20

 A reactive system is one that maintains an ongoing interaction
with its environment, and responds to changes that occur in it
(in time for the response to be useful)

Agent Properties
Proactiveness

 Reacting to an environment is easy
(e.g., stimulus response rules)

 But we generally want agents to do things for us

 Hence goal directed behavior

 Pro-activeness = generating and attempting to achieve
goals; not driven solely by events; taking the initiative

1.
In

tr
o

d
u

ct
io

n

jvazquez@lsi.upc.edu 21

 Recognizing opportunities

Agent Properties
Social Ability

 The real world is a multi-agent environment: we cannot go
around attempting to achieve goals without taking others into
account

 Some goals can only be achieved with the cooperation of
others

 Similarly for many computer environments: witness the Internet

 Social ability in agents is the ability to interact with other agents

1.
In

tr
o

d
u

ct
io

n

jvazquez@lsi.upc.edu 22

y g y g
(and possibly humans) via some kind of agent-communication
language, and perhaps cooperate with others

Agent Properties
Balancing Reactive and Goal-Oriented Behavior

 We want our agents to be reactive, responding to
changing conditions in an appropriate (timely) fashion

 We want our agents to systematically work towards
long-term goals

 These two considerations can be at odds with one
another

 Reactivy vs. Deliberation balance

1.
In

tr
o

d
u

ct
io

n

jvazquez@lsi.upc.edu 23

Reactivy vs. Deliberation balance

 Designing an agent that can balance reactivity and
deliberation (reason about long term goals) remains an
open research problem

Other Agent Properties
(desireable, not mandatory)

 mobility
 the ability of an agent to move around an electronic network

 veracity veracity
 an agent will not knowingly communicate false information

 benevolence
 agents do not have conflicting goals, and that every agent will

therefore always try to do what is asked of it

 rationality
 agent will act in order to achieve its goals, and will not act in

1.
In

tr
o

d
u

ct
io

n

jvazquez@lsi.upc.edu 24

age t act o de to ac e e ts goa s, a d ot act
such a way as to prevent its goals being achieved — at least
insofar as its beliefs permit

 learning/adaption
 agents improve performance over time

Environment properties
Accessible vs. inaccessible

 An accessible environment is one in which the agent can
obtain complete, accurate, up-to-date information about
th i t’ t tthe environment’s state

 Most moderately complex environments (including, for
example, the everyday physical world and the Internet)
are inaccessible

 The more accessible an environment is the simpler it is

1.
In

tr
o

d
u

ct
io

n

jvazquez@lsi.upc.edu 25

 The more accessible an environment is, the simpler it is
to build agents to operate in it

Environment properties
Deterministic vs. non-deterministic

 A deterministic environment is one in which any action
has a single guaranteed effect — there is no uncertainty g g y
about the state that will result from performing an action

 The physical world can to all intents and purposes be
regarded as non-deterministic

 Non-deterministic environments present greater
problems for the agent designer

1.
In

tr
o

d
u

ct
io

n

jvazquez@lsi.upc.edu 26

problems for the agent designer

Environment properties
Episodic vs. non-episodic

 In an episodic environment, the performance of an agent is
dependent on a number of discrete episodes, with no link
b t th f f t i diff t ibetween the performance of an agent in different scenarios

 Episodic environments are simpler from the agent
developer’s perspective because the agent can decide
what action to perform based only on the current episode
— it need not reason about the interactions between this
and future episodes

1.
In

tr
o

d
u

ct
io

n

jvazquez@lsi.upc.edu 27

Environment properties
Static vs. dynamic

 A static environment is one that can be assumed to remain
unchanged except by the performance of actions by the
agentagent

 A dynamic environment is one that has other processes
operating on it, and which hence changes in ways beyond
the agent’s control

 Other processes can interfere with the agent’s actions (as

1.
In

tr
o

d
u

ct
io

n

jvazquez@lsi.upc.edu 28

in concurrent systems theory)

 The physical world is a highly dynamic environment

Environment properties
Discrete vs. continuous

 An environment is discrete if there are a fixed, finite number
of actions and percepts in it

