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Abstract
Complexity in the design of electronic systems is significantly increasing in DSM technologies.

Synthesis requires more powerful techniques to meet the specification constraints and capable to
run in affordable time in the larger designs. One of the phases in VLSI design is logic synthesis.
This thesis introduces several methods in this phase to meet one of the primary objectives in circuit
design: timing optimization.

Several contributions are presented. First, a solver of Boolean relations has been developed. A
Boolean relation is able to capture more flexibility than conventional approaches based on don’t
cares. This work received the best paper award in the Design Automation Conference (DAC’04).

The second contribution is a new partitioning algorithm based on the concept of vertex domina-
tor. When optimization algorithms are applied on these clusters, this partition offers more possibil-
ities for restructuring towards delay minimization compared to other techniques based on min-cut.

A multi-level decomposition approach is also defined using the solver of Boolean relations: a
time-driven n-way decomposition. Functions are decomposed to improve the performance (speed)
using a small library of multi-input gates.

Finally, an integrated approach for layout-aware interconnect optimization is presented. This
technique combines gate duplication and buffer insertion in the same framework with incremental
placement. Similar to the principle of the Engineering Change Order (ECO), the circuit is incre-
mentally improved by performing small modifications using fanout optimization techniques on top
of the current placement.

The contributions of the thesis have been published in the following papers:

• D. Baneres, J. Cortadella, and M. Kishinevsky. A recursive paradigm to solve boolean rela-
tions. In Proc. ACM/IEEE Design Automation Conference, pages 416–421, June 2004

• D. Baneres, J. Cortadella, and M. Kishinevsky. Dominator-based partitioning for delay opti-
mization. In ACM Great Lakes Symposium on VLSI, pages 67–72, 2006

• D. Baneres, J. Cortadella, and M. Kishinevsky. Layout-aware gate duplication and buffer
insertion. In Proc. Design, Automation and Test in Europe (DATE), pages 1367–1372, 2007

• D. Baneres, J. Cortadella, and M. Kishinevsky. A recursive paradigm to solve boolean rela-
tions. In IEEE Transactions on Computers, 2007 (Submitted)





Contents

1 Introduction 1
1.1 Design flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Classical design flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 DSM design flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Motivation and contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Organization of this document . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 State of the art 9
2.1 Overview on Logic Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.2 Two-level Minimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.3 Multi-Level Logic Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.4 Flexibility in Boolean functions . . . . . . . . . . . . . . . . . . . . . . . 16
2.1.5 BDD-based optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3 Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4 Technology-dependent techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4.1 Technology mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4.2 Gate Sizing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4.3 Buffer insertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4.4 Gate duplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.4.5 Physical-aware logic synthesis . . . . . . . . . . . . . . . . . . . . . . . . 26

3 A Recursive Paradigm To Solve Boolean Relations 27
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3 Previous work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

i



ii CONTENTS

3.5 Basics of Solving a Boolean relation . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.5.1 Semi-lattice of well-defined Boolean relations . . . . . . . . . . . . . . . . 34
3.5.2 Projection of a Boolean relation to a Multiple-output ISF . . . . . . . . . . 35
3.5.3 Solution of a Multiple-output ISF . . . . . . . . . . . . . . . . . . . . . . 37
3.5.4 Divide-and-conquer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.6 Details of the Boolean relation solver . . . . . . . . . . . . . . . . . . . . . . . . 40
3.6.1 Characteristic functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.6.2 Quick solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.6.3 The recursive approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.7 Further implementation details . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.7.1 Representation of relations . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.7.2 Exploration of solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.7.3 Cost function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.7.4 Split strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.7.5 Minimization of ISFs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.7.6 Symmetries in Boolean Relations . . . . . . . . . . . . . . . . . . . . . . 48

3.8 Solving Boolean equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.9 Efficiency of the method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.9.1 Comparison with the expand-reduce-irredundant paradigm . . . . . . . . . 53
3.9.2 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.10 Application of Boolean relations . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.10.1 Logic decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.10.2 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.11 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4 Dominator-based Partitioning for Logic Synthesis 61
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2 Previous work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.4 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.4.1 Vertex Dominator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.4.2 Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.5 Partition Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.5.1 Core of the algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.5.2 Example of a partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.5.3 Preserving topological order . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.6 Timing-driven optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.7 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79



CONTENTS iii

4.7.1 Configuration of the algorithms . . . . . . . . . . . . . . . . . . . . . . . 80
4.7.2 Comparison with DEPART and speed up . . . . . . . . . . . . . . . . . . 80
4.7.3 Comparison with hMetis . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.7.4 Trade-off between area and delay . . . . . . . . . . . . . . . . . . . . . . 83

4.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5 Window-based timing-driven n-way decomposition 87
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.2 Previous work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.4 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.5 Recursive n-way decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.6 Implementation aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.6.1 BREL solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.6.2 BREL cost functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.6.3 Look-up table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.7 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.7.1 Comparison with bi-decomposition . . . . . . . . . . . . . . . . . . . . . 100
5.7.2 Window-based n-way decomposition . . . . . . . . . . . . . . . . . . . . 102

5.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6 Layout-Aware Gate Duplication and Buffer Insertion 105
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.2 Previous work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.2.1 Elmore delay model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.2.2 Buffer Insertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.2.3 Gate duplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.4 Algorithm for interconnect optimization . . . . . . . . . . . . . . . . . . . . . . . 114
6.5 Algorithm for gate duplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.5.1 Delay-oriented duplication . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.5.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.6 Algorithm for buffer insertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.6.1 Mitigating the combinatorial explosion . . . . . . . . . . . . . . . . . . . 118
6.6.2 Bottom-up construction of buffer trees . . . . . . . . . . . . . . . . . . . . 119
6.6.3 Repeater insertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.6.4 Polarity optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.6.5 Exploration with dynamic programming . . . . . . . . . . . . . . . . . . . 122



iv CONTENTS

6.6.6 Pruning solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.6.7 Area recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.6.8 Nets with high fanout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.7 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
6.7.1 Comparison of the Buffer Insertion algorithm . . . . . . . . . . . . . . . . 127
6.7.2 Academic benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
6.7.3 Future semiconductor technologies . . . . . . . . . . . . . . . . . . . . . 129

6.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

7 Conclusions 133



Chapter 1

Introduction

Digital circuits are widely used in many technological products, such as computers, cellular phones
or communications systems. Our society is currently dependant on these small pieces of technology.
The Electronic Design Automation (EDA), which appeared forty years ago, is a category of tools for
designing and producing electronic systems in the electrical engineering discipline. These tools aim
at producing from printed circuit boards to integrated circuits. The importance of the EDA tools
has quickly increased due to the continuous evolution of semiconductor technology, as Moore’s
Law predicted, and the new system designs. Currently, several millions of transistors can be put in
a single circuit. For instance, the Intel Pentium 4 microprocessor at 3.2 GHz has 178 millions of
transistors [1].

Before EDA, the designers were limited to deal with small- and medium-sized circuits since
they were produced manually. However, this design methodology could not stand anymore when
the size of the circuits grew to several thousands of transistors.

Currently, Very Large Scale Integration (VLSI)1 requires other methodologies. VLSI is possible
due to manufacturing and design technologies. Physical components have had a quick evolution in
the recent years. For example, the feature size of a transistor in 1996 was 250 nm and nowadays it
is around 65 nm [2]. This reduction on the size has helped to integrate a larger number of transistors
in the same chip area. In design technologies, Computer Aided Design (CAD) tools have been
developed since the early seventies to help in VLSI design. Initially, CAD tools were only used
in small activities. Following the evolution of the manufacturing technologies, the CAD tools also
progressed until complete design flows were automated.

Nowadays, automated CAD tools are the key in circuit design. The investments associated with
the manufacturing of VLSI are very high, and the time-to-market limits the spent time. CAD tools

1Some experts on the area claim that the name of the current stage should be Ultra-Large Scale Integration (ULVI)
since the current manufacturing processes produce chips larger than 1 million of transistors.

1



2 CHAPTER 1. INTRODUCTION

make the design of new systems cost-effective. The main objectives of CAD tools are:

• increase designers’productivity: the CAD tools help the designers to take the adequate deci-
sions to develop a good design. Moreover, the cycle of production of new systems is sped up
due to the automation of the design flows.

• reduce the number of components: functionally equivalent circuits with a smaller number
of components are desirable. This implies less number of transistors and, therefore, a lower
production cost.

• improve the performance (speed): the speed is an important factor in the current circuit de-
signs mostly by the market requirements.

• reduce the power consumption: the density of the circuits increases significantly the temper-
ature, and it generates a high dissipation of energy as heat. This drawback affects negatively
performance of the circuit.

• validate: a design must be validated to check if the result of the design flow is functionally
equivalent to the given specification. The objective is to avoid catastrophic mistakes, e.g. bug
in the Pentium microprocessor in the floating-point division unit [51].

1.1 Design flow
The design of a circuit is a complex problem that can not be handled as a whole. The main objective
is to optimize the implementation of the new design and meet the specification constraints. However,
there are many objectives and constraints to take into account and it is difficult to deal with all the
requirements at the same time.

The design flow is divided into different levels of abstraction, where each level typically tackles
an objective. This division aims at reducing the complexity of the design problem. Note that, this is
not the best approach to get the optimal solution. However, the development of optimization tech-
niques for each subproblem is easier and these approaches usually have an affordable computational
complexity.

1.1.1 Classical design flow
The design flow is usually divided into three stages: the RTL front-end, logic synthesis and physical
synthesis, in which each stage focuses on a specific problem. The RTL front-end targets at specifi-
cate the behavior of the design. At this stage, the design is not described in the transistor or gate
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Figure 1.1: (a) Traditional design flow. (b) DSM design flow.

level. A higher level is used to detail the flow of the signals between registers. The Register Transfer
Level (RTL) specification is used as input for the logic synthesis flow.

Figure 1.1-(a), extracted from [116], illustrates the traditional design flow with Logic and Phys-
ical synthesis. Several independent phases are distinguished depending on the targeted problem.

Logic optimization techniques and technology mapping are performed during the logic syn-
thesis phase. Logic optimization covers sequential and combinational minimization. Sequential
minimization uses state-based techniques, like FSM encoding, to obtain an initial structural repre-
sentation of the data path. Other more modern techniques, like retiming, seek equivalent circuits
with the same behavior targeting at minimizing some objective function, i.e. cycle time, number
of sequential elements,. . . In combinational logic synthesis, two-level and multi-level optimization
are the standard techniques applied to minimize the combinational blocks between the sequential
components.

