rom Human Regulations to Institutions

From Human Regulations to Regulated Software Agents' Behaviour.

(eInstitutions: the KEMLG@UPC and IS@Utrecht view)

Javier Vázquez-Salceda May 20, 2005

Knowledge Engineering and Machine Learning Group UNIVERSITAT POLITÉCNICA DE CATALUNYA

http://www.lsi.upc.es/~webia/KEMLG

MOTIVATION

Knowledge Engineering and Machine Learning Grou UNIVERSITAT POLITÉCNICA DE CATALUNYA

http://www.lsi.upc.es/~webia/KEMLG

The role of Norms and Electronic Institutions...

eInstitutions and Norms

- Norms describe which states/actions within the e-organization should ideally take place
- Norms are too abstract to be directly translated into procedures (plans/protocols) in a single step
- Most of the approaches talk about norms, but a closeup look shows that they are working at completely different levels of abstraction
- Idea: there are several levels of abstraction involved in a normative system
- Organizations hardly work in isolation
- Idea: to identify how the organization's surrounding context influences the different levels

Abstraction problem

- Problems:
 - Norms are more abstract than the procedures (in purpose)
 - Norms do not have operational semantics

Example:

Regulation: "It is forbidden to discriminate potential recipients of an organ based on their age (race, religion,...)"

Formal norm: F(discriminate(x,y,age))

Procedure: does not contain action "discriminate"

Problem 1: Abstraction in Norms

- Norms are abstract if they use concepts that are not fully described in the organization's ontology.
 - "It is forbidden to discriminate based on age"
- Norms can be abstract in the following ways:
 - They refer to an abstract action
 - They use terms that are vague
 - They abstract from temporal aspects
 - They abstract from agents and or roles
 - They refer to actions or situations that are not (directly) controllable and/or verifiable by the organization

13

Problem 1: Abstraction in Norms

example 1: Abstract actions

"a living donor should consent to the donation of an organ"

 $sign(donor,contract) \cup carry(donor,will) \cup \\ \Rightarrow_{ONT} Consent(donor)$

example 2: Vague terms

"the ONT is obliged to ensure that the distribution of organs and tissues is appropriate"

```
O_{ONT}(ensure\_quality(organ)) \land \\O_{ONT}(ensure\_compatibility(organ, recipient))) \Rightarrow O_{ONT}(appropriate(distribution))
```

The role of Norms and Electronic Institutions...

From Normative to Operational

- Translation from Normative dimension to a Descriptive one
 - Idea: reduction from Deontic Logic to Dynamic Logic [J.-J. Meyer]

```
\begin{aligned} O_{hosp}(consent(donor(p,x)) &< do(transplant(hosp,x,p,q))) \\ & \qquad \qquad \downarrow \\ & \qquad \qquad [transplant(hosp,x,p,q))] done(consent(donor)) \end{aligned}
```

```
O_{buyer}(pay(goods, seller, price) < do(exit(buyer)))

\downarrow

not(done(pay(goods, seller, price))) \rightarrow [exit(buyer)]V(fine(buyer))
```


Problem 2: Defeasibility in human law

- Defeasibility = one or more norms defeated by addition of norms
- 2 levels:
 - Defeasibility of classification
 - · semantics of concepts in norms extended/reduced/altered
 - Defeasibility of norms
 - · impact & applicability of norm altered

Article 13

```
A13.1 OBLIGED((system DO \ record(procurement_i, sys\_logs))
IF NOT(origin(procurement_i, decree(Minister\_Of\_Justice))))
```

A13.5 NOT(OBLIGED((system DO record(procurement_i, sys_logs))

IF (origin(procurement_i, linkage_i) AND reported(linkage_i, sys_logs))))

19

Problem 2: Defeasibility in human law

- Option 1: Defeasibility handling in reasoning mechanism
 - there is no efficient implementation of defeasible logics!
- Option 2: "by-pass" defeasible reasoning
 - changes in law almost never occur

```
A13.1_{-}5 \hspace{0.5em} \mathsf{OBLIGED}((system \hspace{0.5em} \mathsf{DO} \hspace{0.5em} record(procurement_i, sys\_logs)) \\ \mathsf{IF} \hspace{0.5em} (\mathsf{NOT}(origin(procurement_i, decree(Minister\_Of\_Justice))) \\ \mathsf{AND} \hspace{0.5em} \mathsf{NOT}(origin(procurement_i, linkage_j) \\ \mathsf{AND} \hspace{0.5em} reported(linkage_j, sys\_logs)))) \\
```

changes occur often/periodically

```
A13.1 \hspace{0.1cm} \hspace{0.1cm} \mathsf{OBLIGED}((system \hspace{0.1cm} \mathsf{DO} \hspace{0.1cm} record(procurement_i, sys.logs)) \\ \hspace{0.1cm} \mathsf{IF} \hspace{0.1cm} (\mathsf{NOT}(origin(procurement_i, decree(Minister\_Of\_Justice))) \\ \hspace{0.1cm} \mathsf{AND} \hspace{0.1cm} \mathsf{NOT}(\mathsf{CONDITIONAL\_EXCEPTION}(A13.1)))) \\
```

```
A13.5 CONDITIONAL_EXCEPTION(A13.1)
IF (origin(procurement<sub>i</sub>,linkage<sub>j</sub>)
AND reported(linkage<sub>i</sub>, sys_logs)))
```

he role of Norms and Electronic Institutions...