 Russell and Norvig give a chess game as an example of a
discrete environment, and taxi driving as an example of a
continuous one

 Continuous environments have a certain level of mismatch
with computer systems

1.
In

tr
o

d
u

ct
io

n

jvazquez@lsi.upc.edu 29

 Discrete environments could in principle be handled by a
kind of “lookup table”

Agent types
Physical (embodied) Agents vs. Software Agents

 Software agents’ environment is a virtual one
Si l hi i t t i t t Single machine, intranet, internet

 Interact with other software agents, with sw modules,
services

 Interact with humans through human interfaces

 Physical agents or embodied agents
 Interact with real world (sensors, actuators connected to

real world)

1.
In

tr
o

d
u

ct
io

n

jvazquez@lsi.upc.edu 30

real world)
 Problems of perception and action
 Best known example: Robots.

Agent types
Robots

Lunokhod (Moon)

Spirit (Mars)

SONY aibo
Deep Space I (comets)

Non-mobile

Mobile: weeled

1.
In

tr
o

d
u

ct
io

n

jvazquez@lsi.upc.edu 31

SONY aibo

Mobile: legged
Mobile: air/spacecrafts

Agent types
Example of state-of-art Agent technology: Mars Robots

1.
In

tr
o

d
u

ct
io

n

jvazquez@lsi.upc.edu 32

20042004
Mars Exploration Rover (MER)Mars Exploration Rover (MER)

“Spirit”/“Opportunity”“Spirit”/“Opportunity”
19961996

Mars PathfinderMars Pathfinder
“Sojourner”“Sojourner”

20112011
Mars Science Laboratory (MSL)Mars Science Laboratory (MSL)

“Curiosity”“Curiosity”

Agent Types
Software agents

 Internet agents (search and information
extraction/management from Internet)

 Collaborative agents (they coordinate with other
agents to solve a common task)
 To solve problems too complex for a single agent
 To solve problemes distributed in nature
 To interconnect already existing, heterogeneous systems

(Agentification)

I t f t (th ll b t ith h

1.
In

tr
o

d
u

ct
io

n

jvazquez@lsi.upc.edu 33

 Interface agents (they collaborate with a human user
to solve a task, or to act on behalf of the user.

 Mobile SW agents (they can move from one computer
to another)

Agent types
Internal architecture

 Purely Reactive Agents (with no internal state)

 Reactive Agents with internal state

 Delliberative Agents (goal-oriented behaviour)

 Hybrid Agents (combine reactive and delliberative
behaviour)

1.
In

tr
o

d
u

ct
io

n

jvazquez@lsi.upc.edu 34

em
s

(S
M

A
-U

P
C

)

Agent architectures

• Abstract architecture for agents
• Architectures for Multiagent systems

M
u

lt
ia

g
en

t
S

ys
te

https://kemlg.upc.edu

Abstract Architecture for Agents

 Assume the environment may be in any of a finite set E of discrete,
instantaneous states:

 Agents are assumed to have a repertoire of possible actions
available to them, which transform the state of the environment:

1.
In

tr
o

d
u

ct
io

n

jvazquez@lsi.upc.edu 36

 A run, r, of an agent in an environment is a sequence of interleaved
environment states and actions:

Abstract Architecture for Agents

 Let:

 R be the set of all such possible finite sequences (over
E and Ac)

 RAc be the subset of these that end with an action

 RE be the subset of these that end with an environment
state

1.
In

tr
o

d
u

ct
io

n

jvazquez@lsi.upc.edu 37

State Transformer Functions

 A state transformer function represents behavior of the
environment:

 Note that environments are…
 history dependent

 non-deterministic

 If (r)=, then there are no possible successor states to r. In this

case, we say that the system has ended its run

1.
In

tr
o

d
u

ct
io

n

jvazquez@lsi.upc.edu 38

 Formally, we say an environment Env is a triple Env =E,e0,
where: E is a set of environment states, e0 E is the initial state,

and is a state transformer function

Agents

 Agent is a function which maps runs to actions:

 An agent makes a decision about what action to
perform based on the history of the system that it has
witnessed to date Let AG be the set of all agents

1.
In

tr
o

d
u

ct
io

n

jvazquez@lsi.upc.edu 39

witnessed to date. Let AG be the set of all agents

Systems

 A system is a pair containing an agent and an
i tenvironment

 Any system will have associated with it a set of
possible runs; we denote the set of runs of agent Ag in
environment Env by R(Ag, Env)

(W R(A E) t i l t i t d)

1.
In

tr
o

d
u

ct
io

n

jvazquez@lsi.upc.edu 40

 (We assume R(Ag, Env) contains only terminated runs)

Systems

 Formally, a sequence

represents a run of an agent Ag in environment
Env =E,e0, if:

1. e0 is the initial state of Env

2. 0 = Ag(e0); and

1.
In

tr
o

d
u

ct
io

n

jvazquez@lsi.upc.edu 41

3. For u > 0,

Purely Reactive Agents

 Some agents decide what to do without reference to
their history — they base their decision making entirely
on the present with no reference at all to the paston the present, with no reference at all to the past

 We call such agents purely reactive:

 A thermostat is a purely reactive agent

1.
In

tr
o

d
u

ct
io

n

jvazquez@lsi.upc.edu 42

Purely Reactive Agents

EE
Agent sensors

input

NN
VV
II
RR
OO
NN
MM
EE

KB

E0

How should
I react?

perception’

perception

1.
In

tr
o

d
u

ct
io

n

jvazquez@lsi.upc.edu 43

EE
NN
TT

actuators

action

Purely Reactive Agents

function pra(percept) returns (action)
static rules

state interpret-input(percept)
rule rule-match(state,rules)
action rule-action[rule]
return action

1.
In

tr
o

d
u

ct
io

n

jvazquez@lsi.upc.edu 44

Formally…

 We define 2 functions
 The see function is the agent’s ability to observe its environment,
 The action function represents the agent’s decision making

process

 Output of the see function is a percept:
see : E Per

which maps environment states to percepts,

1.
In

tr
o

d
u

ct
io

n

jvazquez@lsi.upc.edu 45

 and action is now a function
action : Per* A

which maps sequences of percepts to actions

Reactive Agents with internal state

EE
Agent sensors

input

NN
VV
II
RR
OO
NN
MM
EEKB

Which action do
I choose?

perception
state

How is the
world now?

How the world
works?

1.
In

tr
o

d
u

ct
io

n

jvazquez@lsi.upc.edu 46

EE
NN
TT

KB

actuators

action

What is the effect
of actions?

Reactive Agents with internal state

Function reactive agent with state(percept) returns actionFunction reactive-agent-with-state(percept) returns action
Static state ;a world description

rules ;a set of, e.g., if-then rules

state update-state(state,percept)
rule rule-match(state,rules)
action rule-action[rule]

1.
In

tr
o

d
u

ct
io

n

jvazquez@lsi.upc.edu 47

action rule action[rule]
state update-state(state,action)

return action

Formally…

 These agents have some internal data structure, which is
typically used to record information about the environment state
and history.
Let I be the set of all internal states of the agent.

 The perception function see for a state-based agent is
unchanged:

see : E Per

The action-selection function action is now defined as a mapping

action : I Ac

1.
In

tr
o

d
u

ct
io

n

jvazquez@lsi.upc.edu 48

from internal states to actions. An additional function next is
introduced, which maps an internal state and percept to an
internal state:

next : I Per I

Formally…

1. Agent starts in some initial internal state i0
2. Observes its environment state e, and generates a

percept see(e)

3. Internal state of the agent is then updated via next
function, becoming next(i0, see(e))

4. The action selected by the agent is action(next(i0,
see(e)))

G t 2

1.
In

tr
o

d
u

ct
io

n

jvazquez@lsi.upc.edu 49

5. Goto 2

Tasks for Agents

 We build agents in order to carry out tasks for us

 The task must be specified by us…

 But we want to tell agents what to do without telling
them how to do it

 One possibility: associate utilities with individual
states — the task of the agent is then to bring
about states that maximize utility

1.
In

tr
o

d
u

ct
io

n

jvazquez@lsi.upc.edu 50

Delliberative Agents (with expected utilities)

EE

Agent sensors

input

perceptionstate EE
NN
VV
II
RR
OO
NN
MM

KB
What if I perform

action A?

perceptionstate
How is the
world now?