Technology mapping is the final step in logic synthesis that maps the Boolean network using
a library of components (or logic gates). The output is a circuit with the same behavior as the
original one but the circuit is implemented with the gates of the library. There are also some refining
techniques after technology mapping such as sizing, buffer insertion and duplication that perform
local modifications to the circuit to meet the timing constraints.

Finally, physical synthesis is basically concerned about the layout of the design after the tech-
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nology mapping phase. Placement assigns a position to each cell and routing calculates the route
of the interconnections. Currently, the placement and routing phases tend to be internally divided
into two phases. Initially, a global technique is applied to obtain an approximated result. Here,
clustering techniques are used to consider blocks of cells as a unique cell and this clustering aids
to run the optimization process with less complexity. The second phase amends the errors and re-
fines the solution. In detailed placement, minor changes are done applying swapping or reordering
techniques on individual cells. The final layout must be legal without any overlapping between the
cells. In detailed routing, the paths of the wire are refined aiming at reducing the congestion.

1.1.2 DSM design flow
The traditional design flow has some drawbacks in the current depth sub-micron (DSM) technolo-
gies. In process technologies larger than 180nm, the problem to meet the timing constraints was
focused on the logic domain. The interconnection delay was meaningless compared to the intrinsic
delay of the gates. However, the wire delay becomes the predominant factor in the current 90nm-
65nm (and future) process technologies, and new challenging problems have arisen that they can not
be tackled with the current flow. Some of them are related to physical problems like coupling [90]
or crosstalk [168]. The DSM design flow currently used is depicted in Fig. 1.1-(b). There are several
approaches to deal with the new DSM design flow.

The first attempt is to apply minimization delay procedures in physical design that were previ-
ously applied only in the logic domain, like buffer insertion or duplication. However, this approach
only performs small modifications locally in the placement and routing. Although, some improve-
ments are obtained, the final solution is highly dependant on the design decisions taken in the logic
domain phase.

The second popular attempt is to apply a physical-aware logic synthesis. Congested areas of
the placement or critical paths are extracted from the circuit and they are pushed up to the logic
domain to be processed again. Then, the improved portion is replaced into the original circuit. An
incremental placement is performed to legalize it moving apart some nodes. This method uses the
principle of the Engineering Change Order (ECO). ECO can be applied in any level of the design
flow. If the specification constraints can not be met with local changes in the physical design, ECO
must be applied on the other levels of abstraction, even in the RTL front-end level.

Finally, the third option is to use methods that combine information from multiple phases. This
combination improves the final result at the expenses of increasing the complexity of the traditional
techniques. Dividing the design flow into several stages and applying several approximate delay
models produce final designs that can be far from the desirable one. To mitigate this gap between
results from different phases, methods that combine information of multiple phases have been de-
veloped. For example, a method that combines divisor extraction and incremental placement is
presented in [40], or a routing-aware technology mapper is developed in [144]. These techniques
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are examples of approaches that unify in the same framework objective functions of several phases
of the design.

1.2 Motivation and contributions
This thesis is focused in one of the main objectives in DSM design: timing optimization. A collec-
tion of several timing-driven techniques during technology independent optimization and physical
synthesis will be described.

The presented contributions aim at solving optimization problems in circuit design. All the
methods have been compared with industrial optimization processes and tested in academic and
industrial benchmarks to check their effectiveness.

The motivation problems and the contributions of this thesis are described next:

Solver of Boolean relations

Flexibility in logic synthesis can be expressed in several abstract methods. Classical methods use
conventional don’t cares to represent the flexibility in logic functions. A Boolean relation captures
a type of flexibility that cannot be expressed with don’t cares.

The objective of a solver of Boolean relations is to find a compatible multi-output function with
minimum cost. Note that, this is a complex problem. The current Boolean relation solvers are con-
strained to small- and medium- relations. Moreover, their are difficult to use on specific problems
due to their limitation on the customization of the cost function. All of them aim at minimizing
the size of the functions, without concerning about other objectives like delay. This heuristic ap-
proaches are based on a local search algorithm and they are often trapped in local minima, since
they are not always capable of hill climbing.

Boolean relations can be applied to optimization problems like multi-level minimization [167]
or pattern matching in technology mapping [26]. Moreover, there is an equivalence between solving
a system of Boolean equations in Boolean algebra and solving the corresponding Boolean relation.

The first contribution is a solver of Boolean relations. A recursive paradigm is presented to
explore the large space of possible solutions. Our solver explores a larger diversity of solutions
compared to the local search approaches. Moreover, the cost function can be tuned for different
parameters (area, delay) and the method can trade-off the quality of the solution and the runtime
spent in the search.

Partitioning methods

Technology-independent optimization methods are restricted by its complexity. Many of them
were standard minimization methods in the nineties. Nevertheless, the increment of the size of the
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Boolean networks made them impractical for large instances.
Partitioning is often used when complexity problems arise. Current partition methods are mostly

reduced to min-cut which is useful in problems that depend on the structure of a graph. Although
a Boolean network is a directed acyclic graph, the min-cut objective is not always capable of cap-
turing the Boolean information inherent in the graph and producing a partition well-suited for logic
optimization.

A timing-driven partitioning method has been developed. Min-cut is useful when the number
of interconnections between the different clusters is minimized. Nevertheless, when optimization
algorithms are applied on these clusters, the min-cut could prevent the optimization on strategic
regions of the circuits, i.e. the critical path, due to the performed cuts. We propose a new partitioning
algorithm, based on the concept of vertex dominator, that aims at capturing fragments of critical
paths that have small fanout to the rest of the circuit. Thus, the clusters tend to be deep (many
levels) with internal nodes having little fanout to external nodes. This type of clusters offers more
possibilities for restructuring towards delay minimization.

Timing-driven decomposition

Timing-aware decomposition [56, 120, 169, 171] techniques appeared to perform better opti-
mizations based on bi-decomposition. These approaches build a new Boolean network from scratch
based on a recursive method that decomposes the network using two-input gates.

A new decomposition method is presented. Decompositions based on gates with a larger num-
ber of inputs, called n-way decomposition, could help to find better decompositions that cannot be
achieved with two input gates. A recursive timing-driven n-way decomposition method using
the solver of Boolean relations is proposed. The type of flexibility exploited in n-way decompo-
sition, that can not be captured with don’t cares, is formulated as a Boolean relation. The n-way
decomposition approach improves the results obtained by bi-decomposition.

However, a high computational cost is required to solve large Boolean relations and, therefore,
its application is limited to small Boolean networks. The partitioning method previously defined
makes feasible its application on larger networks based on a window-based n-way decomposition.

Interconnection optimization in physical design

The large fanout on gates can be optimized in the logic and physical step of the design flow.
Previous work on this area reveals that three main approaches are mostly used: sizing, duplication
and buffer insertion. These methods are used indistinctly on these stages.

The accuracy of the solution is improved when these methods are applied in the physical step
due to the physical information of the circuit. However, a new problem is added to the fanout
optimization: the wire delays. The interconnection optimization targets at reduce the long wires.
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There are several benefits with this optimization: improve of the delay and the power consumption
and reduction of the wire congestion.

The last contribution is a layout-aware gate duplication and buffer insertion approach. The
objective is the optimization of the interconnection delays taking the physical information into ac-
count. Buffer insertion and gate duplication are complementary techniques that individually each
technique contributes to improve the delay of the network. However the combination of both can
lead to superior results. The improvement can still be more tangible if physical information is
considered and, reciprocally, the changes produced by buffer insertion and gate duplication have a
positive impact by incrementally changing the physical layout of the involved cells.

1.3 Organization of this document
The background is presented in Chapter 2. Moreover, the basic definitions and the problems we
are dealing with are also introduced. Next, four main topics are addressed: Boolean relations,
partitioning, n-way decomposition and interconnection optimization.

Chapter 3 describes a new paradigm to solve Boolean relations. Here, experimental results are
presented to show its benefit with regard to previous solvers.

Our dominator-based partitioning method is presented in Chapter 4 that it reduces considerably
the complexity of logic optimization method on large networks. The vertex dominator property
helps to improve the results with regard to the generic min-cut partition methods.

The n-way decomposition approach is presented in Chapter 5 to illustrate the effectiveness of
the Boolean relation solver. Moreover, it is also combined with the partitioning method to make
feasible its application on larger networks.

Finally, the layout-aware interconnection optimization is presented in Chapter 6. Gate duplica-
tion and buffer insertion are combined with placement to improve significantly the delay of a netlist.
Results in the current semiconductor process technology of 0.65nm are reported. Besides, future
semiconductor process technologies are also reported to corroborate the increasing relevance of the
interconnect optimization.
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Chapter 2

State of the art

Logic synthesis is a fundamental phase on the process of synthesis of a circuit where logic opti-
mization techniques and technology mapping are applied. Logic synthesis covers sequential and
combinational minimization. Sequential minimization uses state-based techniques, like FSM en-
coding, to obtain an initial structural representation of the data path. Other more modern tech-
niques, like retiming, seek equivalent circuits with the same behavior targeting at minimizing some
objective function, i.e. cycle time, number of sequential elements,. . . In the combinational logic
synthesis, two-level and multi-level optimization are the standard techniques applied to minimize
the combinational blocks between the sequential components. In this chapter, we will only review
combinational logic synthesis.

The evolution of logic synthesis has been closely related to the evolution of the manufacturing
technology. New challenging problems usually arise and the optimization objectives also change
with the new technologies.

In this chapter, an introduction to the state of art in logic synthesis is performed in Section 2.1.
Moreover, a brief description is given to the problems we are dealing with in this thesis and how
recent methods attempt to solve them. Decomposition is described in Section 2.2. Section 2.3 intro-
duces several partitioning approaches and Section 2.4 reviews technology mapping and technology-
dependent techniques.

2.1 Overview on Logic Synthesis

In this section, an overview in logic optimization is presented. First, two-level and multi-level
minimization is defined. Finally, the basis of the flexibility in Boolean functions and BDD-based
minimization is also introduced.

9
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2.1.1 Terminology
In this section, some basic terminology used in this thesis is introduced.

Definition 2.1.1 Boolean Function. A Boolean function f is a function f (X) : Bn → B where
B = {0,1}. The support of f is the set of input variables that f explicitly depends on. 2

A function can be specified using the operations of conjunction, disjunction, and complement
of Boolean Algebra.