Ongoing work: using landmarks for formal connection

- Landmarks as meaningful (i.e. important) states in the system
- Landmark patterns: partial accessibility relations from landmark to landmark
- Idea 1: do not try to map ALL states, only the landmarks
- Regulations usually define those important states, and what should/should never happen among them
 - We can define landmarks in the normative level in terms of acceptable/unacceptable states of affairs
 - We can define landmarks in the operational level as states in the state machine
- Hypothesis: an execution is norm-compliant if the landmark patterns hold.

21

From Norms to Landmark Patterns

Implementing Norms in eInstitutions

- Implementation of norms ≠ from institutional perspective
- Implementing a theorem prover to check protocol compliance
- Implementation of a safe environment (norm enforcement)
- 2 options depending on control over agents
 - Defining constraints on unwanted behaviour
 - Defining violations and reacting to these violations
- our assumptions:
 - Norms can be sometimes violated by agents
 - The internal state of agents is neither observable nor controllable
 - · actions cannot be imposed on an agent's intentions
 - agents as black boxes
 - · only their observable behaviour and actions

25

Problem 3: Verifiability of norms

- Computational verifiable
 - Directly verifiable
 - Verifiable by the introduction of extra resources
- Non-computational verifiable
- Non-verifiable
 - Observable, but not decidable
 - Indirectly observable
 - Not verifiable at all

The role of Norms and Electronic Institutions...

Safety and Soundness

- The concept of Norms allows to describe
 - wanted (legal) and unwanted (illegal) behaviour
 - acceptable (safe) and unacceptable (unsafe) states
- *Violations* when agents breaks one or more norms, entering in an illegal (unsafe) state.
- Sanctions are actions to make agents become legal (safe) again.
- Sanctions include the actions to recover the system from a violation

Soundness

27

Representing Norms (I)

- Formal representation of norms needed
- Which logic?

he role of Norms and Electronic Institutions...

- Norms permit, oblige or prohibit
- Norms may be conditional
- Norms may have temporal aspects
- Norms are relativized to roles

OBLIGED, PERMITTED, FORBIDDEN

IF C

BEFORE D, AFTER D

variant of Deontic Logic

Representing Norms (II)

examples:

```
\begin{split} & \mathsf{FORBIDDEN}(recipient, (in\_waiting\_list(hospital_1) \land \\ & in\_waiting\_list(hospital_2) \land (hospital_1 \neq hospital_2))) \\ & & \mathsf{FORBIDDEN}(person\ \mathsf{DO}\ sell(organ)) \\ & & \mathsf{FORBIDDEN}((allocator\ \mathsf{DO}\ assign(organ, recipient)) \\ & & \mathsf{IF}\ \mathsf{NOT}(hospital\ \mathsf{DONE}\ ensure\_quality(organ))) \\ & & \mathsf{OBLIGED}((allocator\ \mathsf{DO}\ assign(heart, recipient)) \\ & \mathsf{BEFORE}\ (time(done(extraction(heart, donor))) + 6hours)) \end{split}
```

OBLIGED(ONT ENFORCE(FORBIDDEN(person DO sell(organ))))

29

Implementing Norms in elnstitutions (II)

- Norms describe which states/actions within the einstitution should ideally take place
- Norms are too abstract, not operational
 - A norm implementation should be composed of:

Support for Implementing Norms (I)

- Norm enforcement is not centralized but distributed in a set of internal agents
 - They check if a given (observable) action was legal or illegal given the violation conditions defined for that context.
- The Agent Platform should assist the internal agents, providing fast, very efficient resources for norm enforcement as additional platform services and mechanisms.
- A) Detection of the occurrence of an action
 - Internal agents may become overloaded checking ALL actions
 - black list mechanism (of actions to monitor) e.g., assign
 - action alarm mechanism (alarm to the internal agent)
 - Internal agent checks if conditions for a violation apply.

31

Support for Implementing Norms (II)

- B) Detection of activation/deactivation of norms
 - activation = when condition C is true
 - deactivation = when P holds, A is done or C is false
 - reaction time: time allowed between norm activation and reaction
 - Depending on the complexity to check C, the platform should implement the appropriate fast-access data structures and/or processing mechanisms to reduce computational burden
- C) Deadline control
 - a clock trigger mechanism to detect that a deadline has passed