How the worldHow the world
evolves? evolves?

What is the effectWhat is the effect
of actions? of actions?

How happy will I be?

1.
In

tr
o

d
u

ct
io

n

jvazquez@lsi.upc.edu 51

EE
NN
TT

actuators

action

utility
Which action do

I choose?

Utility Functions over States

 A task specification is a function

u : E #

which associates a real number with every environmentwhich associates a real number with every environment
state

 But what is the value of a run…
 minimum utility of state on run?
 maximum utility of state on run?
 sum of utilities of states on run?
 average?

1.
In

tr
o

d
u

ct
io

n

jvazquez@lsi.upc.edu 52

g

 Disadvantage: difficult to specify a long term view when
assigning utilities to individual states
(One possibility: a discount for states later on.)

Utilities over Runs

 Another possibility: assigns a utility not to individual states,
but to runs themselves:

u : R #

 Such an approach takes an inherently long term view

 Other variations: incorporate probabilities of different
states emerging

 Difficulties with utility-based approaches:
where do the numbers come from?

1.
In

tr
o

d
u

ct
io

n

jvazquez@lsi.upc.edu 53

 where do the numbers come from?

 we don’t think in terms of utilities!

 hard to formulate tasks in these terms

Delliberative Agents (with explicit goals)

EE

Agent sensors

input

ti EE
NN
VV
II
RR
OO
NN
MM

KB
What if I perform

action A?

perceptionstate
How is the
world now?

How the worldHow the world
evolves? evolves?

What is the effectWhat is the effect
of actions? of actions?

1.
In

tr
o

d
u

ct
io

n

jvazquez@lsi.upc.edu 54

EE
NN
TT

actuators

action

goals

Which action do
I choose?

Delliberative Agents (with explicit goals)

Function reactive-agent-with-goals(percept) returns action
Static state ; a world description

l f f h lrules ;a set of, e.g., if-then rules
goals ;a list of goal states

state update-state(state,percept)
appliable-rules rule-match(state,rules)
possible actions rule action[rule]

1.
In

tr
o

d
u

ct
io

n

jvazquez@lsi.upc.edu 55

possible-actions rule-action[rule]
action goal-oriented-selection[possible-actions]
state update-state(state,action)

return action

Formally…

 It gets far more complex to do a proper formalization

 Goal semantics

 Relationship between goals, action and states

 Relationship between perception and knowledge

 [We will see this in 3. Reasoning in Agents]

1.
In

tr
o

d
u

ct
io

n

jvazquez@lsi.upc.edu 56

Multiagent Systems’ architecture

 Agents in a multiagent system tend to interact through
iddl la middleware layer

 This middleware provides connectivity between agents,
solving low-level connectivity issues

 Communication methods

Sometimes this middleware is called agent platform

1.
In

tr
o

d
u

ct
io

n

jvazquez@lsi.upc.edu 57

 Sometimes this middleware is called agent platform

Communication methods

 Blackboard systems
 Agents communicate information through a common data

structure accessible by everybodystructure, accessible by everybody
 Problem: if there is no middleware to provide some

concurrency, it tends to become a bottleneck.