Definition 2.1.2 Literals, minterms, cubes and covers. A literal is a variable or its complement.
The conjunction (or product) of a set of literals is called a cube. A cube is called a minterm when
the number of different literals of the cube corresponds to the number of variables of the function.
A function can be represented by a cover that is defined as a disjunction (or sum) of cubes. 2

Example 2.1.1 Suppose the function F = abc + abc + abc. The minterms of the function are
{abc, abc, abc}. The function F can also be represented by the cover F = ab+bc, where {ab, bc}
are cubes of the function. 2

Definition 2.1.3 Cofactor and existential abstraction. The cofactors fxi and fxi of
a Boolean function f (x1, . . . ,xn) are defined as fxi = f (x1, . . . ,xi−1,1,xi+1, . . . ,xn) and
fxi = f (x1, . . . ,xi−1,0,xi+1, . . . ,xn). The existential abstraction ∃xi f is defined as ∃xi f = fxi + fxi .
Cofactors and existential abstraction can be extended to multiple variables. 2

A combinational circuit can be modelled with a set of Boolean functions.

Definition 2.1.4 A Boolean network is a directed acyclic graph G = (V ,E), where V is the set of
nodes of the network and E the set of wires. A Boolean function is associated to each node of the
network and the edges represent the interconnection between the functions. The inputs and outputs
of a node are called fanins and fanouts respectively. The nodes with no fanin are the primary inputs,
whereas the nodes with no fanout are the primary outputs. 2

Example 2.1.2 Figure 2.1 shows the Boolean network associated to the next functions:

F = (c(a+b)+ e)(g+ f )+(a+b)d
G = (a+b)d + ihc

Note that, the figure depicts one possible representation. Other representations can be easily found
applying the properties of the Boolean algebra, like the distributive or the associative laws. 2
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Figure 2.1: Example of Boolean network.

2.1.2 Two-level Minimization

Two-level minimization was the first attempt to develop automatic techniques to optimize circuits.
Historically, two-level minimization became popular in the fifties. This approach was an effective
and systematic approach to design circuits with low complexity.

In the seventies, the interest grew again. Two-level minimization was ideal for the implemen-
tations of Programmable Logic Array (PLA) [70]. However, this technique has some limitations:
scalability and technology dependency, that will be further explained in the Section 2.1.3.

Basically, the objective of a two-level minimization is to find a cover with the minimum number
of prime implicants.

Definition 2.1.5 Implicant and prime implicant. An implicant is a cube included in the function. A
prime implicant is an implicant that is not included in any other implicant. 2

Example 2.1.3 In the function f = ab + bc, the cubes ab and abc are implicants, but only ab is
prime. 2

The usual two-level representation of a function is a sum-of-products (SOP) where the cost of
the design, measured by the number of product terms, can be easily computed. This cost is ideal
to estimate the complexity of a PLA since there is a one-to-one correspondence with the number of
rows of the PLA.

Several exact and heuristic approaches have been proposed to solve this problem. The most
relevant exact method is the Quine-McCluskey’s, where the two-level minimization is reduced to
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Figure 2.2: Unate Covering Problem

the Unate Covering Problem (UCP), and ESPRESSO is the most remarkable heuristic approach.
Let us review them.

Quine-McCluskey’s method [74] reduces the problem to finding an optimal two-level repre-
sentation to a UCP. However, first, all the prime implicants of the function must be computed. The
covering matrix of the UCP is built by placing the prime implicants in the columns and the minterms
in the rows. Only the minterms subsumed on each prime are marked in the matrix. The UCP will
compute the smallest sum of primes that covers the function.

Example 2.1.4 Consider the function F = a b c+a b c+a b c+a b c with primes a c, a b and b c.
The covering matrix is represented in Fig. 2.2 where the optimal cover is F = a c+b c. 2

Exact procedures always obtain the optimal solution of the problems, nevertheless, they are not
scalable. The same happens in two-level minimization. UCP is an NP-complete problem where the
size of the covering matrix is exponential with regard to the number of variables of the function.
The number of minterms is 2n and the number of primes is approximately 3n

n , where n is the number
of variables. Therefore, heuristics approaches must be used on large functions.

There are several heuristic approaches [23, 32, 78, 134] in two-level minimization. All of them
use a procedure similar to the minimization algorithm reduce-expand-irredundant shown in Fig. 2.3.
They differ on which operations of the internal loop are selected for execution (some methods skip
operations) and the order of the application of them. This optimization method explores the space of
covers of a function performing a local search on its primes. This process tries to escape from local
minima and search for other possible covers with less number of product terms. In the procedure
shown in Fig 2.3, an initial cover is selected. In order to find other possible covers, this initial one
is expanded using one literal to cover some minterms with more than one cube. The irredundant
procedure will remove the redundant cubes that may appear. Finally, the function is reduced again
to primes calling the reduce procedure.

Example 2.1.5 Consider the function of Example 2.1.4. Figure 2.4 shows the application of
ESPRESSO [32] based on the algorithm of Fig. 2.3. In this example, the function is represented
by cubes where the symbol {−} means that the variable is not in the cube. In the first Expand
procedure, minterm 000 is expanded to the cube 0−0, since minterm 010 is also included in the
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Heuristic minimization (F)
{Input: A function F}
{Output: A minimized function}

Expand(F);
Irredundant(F);
do

Reduce(F);
Expand(F);
Irredundant(F);

while (F is improved);
return F ;

end;

Figure 2.3: Two-level minimization heuristic.

x y z f
0 0 0 1
0 1− 1
−11 1

Expand−→

x y z f
0− 0 1
0 1− 1
−1 1 1

Irredundant−→

x y z f
0− 0 1
−1 1 1

Figure 2.4: Application of ESPRESSO

function. Cube 01− becomes redundant because minterms that it covers are also covered by other
cubes of the function. This cube 01− is removed using the process Irrendundant. 2

Although these heuristic methods, like ESPRESSO, are approximated techniques, in many cases
they are able to find the optimal cover, as it is shown in the previous example.

2.1.3 Multi-Level Logic Synthesis

As we explained in the previous section, two-level minimization was initially used to simplify PLA
arrays. However, circuits became more complex and PLA technology was impractical and it was
replaced by technologies based on MOSFET transistors, like nMOS and CMOS. Although MOS-
FET transistors appeared in the sixties, they did not become predominant in the digital circuits until
the eighties. This technology introduced some advantages with regard to PLA implementation. The
circuits became smaller in area size, faster and less power was consumed. Circuits with this new
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technology tended to be implemented with several levels. The abstraction of the circuits in Boolean
networks was excellent to describe them in logic synthesis.

The advantage of multi-level logic optimization is the minimization of the Boolean network with
a new complete methodology based on factorization, decomposition, don’t care computation, etc.
Moreover, multiple-objective minimization can be applied on this new representation in Boolean
networks.

The Boolean functions of the nodes of a Boolean network can be represented in different ways.
Each representation has advantages and drawbacks. Networks with nodes with complex functions
are typically used on area minimization since better optimization can be done on large functions
based on two-level minimization. The utilization of two-input function, e.g., NAND2 represen-
tation, is a good selection to measure the complexity of a network. The number of nodes and the
maximum number of levels between PIs and POs based on this representation give a good estimation
of the area and delay respectively of the network.

The structure of a network can be improved by applying local transformations. There are some
standard transformations that can be applied in any order to modify the structure towards a desired
objective minimization, for instance, the reduction of the size of the network. The most relevant
transformations, extracted from [74], are reviewed next:

• Substitution: A node of a Boolean network can be simplified using as a new fanin another
existing node of the network. This transformation requires the creation of an interconnection
between these two nodes. For example, consider the nodes x and t of a network. The node x
can be expressed in terms of t applying substitution.

x = ya+ yb+ e
t = a+b

Substitution−→ x = yt + e
t = a+b

• Extraction: Multiple nodes can have a common factor1. This factor can be extracted and
stored in a new node. The variable associated with the new node allows to simplify the two
nodes by replacing the common factor. Consider the nodes x and y with the common factor
a + b. This factor can be extracted as a new node z. Next, x and y can be expressed in terms
of z.

x = (a+b)e
y = (a+b)(c+d)+ e Extraction−→

x = ze
y = z(c+d)+ e
z = a+b

1A factor is defined as a product or a sum of single literals or other factors.
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• Elimination: A node can be removed from a network by merging its function with its fanout
nodes. This transformation is helpful to create larger nodes where other transformations can
be applied. For example, consider the nodes x, y and z. The node x can be deleted and the
nodes y and z can assimilate its functionality.

x = a+b
y = x+ c
z = xcd

Elimination−→ y = a+b+ c
z = (a+b)cd

• Decomposition: A node can be decomposed in several nodes that will form a subnetwork
equivalent to the original node. A unique node can be created by calling recursively to elimi-
nation and, then, decomposition can be applied depending on an objective function. This type
of transformation will be reviewed in Section 2.2. Consider the node x. The factor ac+bc+d
can be extracted. Recursively, this factor can also be decomposed in (a+b)c+d.

x = ace+bce+de+g
Decomposition−→ x = ye+g

y = ac+bc+d
Decomposition−→

x = ye+g
y = zc+d
z = a+b

All these transformations rely on the search of factors. There are two basic ways to find them:
the algebraic and Boolean model. In order to obtain factors quickly, the algebraic model [34] was
introduced in the beginning of the eighties. The functions are represented as polynomials, where
some Boolean operations, like the identity, are ignored. This reduction helps to simplify the model
at the expenses of the quality of the result. The algebraic division is the fundamental operation used
in the algebraic model. Using division, all possible algebraic divisors can be found for a function.

A transformation like extraction of common factors requires the computation of all divisors.
The concept of Kernels [34] was introduced to cut off the exploration of common factors. Basically,
a kernel is a factor of a function that cannot be divided by any other factor that is a cube. The
intersection between the kernels of different functions identifies good common factors among the
functions. Using kernels, fast heuristic factoring algorithms have been also developed to find near-
optimal factored forms.

Boolean division is more powerful. Boolean equivalence between logic functions can be used.
The optimization quality improves but the runtime also increases because of the huge search space
of possible factors. Nevertheless, a trade-off between speed and quality can be found. Besides, a
combination method with algebraic and Boolean divisors [33, 121] can be also used.
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Figure 2.5: Don’t care distribution.

2.1.4 Flexibility in Boolean functions
The flexibility of a function arises from the surrounding environment in the Boolean network. Based
on the logic information of the transitive fanins and fanouts, a set of conditions can be computed
related to the visibility of the targeted function in the global network. This flexibility generates an
interval of Boolean functions that can be selected without changing the behavior of the network.

Flexibility computation was initially exploited in two-level minimization. However, flexibility is
more relevant in multi-level minimization, since, similar to two-level, a subnetwork can be replaced
by another one from an interval of possible subnetwork computed from the surrounding flexibility
without affecting the functionality of the global Boolean network.

The flexibility can be expressed with don’t cares. The set of minterms of the don’t care function
is called don’t care set2. The don’t care conditions related to a function implicitly generates an inter-
val of feasible functions. In general, two-level minimization exploits this interval to find the optimal
function in terms of number of cubes and/or literals,. . . . Likewise in multi-level minimization, the
don’t care conditions implicitly generate an interval of feasible subnetworks.

Several types of don’t cares can be extracted from the structure of the circuit: controllability,
satisfiability and observability don’t cares.

• The controllability don’t care set (CDC) is the set of input patterns that are never produced
by the environment.

• The satisfiability don’t care set (SDC) is the flexibility associated to each internal function of
the network. The computation is straightforward using the equation SDC = x⊕ fx.

• The observability don’t care set (ODC) is the set of input patterns that produce situations
where the output of the function is not observed at the primary outputs of the network.

2Hereafter, we will indistinctively talk about don’t cares and don’t care set.
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The computation of the don’t cares can be a complex process depending on the size of the
network. The union of all don’t care conditions are jointly denoted as external don’t care (EXDC)
conditions of the current network and they are extracted from the surrounding combinational logic
or the reachable states of the sequential elements where the current network is enclosed. Figure 2.5,
extracted from [116], depicts how the different types of don’t care are distributed around a network.

Types of flexibility

The previous don’t care conditions refer to the most basic types of flexibility commonly exploited.
However, there are other types of flexibility that arise from the network. In this section, a brief
overview to the different classes is given. Figure 2.6, extracted from [142], depicts the flowchart
depending on the level of captured flexibility.

At the bottom of the flowchart, there are the complete specified functions where no flexibility can
be used to optimize the function. Then, the incomplete specified function (ISFs) defines an interval
of permissible functions using the don’t care set. Here, the minimal function in number of cubes and
literals can be obtained with two-level minimizers like ESPRESSO. Single-output functions can be
easily generalized to multiple-output functions where several methods have been also proposed to
optimize them [22, 62, 137].

Next, models that capture more flexibility are described. Intuitively, a Boolean relation (BR)
captures several output ”choices” for each minterm of a multiple-output function. Note that, con-
ventional don’t cares can not express this type of flexibility. The don’t care set is limited to only
express the flexibility for each minterm of a single-output function. Different problems can be
solved with Boolean relations: decomposition, Boolean matching,... On Chapter 3, a more detailed
description on Boolean relations is given and a new methodology to solve a Boolean relation is
presented as a contribution of the thesis. Another type of flexibility is the Compatible Set of Per-
missible Functions (CSPFs). This set of functions arises from the don’t care set of the network and
they are described with ISFs.

Finally, the multiple Boolean relation (MBR) generalizes all types of flexibility. BRs and CSPFs
are particular cases of a MBR. On [142] is presented a systematic approach to solve MBR. Problems
like FPGA Rectification [100] and Synchronous Recurrent Equations [63] can be tackled with this
type of flexibility.

Another type of flexibility, not detailed in the figure, is the set of pairs of functions to be dis-
tinguished (SPFDs). This set is a generalization of the ODC and a specialization of the MBR. A
set of allowable functions can be determined from the ODCs of a target function on a Boolean
network. Note that, this set of functions can be independent and infeasible to represent by an ISF
function. The SPFD is represented as a set of pairs of input values that needs to be distinguished at
the outputs. Basically, the objective of a SPFD is to find a function such that satisfies all the pairs of
input values. Efficient methods have been developed to compute and solve SPFDs [170] for small-
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Figure 2.7: A BDD representation of F = abc+bc.

and medium-sized functions. In multi-level minimization, the flexibility of a node of a network
can be computed by an SPFD. The best function that satisfies the SPFD can replace the original
node. The implementation of the new function may require some changes in the surrounding en-
vironment. Other problems can be also tackled with SPFD, for example rewiring optimization on
FPGAs [54, 95, 149].

2.1.5 BDD-based optimization

A Binary Decision Diagram (BDD) is a graph structure that is used to represent Boolean functions.
The advantage of BDDs is that functions with a large number of variables can be described with a
more compact structure compared to other representations, like truth tables. Although the size of a
BDD may vary from linear to exponential with regard to the number of input variables in the worst
case, many operations have a polynomial complexity.

Example 2.1.6 Figure 2.7 illustrates an example of a BDD3 for the function F = abc + bc. If the
BDD is traversed from the root node to the node with constant value one exploring all the feasible
paths, the three minterms abc, abc and abc of F are found. 2

Although BDDs are relatively old [10,102], the first applications in VLSI design appeared in the
eighties. The new ideas brought by Bryant [38] helped to develop efficient BDDs packages [30,150]
based on Reduced Ordered BDD (ROBDD). With an efficient implementation, a BDD package
offers a more efficient memory space representation and a lower cost operations compared to other
approaches. Besides, a BDD provides a fast canonicity check. Two functions are equivalent if they
have the same BDD representation.

3The figure shows the BDD in the Reduced Ordered BDD representation.
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BDDs have been used in many problems in logic synthesis and verification, like circuit opti-
mization, testing, combinational and FSM equivalence checking. BDDs are an important symbolic
representation for the modelization of finite-state verification problems [82]. In many cases, BDDs
have been able to handle state spaces that would be utterly hopeless if the states were stored indi-
vidually. Currently, many variants of BDDs have been also proposed to improve the efficiency on
particular problems: zero-suppressed BDDs (ZDD) [118], algebraic BDDs (ADD) [132], among
others.

In this section, we will not survey how to build the BDD representation of a function. An
extended explanation can be found in [38]. Several BDD-based logic optimization techniques will
be reviewed.

Non-essential Variables [37]

Definition 2.1.6 Non-essential variable. A variable xi ∈ {x1,x2 · · · ,xn} of F is non-essential if and
only if Fxi = Fxi . 2

This property is particular useful in incomplete specified functions.

Theorem 2.1.1 4 Let be F a function in the interval [G,H]. A variable xi ∈ {x1,x2 · · · ,xn} of F is
non-essential if and only if

∃Gxi ⊆ Fxi ⊆ ∀Hxi

2

In Section 2.1.4, an ISF was defined as an interval of feasible complete specified functions. The
elimination of the non-essential variables contributes to reduce the size of the support on the ISF
without loosing any feasible function. As a consequence, the complexity of the ISF minimization
process is also decreased.

Note that, this property has a big impact as a preprocess in ISF minimization based on BDD rep-
resentation. The elimination of non-essential variables reduces the size of the BDDs and, therefore,
the operations that need to traverse the BDD are sped up.

ISOP minimization

The Minato-Morreale [117] method introduced a new way to minimize Boolean functions in BDD
representation. Larger functions could be optimized compared to ESPRESSO. The technique is
based on the recursive Morreale’s algorithm [122] to find Irredundant sum-of-products (ISOP).

4The proof can be found in pp. 107 in [37].
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This method recursively deletes redundant cubes and literals from a given SOP. Experimentally,
it has been proved that this method produces solutions that sometimes are far from the optimal one.
However, its implementation in BDDs is efficient in time and memory space.

Constrain-Restrict minimization

Couldert and De Madre [60] defined the constrain and restrict operations to simplify the size of the
BDDs using don’t cares. The inputs of these operations are two BDDs. The first BDD represents
the function to be minimized and the second one defines the care set of the function.

There is only a basic difference between both operations. During the minimization, the constrain
operation preserves all the variables of the BDD, meanwhile, the restrict operation minimizes the
support of the BDD.

Safe minimization

The drawback of the constrain and restrict operations is that the size of the final BDD can increase.
To avoid this problem, the implementation of these operations incorporates a final condition to check
the size of the result. If there is such a case where the size is larger, the original BDD is returned.

Hong et al. [79] developed several heuristics to perform a safe BDD minimization. In Hong’s ap-
proach, the size of the BDD is guaranteed. Two heuristics were developed to detect the nodes where
a minimization process can be applied without increasing the size of the BDD: basic compaction
and leaf-identifying. Then, the minimization is performed on the identified nodes.

2.2 Decomposition
Decomposition is a transformation method in multi-level minimization. In this section, a review of
the classical algorithms is performed. These methods use factorization algorithms based on alge-
braic and Boolean division to obtain a good decomposition. The difference between factorization
and decomposition is that decomposition creates a new node in the network for each division.

Intuitively, a good factorization algorithm has to find a good divisor to divide the Boolean func-
tion. The factorization algorithm can be recursively applied to the quotient, divisor and remainder
of the division until no more divisions can be performed. Good factorization algorithms based on
algebraic division are presented in [34] trading-off quality and runtime. Quick factorizations are
found by reducing the level of accuracy during the search of good divisors.

Boolean factorization based on Boolean division has been also applied [33]. The recursive
method differs on the selection of the divisor and the division algorithm. The divisor is found by
selecting the best algebraic kernel and the Boolean division algorithm improves the algebraic one
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by involving a two-level minimization step during the process of division. Although the results of
the Boolean factorization are better, the runtime can be significantly increased.

In [33], a decomposition approach is also presented. Initially, the nodes are decomposed based
on previous factorization methods. Then, area is saved by applying substitution on each node of the
network, where common factors are identified, and by eliminating single literal functions.

The previous decomposition method targets at minimizing the size of the network. Timing-
driven algorithms has been also presented [56, 120, 154, 169, 171]. Initially, the Boolean network is
collapsed to create larger functions, where better factors can be found, and the Boolean functions
are recursively decomposed targeting at reducing the number of levels of logic. These approaches,
based on bi-decomposition, will be described in more detail in Chapter 5 with our contribution in
timing-driven n-way decomposition.

2.3 Partitioning
Partitioning is a well-known technique that has been used in all the phases of the design flow and it
is typically used to reduce the complexity of the optimization problems at the expense of the quality
of the final solution. It has been extensively applied from behavioral synthesis, when the register
transfer level (RTL) is partitioned, until physical design, on placement and routing.

Partitioning is often formulated as a min-cut problem. There are two main approaches exten-
sively used to solve min-cut: Kerningham-Lin [93] and Fiduccia-Mattheyses [69]. Many modifi-
cations of these two approaches have appeared to solve different types of problems. The objective
of these methods is to perform a two-way balanced min-cut bi-partition. Some extensions upgrade
these algorithms to multi-way partition.