 Message passing
 Agents communicate directly by means of messages
 The agent platform usually acts as message router
 Common communication language (e.g. FIPA-ACL)

C i ti t l (f t

1.
In

tr
o

d
u

ct
io

n

jvazquez@lsi.upc.edu 58

 Common communication protocols (message format,
steps in a communication)

FIPA Architecture for Agent Platforms

Agent Platform

Software

Agent Platform

Agent
Management

System

Directory
Facilitator

Message Transport System

Agent

1.
In

tr
o

d
u

ct
io

n

jvazquez@lsi.upc.edu 59

Agent Platform

Message Transport System

Components of an Agent Platform

 Agent: a program providing a list of services

 Directory Facilitator (DF) is an agent which provides a
Yellow Pages service within the platform (knows the
services that agents within the platform provide)
 register, deregister, modify, search

 Agent Management System (AMS) is an agent
controlling access and usage of the agent platform. It
knows the platform and agents’ “addresses” and provides
a White Pages service (knows the routing addresses for

1.
In

tr
o

d
u

ct
io

n

jvazquez@lsi.upc.edu 60

g (g
agents within and in other platforms)

 Message Transport Service (MTS) is used to enable
communication between agents in different platforms.

Agent Platform tasks

 Suspend temporally an agent executionp p y g

 Stop an agent execution

 Resume/continue agent execution

 Start an agent

 Platform resource management

1.
In

tr
o

d
u

ct
io

n

jvazquez@lsi.upc.edu 61

g

em
s

(S
M

A
-U

P
C

)

Discussion about Agents

• Agents vs. Objects
• Agents vs. Expert Systems

M
u

lt
ia

g
en

t
S

ys
te

https://kemlg.upc.edu

Agents vs. Objects

 Are agents just objects by another name?

 Object:
 encapsulates some state encapsulates some state
 communicates via message passing
 has methods, corresponding to operations that may be

performed on this state

1.
In

tr
o

d
u

ct
io

n

jvazquez@lsi.upc.edu 63

Agents vs. Objects

 Main differences:
 agents are autonomous:

agents embody stronger notion of autonomy than objects, and in
particular, they decide for themselves whether or not to perform an

i f haction on request from another agent
 agents are smart:

capable of flexible (reactive, pro-active, social) behavior, and the
standard object model has nothing to say about such types of
behavior

 agents are active:
a multi-agent system is inherently multi-threaded, in that each agent is
assumed to have at least one thread of active control

A W ld id

1.
In

tr
o

d
u

ct
io

n

jvazquez@lsi.upc.edu 64

 As Wooldridge says:

 objects do it for free…

 …agents do it because they “want”

 …agents do it for “money”

Agents vs. Expert Systems

 Aren’t agents just expert systems with another name?
 Expert systems are deliberative
 e.g. MYCIN e.g. MYCIN

 Main differences:
 agents situated in an environment:

MYCIN is not aware of the world — only information obtained
is by asking the user questions

 agents act:
MYCIN does not operate on patients

 Some real-time (typically process control) expert systems

1.
In

tr
o

d
u

ct
io

n

jvazquez@lsi.upc.edu 65

 Some real time (typically process control) expert systems
are agents

References

1. Luck, M., McBurney, P., Shehory, Onn, Willmott, S. “Agent
Technology: Computing as interaction. A Roadmap to Agent Based
Computing”. Agentlink, 2005. ISBN 085432 845 9

2 Wooldridge M “Introduction to Multiagent Systems” John Wiley[]

[]

2. Wooldridge, M. Introduction to Multiagent Systems . John Wiley
and Sons, 2002.

3. Russell, S. & Norvig, P. “Artificial Intelligence: A Modern Approach”
Prentice-Hall Series in Artificial Intelligence. 2009
ISBN 0-13-103805-2

4. Haddadi, A. “Communication and Cooperation in Agent Systems: A
Pragmatic Theory” Lecture Notes in Artificial Intelligence #1056.
Springer-Verlag. 1996. ISBN 3-540-61044-8

[]

[]

[]

1.
In

tr
o

d
u

ct
io

n

jvazquez@lsi.upc.edu 66

5. Rosenschein, J. & Zlotkin, G. “Rules of Encounter. Designing
Conventions for Automated Negotiation among Computers”. MIT
Press. 1994 ISBN 0-262-18159-2

6. Weiss, G. “Multiagent Systems: A modern Approach to Distributed
Artificial Intelligence”. MIT Press. 1999. ISBN 0262-23203

[]

[]

These slides are based mainly in material from [2] and [1], with some additions from
material by U. Cortés, J.Padget, A. Moreno and Steve Willmott