The Kernigham-Lin heuristic starts with a random balanced bi-partition. Pairs of vertices are
swapped between clusters. The exchange with better improvement in the min-cut is selected. This
process is iteratively done until no more improvement is found. The swapping heuristic helps to
jump from local minimal solutions. However, the cost of this method is O(n3). Fiduccia-Mattheyses
heuristic reduces the complexity of each iteration to linear time. This reduction is achieved by
eliminating the swapping operation. The basic difference is that only one cell is moved at a time.

Currently, there is a generic tool that can be also used to perform min-cut partitioning:
hMetis [89]. hMetis is a general purpose multi-level hypergraph partitioning method that recur-
sively applies bisection to perform a multi-way partition. The improvement in comparison with the
previous approaches is related to the fast coarsening method to obtain the partition and the final
refinement step to improve the quality of the min-cut. The last publications of this approach [3,140]
showed the possibility to apply multi-objective functions.

Min-cut partitioning is a good option in many problems, like RTL partitioning [92, 165] or
placement [4,71], since the main factor is the graph representation of the circuit. Nevertheless, min-
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Figure 2.8: (a) Initial window of 1 x 1 from targeted node T . (b) Final window after applying
reconverge paths heuristic.

cut is not always the best choice in the logic optimization phase since it does not take into account
the internal logic behavior of the nodes.

In logic synthesis, partitioning has been also applied to different complex problems. An example
is don’t care computation. The set of don’t cares must be approximated in large networks since it
is not affordable the computation, even if a BDD-based approach is used. In [119], a partition
method is presented to approximate this calculation. A small window of nodes around the targeted
node is selected to limit the computation of the don’t cares. In Fig. 2.8-(a), a window of 1 x 1 is
depicted. Here, the window includes all the fanins and fanouts at distance 1 of the targeted node
T . However, this window is too small to compute any useful don’t care for logic optimization.
In [119], the reconverge paths heuristic is used to converge the paths from the outputs to the inputs
of the window. This window, illustrated in Fig. 2.8-(b), captures better the don’t care information
of the outputs of the window.

Another problem where partition can be applied is timing-driven minimization. Several ap-
proaches have been developed [9, 45, 46, 55, 125, 156, 172]. In Chapter 4, they will be reviewed
together with our contribution in timing-driven logic partitioning. Our approach produces parti-
tions based on the theory of vertex dominator [66].

2.4 Technology-dependent techniques

Technology mapping is the link between the logic and the physical domain. After technology map-
ping, the mapped circuit may not meet the delay constraints of the specification. An incremental
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Figure 2.9: (a) Network before Technology mapping. (b) Two possible mappings of Network (a).
(c) Library used for mapping.

logic optimization method on the critical sections of the circuit can be applied to improve the result.
However, other post-process techniques can be also used. Here, an overview is presented in tech-
nology mapping and this post-process techniques like gate sizing, duplication and buffer insertion.

2.4.1 Technology mapping

Technology mapping is a complex problem that consists of mapping a Boolean network into a
library of gates to obtain a circuit where each node represents a logic gate. Each gate stored in the
library is represented by a logic function and it has associated a technology cost in area and delay.
The mapped circuit must have a good cost in area and must satisfy the delay constraints (cycle time)
imposed in the specifications. Formally, the representation of the network and the logic functions
of the gates are defined as subject graph and pattern graph respectively.

Three general approaches have been used in technology mapping: rule-based, tree-covering, and
graph-covering. Rule-based covering [84] was the first developed technique. A database of trans-
formation rules is used to perform the covering. The algorithm searches patterns in the Boolean
network and checks if there is some rule associated to this pattern. However, the database is tech-
nological dependant of the library of gates and the refinement of the rules depends on a large exper-
imental process.

Tree covering [94] and graph covering [99, 103, 155] improves the results of the previous ap-
proach. The Boolean network is divided in a forest of trees in tree covering approach and each tree
is independently mapped using a technique similar to the problem of code generation in compil-
ers where the objective is to map a set of expressions onto a set of machine instructions. Graph
covering improves the results by increasing the number of covering patterns found, mostly in the
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multiple-fanout nodes where tree covering performs the cuts.
The covering between the subject graph and the patterns of the gates specified in the library is

performed using a process called pattern matching. The most relevant matching approaches are
structural matching [7] and Boolean matching [114]. In the structural matching, the patterns are
compared using its DAG-representation. This technique is only feasible in small gates since all
possible DAG representations on the pattern graph must be found. In the Boolean matching, this
problem disappears. The pattern matching is performed based on a canonical representation of the
pattern graphs.

Figure 2.9 shows a process of mapping. Picture (a) represents the subject graph and (c) repre-
sents the library of gates. The library describes for each gate its name, symbol, pattern and cost. For
the sake of simplicity, only one cost is associated to the gate. Note that, an area and delay cost, i.e.
resistance, capacitance of the pins, is usually defined for each gate. Initially, the process of matching
identifies several patterns for each node as it is shown in (b). The possible covers are identified by
an area-delay pair and they are stored in a curve of Pareto points where only the best solutions are
kept. The selection of the best pattern is done depending on the objective function over the set of
points in the curve. In this example, the primary output has two possible pareto points, NAND2 and
NAND3 with cost 8 and 4 respectively. Gate NAND3 will be selected due to the best minimization
of the global cost.

2.4.2 Gate Sizing
Gate sizing is a well-known approach to meet the timing and power constraints without changing
the topology of the circuit. The input is a cell library and a mapped circuit. Gate sizing (or simply
sizing) consists of changing cells with functionally-identical ones in the critical paths of the circuit
targeting at minimizing the total delay cost.

Gate sizing is a post-technology mapping technique that can be used with or without layout
information. Sizing is commonly applied after technology mapping [25] when large CMOS libraries
are used. The runtime of a technology mapper mostly depends on the number of pattern graphs that
are checked and the number of gates per pattern. Therefore, a representative cell can be defined
for each family of cells and they can be used in technology mapping instead of the original library
to reduce the runtime complexity. Then, gate sizing is applied with the standard library to refine
the solution of the mapping towards the objective functions. Timing [57], power [52], crosstalk
noise [75], and coupling noise [148] optimization are some examples of the state-of-art objectives.

2.4.3 Buffer insertion
Buffer insertion contributes to reduce the capacitance on gates with large number of fanouts by
inserting multiple inverters in the interconnection. The total area of the circuit can be affected
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since a large number of inverters may be needed. However, the improvement on delay and power
consumption is considerable.

In load-based delay models, this problem is also known as fanout optimization [123, 124, 146]
and sometimes these techniques have been integrated with the technology mapping tool as a post-
process to improve the large fanout in some cells.

On routing phase, buffer insertion contributes to reduce considerably the delay and the conges-
tion produced by the wires. Here, the problem is also known as repeater insertion since a buffer can
be also seen as a ”small amplifier” of the signal. The most referenced work in repeater insertion was
published by Van Ginneken [163]. Buffer insertion is done after routing on top of the existing wires,
and buffers are only explored on predefined fixed locations. Other approaches have been developed
after this publication, and they will be reviewed on Chapter 6.

2.4.4 Gate duplication
A second technique to deal with high fanout is gate duplication. Gate duplication has been shown
as an effective method in gates with large fanout. Basically, the targeted cell is duplicated and the
fanouts are divided in two clusters. However, duplication is not always a good choice. Note that,
the capacitance in the immediate fanins of the targeted cell increases. Therefore, there is a trade-off
between the improved delay on the fanouts and the increased capacitance on the fanins.

An important advantage with regard to buffer insertion is the considerable reduction of the total
area and levels of the circuit. Duplication produces a minor number of extra cells in the circuit. The
area of application of gate duplication also covers from after technology mapping [151, 152] until
placement [43, 96]. These techniques will be also reviewed in Chapter 6.

2.4.5 Physical-aware logic synthesis
In Chapter 6, our last contribution will be presented where buffer insertion and gate duplication
are combined taking into account layout information. This technique uses the principle of ECO
to incrementally improve the current placement design by performing small modifications. A recip-
rocal feedback between placement and gate duplication and buffer insertion has been implemented.



Chapter 3

A Recursive Paradigm To Solve Boolean
Relations

3.1 Introduction
As we introduced in Section 2.1.4, flexibility in logic synthesis can be expressed using different
abstract methods like don’t care conditions (DCs), Boolean Relations (BRs), Multiple Boolean
Relations (MBRs) [142], sets of pairs of functions to be distinguished (SPFDs) [116, 141].

Don’t cares form the basis for minimization of incompletely specified functions (ISFs) and
multi-level networks. Boolean Relations allow to capture more flexibility than ISFs. However,
while minimization of ISFs is a unate covering problem, solving Boolean relations is a binate cov-
ering problem and hence is significantly more difficult [116].

Fig. 3.1(a) illustrates an example of a Boolean relation with two input and two output variables.
It is a subset of B2×B2, where B = {0,1}. The input vertex 10 is related to two different output
vertices {00,11}, and 11 is related to another pair {10,11}. The flexibility for 10 and 11 is dif-
ferent. The latter can be captured by introducing a don’t care into the range of output variables
({10,11} ≡ {1−})1. The former, {00,11}, cannot be expressed with don’t cares.

To solve a Boolean relation one needs to find a compatible multi-output function with minimum
cost. Figures 3.1(b-c) depict two functions that are compatible with the original Boolean relation.

Many problems in logic design can be reduced to Boolean relations: Boolean matching tech-
niques for library binding [26], FSM encoding [109], Boolean decomposition [64], etc. For exam-
ple, given a cut in the network, the flexibility of the nodes at the cut can be specified with a Boolean
relation. E.g. if the cut contains two nodes y1,y2 that reconverge to an AND gate, and for a given
primary vector the output of the AND gate must be 0, then the flexibility at y1,y2 is {00,01,10}.

1The don’t care value {−} denotes that the output can take all the values from the codomain B.

27
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Figure 3.1: Example of Boolean relation (a) and two compatible functions (b,c).

This chapter, based on the results in [18, 21], presents a novel recursive algorithm for solving
Boolean relations. The algorithm has an efficient strategy in exploring the large space of solutions
and can be used in exact mode (for small relations) and in heuristic approximate mode for larger
relations. The cost function can be tuned for different parameters relating to area or delay in comput-
ing a Boolean relation. Moreover, the algorithm can further be adjusted to solve Boolean equations.
The experimental results show tangible improvements with regard to previous heuristic approaches.
As an application of the solver, this chapter describes the use of Boolean relations for the prob-
lem of the multi-way decomposition of Boolean functions in logic circuits. The experiments show
that significant delay and area improvements can be achieved by using our solver in logic circuit
implementation.

The rest of the chapter is organized as follows. Section 3.2 gives an overview of the recursive
paradigm. Section 3.3 introduces the previous work in solvers of Boolean relations. Section 3.4 and
Section 3.5 present the basic definitions on the Boolean relation domain and the basis of recursive
algorithm, respectively. Details of the solver are explained in Section 3.6. The major heuristics
used to implement the recursive algorithm are presented in Section 3.7. Section 3.8 introduces
how to solve a system of Boolean equations with a Boolean relation. Finally, Section 3.9 reports
experimental results and Section 3.10 introduces an application where Boolean relations can be
applied.

3.2 Overview
In this section, we will introduce the basis of the recursive paradigm. The formal details will be
presented in Section 3.5. Consider the Boolean relation defined in Fig. 3.1(a). For the sake of
simplicity, the Boolean relation will be represented with the same notation of sets of elements. The
recursive paradigm illustrated in Fig. 3.2 is based on the following steps:
(a) Over-approximate the Boolean relation into a multiple-output incomplete specified function2

2See Section 3.4 for the formal definitions of Boolean relation and multiple-output incomplete specified function.
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Figure 3.2: Steps of the recursive paradigm implemented in BREL. (a) Over-approximate the
Boolean relation to a multiple-output incomplete specified function. (b) Multiple-output incom-
plete specified function minimization. (c) Selection of one input vertex where there is a conflict.
(d) Decomposition in two new Boolean relations. (e) Recursively solve the subrelations.

(MISF): The input vertices such that their output vertices cannot be captured with conventional
don’t cares are expanded to cover more vertices of the output set. In the Boolean relation
presented in Fig. 3.1(a), the output {00,11} of the input vertex {10} cannot be covered with
don’t cares. Therefore, it is expanded to {−−}.

(b) Use a standard MISF minimization method to obtain a multiple-output function covered by the
MISF.

(c) If the resulting function has no conflicts with the original relation, then report the result. Oth-
erwise, select one element of the input set where there is an incompatibility with the original
Boolean relation. In the example, the incompatibility appears in the input vertex {10}, since
in the resulting function it maps to the output vertex {10} that was not in the original range
({00,11}) for this input vertex.

(d) Decompose the original Boolean relation into two smaller relations by creating a partition in
the range of the output vertices of the selected incompatible input vertex.

(e) Recursively solve the smaller Boolean relations and select the best compatible solution out of
the explored solutions.



30 CHAPTER 3. A RECURSIVE PARADIGM TO SOLVE BOOLEAN RELATIONS

3.3 Previous work

Several exact and heuristic approaches have been proposed to solve Boolean relations. The exact
methods reported in [35,36] tackle the problem of solving a Boolean Relation similarly to the Quine-
McCluskey procedure [115]. The definitions of prime and prime implicant in Boolean functions are
generalized to candidate prime (c-prime) and c-prime implicant in Boolean relations. Analogous
to the Quine-McCluskey procedure, first all c-primes are generated and, then, the minimization is
formulated as a binate covering problem (BCP). The covering problem is solved by Integer Linear
Programming [139], where the objective is to find optimum sum-of-products representation of the
Boolean relation. Other exact methods were presented in [85, 109] using a Branch-and-Bound
algorithm based on the BCP formulation. The major contribution of these approaches was the
representation of the constraints of the BCP with Binary Decision Diagrams [30]. This compact
representation helped to solve larger relations consuming less memory. However, the exact methods
are limited to solve small and medium instances due to the complexity.

Heuristic methods provide approximated solutions with a trade-off between the quality of the so-
lutions and the computational complexity. Herb [72] was the first heuristic method for Boolean rela-
tions based on two-level minimization and test pattern generation techniques. The ESPRESSO [32]
approach was taken as a reference in the sense that the loop reduce-expand-irredundant is repeatedly
applied as long as the cost of the solution decreases. The drawback of this procedure is that the test
pattern generation methodology limits the expand operation to one variable at a time. This reduction
restricts the search space and increases the overall runtime. gyocro [166] was proposed as another
heuristic approach also based on ESPRESSO where some of the Herb’s weaknesses were amended.
Basically, the difference appears in the expand procedure where multiple variables can be taken.
The objective cost function in gyocro is slightly different compared with the previous approaches.
The minimum sum-of-products with the smallest number of literals per product is searched.

Our experience demonstrates that the number of products is not necessarily a good metric for
estimating the quality of the solutions. Sometimes one needs other objectives, e.g. to balance the
functions for delay optimization or to balance the support of the functions for reducing layout con-
gestion. The recursive approach presented in this chapter accepts a customizable cost function that
allows to guide the search towards a user-defined goal. We also observed that heuristic methods, like
gyocro, often cannot escape from local minima determined by the initial solution, since the reduce-
expand-irredundant loop is not always capable of hill climbing. An example of this limitation is
presented in Section 3.9.1.
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3.4 Preliminaries
Definition 3.4.1 Boolean function. A Boolean function f is a function f : Bn → B, where
B = {0,1}. A Boolean function can also be interpreted as the set of vertices x ∈ Bn such that
f (x) = 1. 2

Definition 3.4.2 Literals, minterms, cubes and covers. A literal is a variable or its complement.
The conjunction (or product) of a set of literals is called a cube. A cube is called a minterm when
the number of literals of the cube corresponds to the number of variables of the function. A function
can be represented by a cover that is defined as a disjunction (or sum) of cubes. 2

Definition 3.4.3 Multiple-output Boolean function. A multiple-output Boolean function f is a func-
tion f : Bn → Bm. It can be also specified as a vector of Boolean functions f = ( f1, f2, . . . , fm). 2

Hereafter, we will use X = (x1, . . . ,xn) and Y = (y1, . . . ,ym) to denote the set of inputs and out-
puts of a multiple-output Boolean function respectively.

Definition 3.4.4 Incompletely specified Boolean function. An incompletely specified Boolean func-
tion (ISF) is a function f : Bn → B∪{−}, where− is called the don’t care value of the function. An
ISF can be specified by three Boolean functions: OFF( f ), ON( f ) and DC( f ) that characterize the
vertices in Bn with image 0, 1 and −, respectively. 2

An ISF defines an interval of Boolean functions between ON( f ) and ON( f )∪DC( f ). An im-
plementation of an ISF f is a Boolean function f̂ such that

ON( f )⊆ f̂ ⊆ ON( f )∪DC( f )

Definition 3.4.5 Multiple-output incompletely specified function. A multiple-output ISF (MISF) is
a function f : Bn → (B∪{−})m. It can be also specified as a vector of ISFs f = ( f1, f2, . . . , fm).

2

An MISF also defines an interval of multiple-output functions. The objective of a two-level
minimizer is to find a function with the minimum (or minimal) sum-of-products representation that
covers the MISF. Efficient methods for computing minimal sum-of-products representations are
well-known [6, 61, 134].

Definition 3.4.6 Boolean relation. A Boolean relation (BR) R is a subset of Bn×Bm, where Bn and
Bm are called the input and output sets of R, respectively. A Boolean relation is left-total if for all
x ∈ Bn, there is y ∈ Bm such that (x,y) ∈ R. We will also refer to the left-total Boolean relations as
well-defined following the nomenclature of [166]. A Boolean relation is functional if every input
vertex is associated with a single output vertex. 2
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Reusing the notation for the multiple-output functions, X = (x1, . . . ,xn) and Y = (y1, . . . ,ym)
denote the set of inputs and outputs of a relation. Hereafter, we will indistinctively use the terms
Boolean relation, BR and relation.

Definition 3.4.7 Natural join [50]. The natural join over the input set X between two relations R
and S is defined as

R(X ,Y ) 1X S(X ,Z) = {(x,y,z)|(x,y) ∈ R ∧ (x,z) ∈ S}

Note that, when the relations R and S have the same input and output set and the natural join is
applied over all the variables, the natural join is equivalent to the intersection operator. 2

The next two definitions describe how functions, ISFs and MISFs can be represented with the
notation of Boolean relations.

Definition 3.4.8 Relationship between an incomplete function and a BR. The don’t care value {−}
assigned to the output of a minterm of an ISF denotes all the permissible values that the minterm
can take from B. Therefore, an ISF fy can be also interpreted as a Boolean relation Fy ⊆ Bn×B
such that

• (x,0) ∈ Fy if and only if fy(x) ∈ {0,−},

• (x,1) ∈ Fy if and only if fy(x) ∈ {1,−}.

where fy(x) = {−} implies that both (x,0) and (x,1) belong to the relation. This definition implies
a mutual relationship between left-total Boolean relations Fy ⊆ Bn×B and ISFs.

An MISF f can be also defined as a Boolean relation R⊆ Bn×Bm such that

R(X ,y1,y2, . . . ,ym) = 1X
i∈{1,...,m}

Fyi(X ,yi)

2

Example 3.4.1 Consider the next two ISF functions in tabular representation:

x1x2 y1
00 0
01 0
10 −
11 1

x1x2 y2
00 0
01 1
10 −
11 −

They can be represented as Boolean relations from Def. 3.4.8 where the don’t care {−} takes all
the permissible values from B. Similarly, the defined MISF from the conjunction of these ISFs can
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be also described as a Boolean relation from Def. 3.4.8. The resulting Boolean relations of the ISFs
and the MISF are as follows:

ISFs
x1x2 y1 y2
00 {0} {0}
01 {0} {1}
10 {0,1} {0,1}
11 {1} {0,1}

MISF
x1x2 y1y2
00 {00}
01 {01}
10 {00,01,10,11}
11 {10,11}

2

Definition 3.4.9 Compatible functions. Given a Boolean relation R, the set of multiple-output func-
tions compatible with R is defined as

F(R) = {F | F ⊆ R ∧ F is a multiple-output function}

Note that F(R) = /0 if R is not well defined. 2

Example 3.4.2 This example below shows a tabular representation of the Boolean relation that
corresponds to Fig. 3.1(a).

x1x2 y1y2
00 {00}
01 {01}
10 {00,11}
11 {10,11}

The two Boolean functions below illustrate examples of a compatible and an incompatible func-
tion for the previously defined BR.

x1x2 y1y2
00 00
01 01
10 11
11 11

Compatible function

x1x2 y1y2
00 00
01 01
10 10
11 11

Incompatible function
2

We will next discuss the basic principles of solving BRs (Section 3.5), the details of the BR
solver (Section 3.6) and the lower level implementation aspects (Section 3.7).
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3.5 Basics of Solving a Boolean relation

3.5.1 Semi-lattice of well-defined Boolean relations
In this section, the boundaries of the search space are defined. As we will show, the search space of
the well-defined Boolean relations is a semi-lattice. To demonstrate the existence of the semi-lattice,
first, let us prove that there is a lattice over the set of Boolean relations in Bn×Bm.

Property 3.5.1 Lattice of Boolean relations. (R,⊆) is a lattice with the top element Bn×Bm and
the bottom element /0. The join and meet operations are the intersection and the union of relations,
respectively. 2

The proof of this property follows directly from the properties of the union and the intersection
on sets of finite Boolean vectors.

Lemma 3.5.1 If R is a functional Boolean relation and R′ ⊂ R, then R′ is not well defined.
Proof: By definition, there is only one output vertex for each input vertex in a functional Boolean
relation. A relation R′ such that R′ ⊂ R has at least one input vertex without image on Bm. Thus, R′

is not well defined. 2

Finally, the definition of the semi-lattice is straightforward from the previous lemmas.

Theorem 3.5.1 Semi-lattice of well-defined Boolean relations. The set of well-defined Boolean
relations with the partial order⊆ is a semi-lattice with one greatest element Bn×Bm and 2m2n

least
elements that correspond to the elements of F(Bn×Bm).
Proof: Two statements have to be proved: the existence of the semi-lattice and the upper and lower
bounds of this semi-lattice. First, the semi-lattice of well-defined Boolean relations can be easily
derived from Property 3.5.1. A lattice implicitly defines two semi-lattices, one for each operator
(union and intersection). Therefore, the semi-lattice over the operator union exists and, therefore,
over the partial order ⊆. Second, let us demonstrate the greatest and the least elements;

• The supremum element is Bn×Bm. It is clearly well defined. There is no other relation that
subsumes it.

• The least lower bound elements are all the compatible multiple-output functions with n inputs
and m outputs from the set F(Bn×Bm) defined by Def. 3.4.9. Lemma 3.5.1 defines that there
is no relation R′ such that R′ ⊂ F(Bn×Bm) and R′ well defined. The number of elements in
F(Bn×Bm) is equal to 2m2n

that is the product of m single output functions from a set of 22n

possible Boolean functions.

2
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3.5.2 Projection of a Boolean relation to a Multiple-output ISF
This section introduces a method to obtain an MISF from a Boolean relation. This approximation is
useful to derive a fast solution for a Boolean relation.

Definition 3.5.1 Projection of a Boolean relation. The projection of a relation R(X ,Y ) onto the
output yi is another relation (R ↓ yi) such that

(R ↓ yi) = {(X ,z) | ∃y1, . . . ,yi−1,yi+1, . . . ,ym

such that (X ,y1, . . . ,yi−1,z,yi+1, . . . ,ym) ∈ R}

The projection of a well-defined relation R onto one output yi implicitly defines an ISF for that
output. Note that, the projection can be extended to multiple outputs. 2

Example 3.5.1 From the relation presented in Example 3.4.2 the following projections can be de-
rived:

x1x2 R ↓ y1
00 {0}
01 {0}
10 {0,1}
11 {1}

x1x2 R ↓ y2
00 {0}
01 {1}
10 {0,1}
11 {0,1}

2

Definition 3.5.2 MISF covering a Boolean Relation. Given a Boolean relation R, an MISF covering
R can be obtained as follows:

MISFR(X ,Y ) = 1X
i∈{1,...,m}

(R ↓ yi)

The relation MISFR(X ,Y ) is a vector of ISFs and, hence, it is an MISF. 2

Example 3.5.2 From the projections of the relation presented in Example 3.4.2, the tabular
representation of the original relation and the MISFR is shown next

x1x2 y1y2
00 {00}
01 {01}
10 {00,11}
11 {10,11}

Boolean relation R

x1x2 y1y2
00 {00}
01 {01}
10 {00,01,10,11}
11 {10,11}

MISFR
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Figure 3.3: Solving a Boolean Relation R in the semi-lattice of well-defined Boolean relations. (a)
The BR R is projected to MISFR and MISFR is solved with an MISF minimizer. In this case, the
obtained solution is compatible with the original relation and the process is stopped. (b) The final
solution is compatible with MISFR but incompatible with the BR. (c) The split operation is applied
on the BR R. The set of all the compatible functions of R is still contained in the set of compatible
functions for Rxyi ∪Rxyi

In this example, we can observe the image of the input vertex 10 in MISFR covers the output
vertices {01,10} that are not included in R(10). This is because MISFR effectively expands the
output set {00,11} to the smallest covering cube {−−}= {00,01,10,11}. 2

Property 3.5.2 The following property holds between a well-defined Boolean relation R and
MISFR:

R(X ,Y )⊆MISFR(X ,Y )

Proof: Let us assume that only two output variables are involved.

R = (R ↓ y1y2)⊆ (R ↓ y1) 1x (R ↓ y2)

This assumption can be proved as follows.

∀(x,y1,y2) ∈ R =⇒ (x,y1) ∈ (R ↓ y1) ∧ (x,y2) ∈ (R ↓ y2)
=⇒ (x,y1,y2) ∈ (R ↓ y1) 1x (R ↓ y2)
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The previous statement can be generalized to multiple outputs

(R ↓ yi . . .y j)⊆ (R ↓ yi) 1x (R ↓ yi+1 . . .y j)

Finally, the property R(X ,Y ) ⊆ MISFR(X ,Y ) can be proved based on the previous statement and
the next formula

R ⊆ (R ↓ y1) 1x (R ↓ y2 . . .ym)⊆
⊆ (R ↓ y1) 1x (R ↓ y2) 1x (R ↓ y3 . . .ym)⊆
⊆ ·· · ⊆
⊆ (R ↓ y1) 1x . . . 1x (R ↓ ym−2) 1x (R ↓ ym−1ym)⊆
⊆ MISFR

2

The next property is important for the presented method, since the MISFR obtained by projection
to the outputs is the smallest MISF that still covers all the compatible functions of R.

Property 3.5.3 Given a Boolean relation R and the MISFR obtained from the projection onto the
outputs, there is no other MISF f ′ such that R⊆ f ′ ⊂MISFR
Proof: By contradiction. Let us assume that f ′ exists. This statement implies that R⊆ f ′ ⊂MISFR.
Taking into account that an MISF is a vector of ISFs:

1X
i∈{1,...,m}

( f ′ ↓ yi)⊂ 1X
i∈{1,...,m}

(MISFR ↓ yi)

The previous statement implies that there is an output yi ∈ {y1, . . . ,ym} that generates an
ISF such that (R ↓ yi)⊆ ( f ′ ↓ yi)⊂ (MISFR ↓ yi). However, this ISF does not exist since
∀yi ∈ Y, (R ↓ yi) = (MISFR ↓ yi) by Def. 3.5.2 and, hence, ( f ′ ↓ yi)⊂ (R ↓ yi). 2

3.5.3 Solution of a Multiple-output ISF

This section describes the method to obtain a fast solution from the Boolean relation MISFR that
covers the relation R. Note that, we cannot guarantee the compatibility of the solution with R.

The MISF generated from the projection onto the single outputs is solved performing an indi-
vidual minimization of the outputs with an ISF minimizer [22, 62, 137].

Example 3.5.3 A possible solution for the ISFs (R ↓ y1) and (R ↓ y2) of Example 3.4.2 are
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x1x2 y1
00 0
01 0
10 1
11 1

x1x2 y2
00 0
01 1
10 0
11 1

The multiple-output function for the MISFR is shown next

x1x2 y1y2
00 00
01 01
10 10
11 11

2

As it is shown in Fig. 3.3(a-b), a Boolean relation R can be projected to MISFR where an MISF
minimizer can be used. If the Boolean relation R is an MISF, then R = MISFR and the solution is
always compatible with the relation. However, the compatibility of the solution is not guaranteed
when the Boolean relation R is not an MISF since R⊂MISFR.

Definition 3.5.3 Compatibility of a function with a Boolean relation. Given a multiple-output func-
tion F and a relation R⊆ Bn×Bm, F is compatible with R if F ⊆ R. In general, we define the set of
pairs of inputs and output vertices of F incompatible with R as:

Incomp(F,R) = F \R

2

Example 3.5.4 The multiple-output function presented in Example 3.5.3 is an incompatible solution
of the relation of Example 3.4.2. The incompatible pair is Incomp(F,R) = {(10,10)}. 2

3.5.4 Divide-and-conquer
Let us next discuss the basis of the divide-and-conquer approach presented in this chapter for dealing
with relations in which the solution of the projected MISFR is incompatible with the original relation.

Definition 3.5.4 Splitting of a Boolean relation. Let R⊆ Bn×Bm be a well-defined relation, x∈Bn,
and yi one of the outputs of the relation. The following two relations can be defined:

Rxyi(X ,Y ) = R−{(x,y1,... ,yi−1,0,yi+1,... ,ym)}
Rxyi(X ,Y ) = R−{(x,y1,... ,yi−1,1,yi+1,... ,ym)}
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We denote the previous operation by

(Rxyi,Rxyi) = Split(R,x,yi).

2

The Split operation is graphically illustrated in Fig. 3.3(c). Intuitively, given an input vertex
x of the input set and one output yi, the relation can be split into two relations such that one of
them takes the value yi = 0 and the other takes the value yi = 1 for the vertex x. The two relations
induce a partition over the functions compatible with R. The relations Rxyi and Rxyi still cover all the
compatible solutions of R and no other functions.

Example 3.5.5 Let us take the input vertex {10} and the output y1 from the relation in Exam-
ple 3.4.2. Note that, the selected input vertex {10} is included in Incomp(F,R). The objective of this
selection is to remove this incompatibility in Rxy1 and Rxy1 . Then, Rxy1 and Rxy1 are defined by the
following tables:

Rxy1

x1x2 y1y2
00 {00}
01 {01}
10 {11}
11 {10,11}

Rxy1

x1x2 y1y2
00 {00}
01 {01}
10 {00}
11 {10,11}

Rxy1 and Rxy1 are smaller relations. We can now recursively solve each one of them and choose
the best solutions. After minimizing each one, the following multiple-output functions are obtained

F1
x1x2 y1y2
00 00
01 01
10 11
11 11

F2
x1x2 y1y2
00 00
01 01
10 00
11 11

compatible with Rxy1 and Rxy1 , respectively and, therefore, compatible with R. 2

Property 3.5.4 Given R, Rxyi and Rxyi as defined above, the sets of compatible functions F(Rxyi)
and F(Rxyi) are a partition of F(R).
Proof: A partition has the following properties:

F(R) = F(Rxyi)∪F(Rxyi); F(Rxyi)∩F(Rxyi) = /0.

Let us prove each one independently:
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• F(R) = F(Rxyi)∪F(Rxyi): By the definition of the Split operation, R = Rxyi ∪Rxyi . Therefore:

(F(R) = {F | F ⊆ R}) ∧ (R = Rxyi ∪Rxyi) =⇒
F(R) = {F | F ⊆ Rxyi ∪Rxyi} =⇒
F(R) = {F | F ⊆ Rxyi}∪{F | F ⊆ Rxyi}

= F(Rxyi)∪F(Rxyi)

• F(Rxyi)∩F(Rxyi) = /0: The Boolean relations Rxyi and Rxyi differ on the output vertices of the
input vertex x, such that Rxyi(x)∩Rxyi(x) = /0. Therefore, there is no Boolean function F such
that F ⊆ Rxyi and F ⊆ Rxyi . 2

The next theorem defines the conditions for Rxyi and Rxyi to be well defined and strictly smaller
than R.

Theorem 3.5.2 Consider an input vertex x and an output yi of the relation R. Rxyi and Rxyi obtained
from Split(R,x,yi) are both well defined and strict subsets of R (i.e. Rxyi ⊂ R and Rxyi ⊂ R) iff R is
well defined and (R ↓ yi)(x) = {0,1}.
Proof: When the Split operation is performed on an input vertex x such that (R ↓ yi)(x) = {0,1}, it
can be easily proven that Rxyi and Rxyi are well defined. By the Def. 3.5.4, ∀x′ 6= x, Rxyi and Rxyi have
the same output vertices, and for the input vertex x, the output vertices are split in such a way that
(x,y1,... ,yi−1,1,yi+1,... ,ym) ∈ Rxyi and (x,y1,... ,yi−1,0,yi+1,... ,ym) ∈ Rxyi . Therefore, both Rxyi and
Rxyi are still well defined and, moreover, both are strict subsets of R since at least one of the output
vertices is dropped for both sub-relations. Let us assume for the contrary that (R ↓ yi)(x) 6= {0,1},
e.g., (R ↓ yi)(x) = {0}. Then Rxyi = R is well defined, but not a strict subset of R, while Rxyi is not
left-total and hence not well defined. 2

Example 3.5.6 In the Example 3.5.5, the input vertex {10} and the output y1 are used in the Split
operation. Note that if the vertex to split would be {11}, then Rxy1 would not be well defined, since
y1 cannot take the value 0 for this input vertex.

2

3.6 Details of the Boolean relation solver
This section describes first a naive Boolean relation solver and then the recursive algorithm based on
a branch-and-bound strategy. Let us start with introducing the representation of Boolean relations
with characteristic functions that is used in our implementation.
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QuickSolver (R )
{Input: A well-defined relation R (X ,Y )}
{Output: A multi-output function compatible with R }

S := R ;
for each output yi do

Fyi := (yi ⇔Minimize(S ↓ yi));
S := S∧Fyi ;

return S;
end;

Figure 3.4: A naive algorithm to solve a Boolean relation.

3.6.1 Characteristic functions
A Boolean relation can be represented by its characteristic function.

Definition 3.6.1 Characteristic functions. A Boolean relation R can be specified by a characteristic
function R 3 : Bn×Bm → B, such that (x,y) ∈ R if and only if R (x,y) = 1. 2

Characteristic functions are convenient for the automation of solving Boolean relations since it
enables reusability of algorithms and tools developed for Boolean functions.

Definition 3.6.2 Cofactor and existential abstraction. The cofactors fxi and fxi of
a Boolean function f (x1, . . . ,xn) are defined as fxi = f (x1, . . . ,xi−1,1,xi+1, . . . ,xn) and
fxi = f (x1, . . . ,xi−1,0,xi+1, . . . ,xn). The existential abstraction ∃xi f is defined as ∃xi f = fxi + fxi .
Cofactors and existential abstraction can be extended to multiple variables. 2

3.6.2 Quick solver
The algorithm presented in Fig. 3.4 allows to obtain a solution of the BR quickly. It was used in
gyocro [166] to obtain the initial solution before applying the reduce-expand-irredundant iterations.
The quick solver minimizes each output in order using the maximum flexibility provided by the re-
lation. As long as the outputs are calculated, the constraints of the previous solutions are propagated
to the rest of the outputs. The core of the algorithm is the function Minimize that performs the ISF
minimization. Although this algorithm is fast, it has two drawbacks:

• The solution depends on the order in which the outputs are minimized.

3We will refer the characteristic function of a Boolean relation with the symbol R .
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ab      x y
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Figure 3.5: Example of solving a BR with QuickSolver.

• The first outputs tend to take advantage of the flexibility of the relation, whereas the last
outputs inherit little flexibility. This leads to highly unbalanced and sub-optimal solutions.

Example 3.6.1 Consider the example of Fig. 3.5. First, the flexibility of the output x is captured and
the ISF is solved. Based on the solution Fx, the original BR R is constrained to the BR R′ such that
(R′ ↓ x) = Fx. The ISF for the output y is extracted from the relation R′ and is solved. The solution
is f (a,b,x,y) = (x ⇔ 1)(y ⇔ ab + ab). Note that, the best function with the smallest number of
product terms, f (a,b,x,y) = (x⇔ b)(y⇔ a), can not be found with the quick solver. 2

The goal of this chapter is to propose a method that performs a better exploration of the space
of solutions, while having an affordable computational complexity.

3.6.3 The recursive approach
The approach proposed in this chapter is based on the Split operation presented in Def. 3.5.4. The
intuitive basis of this approach can be informally described as follows:

Minimize each output independently with the maximum
flexibility provided by the relation.

If the solution is incompatible:
Select a conflicting input vertex and an output.
Generate two sub-relations.
Branch-and-bound through the tree of BRs
in which the leaves are the compatible functions.

Select the best solution.

The recursive algorithm is shown in more detail in Fig. 3.6, where the cost of the best explored
solution is used to prune the search space.
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BREL is initially called with a null BR with infinite cost. Only the best solution is preserved in
BestF. The algorithm checks if R is a function (the terminal case) in lines 1-3. In case R is not
a function, the minimization of the MISFR is performed in lines 4-5 with BDD-based optimization
methods (as further explained in Section 3.7.5). The solution, even if it is incompatible, is rejected
if its cost is greater than the cost of the best previously obtained function (line 6). In case of an
incompatible solution, constraining the relation further for solving the conflicts cannot improve
the cost of a solution obtained for the problem with higher flexibility. If the new cost is smaller
than the previous one, the compatibility of the solution is checked (line 7). In case the solution is
incompatible (lines 9-10), an input vertex and an output are selected from the incompatible points to
perform the Split operation based on Theorem 3.5.2. The largest input cube within the characteristic
function of all input conflicting vertices and an output such that (R ↓ yi)(x) = {0,1} are selected to
apply the Split operation (further discussion in Section 3.7.4). Finally, the recursive calls are done
(lines 11-12) for each of the smaller sub-relations R1 and R2.

This algorithm uses two additional parameters:

• The cost function can be customized by the user and is a parameter of the recursive algo-
rithm. Previous algorithms, such as exact or heuristic solvers in [35, 166], aim at minimizing
the number of cubes of the solutions.

• The algorithm can trade-off between the quality of the solution and the runtime spent in the
search. As in any branch-and-bound algorithm, the search can be stopped as soon as some
resources (e.g. the CPU time) have been exhausted.

Note that, incompatibilities may occur in this algorithm only at an input vertex x for which the
output set cannot be precisely captured with don’t cares. Consider the example in Fig. 3.1. BREL
can potentially find an incompatibility for the input vertex 10, since its output set {00,11} cannot be
captured with don’t cares, but it would not consider the input vertex 11 as a potential incompatible
vertex, since its output set {10,11} can be described as 1−.

Example 3.6.2 Figure 3.7 depicts how the relation R (a,b,c,x,y) is solved with BREL. In the first
recursion, the same solution b is found for both outputs x and y. The minimization after the projec-
tion steps is represented using Karnaugh maps. After the individual minimization, a multiple-output
function is composed from the individual solutions. Two conflicts are found between this function
and the original BR on input vertices 010 and 101. In order to reduce the conflicts, the vertex 010
and the output y are selected to split the relation. The solver will find a compatible solution for each
of the new sub-relations in the second recursive iteration:

f (a,b,c,x,y) =

{
(x⇔ ac)(y⇔ b) for y=1,

(x⇔ b)(y⇔ a+ c) fot y=0.
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BREL (R , cost, BestF)
Input: A well-defined relation R (X ,Y ) and the best

function to estimate the cost of the solution (cost)
found compatible function (BestF)

Output: BestF returns the minimum-cost function
compatible with R

// Check for R to be a function
1: if R is a function then
2: if cost(R ) < cost(BestF) then BestF := R ;
3: return;

// R is not a function
// Compute MISFR and minimize

4: MISFR := Compute MISFR (R );
5: F := Minimize(MISFR );

// The solution cannot be better
6: if cost(F)≥ cost(BestF) then return;

// The solution is better, but it may not be compatible
7: I := Incomp(F,R );
8: if I = 0 then BestF := F ; return;

// Incompatible solution: split and call recursively
9: (x,yi) := Pick (vertex, output signal) pair from I

such that (R ↓ yi)(x) = {0,1};
10:(R1,R2) := Split(R ,x,yi);
11:BREL(R1,cost,BestF);
12:BREL(R2,cost,BestF);

return;
end;

Figure 3.6: A recursive algorithm for solving Boolean relations.
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Figure 3.7: Example of solving a Boolean Relation.

The tabular representation of the solutions is described next:

for y = 1
abc xy
000 00
001 00
010 01
011 01
100 00
101 10
110 01
111 11

for y = 0
abc xy
000 00
001 01
010 10
011 11
100 01
101 01
110 11
111 11

For this example, the conflict for the input vertex 101 is also solved in the second recursive call.
However, in general, the number of required recursive calls to solve different conflicting vertices
may differ. 2
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3.7 Further implementation details
The general branch-and-bound approach presented in Fig. 3.6 can be implemented in different ways.
There are multiple degrees of freedom in the implementation: selecting a data structure for repre-
senting relations, strategy to explore the branch-and-bound tree, particular cost functions, algo-
rithms for ISF minimization, etc.

We will next present several implementation details of our solver, BREL, that lead to an efficient
trade-off between the quality of the solutions and the computational complexity of the search. Many
of the implementation decisions have been taken after experimenting with different strategies and
choosing the most effective ones.

3.7.1 Representation of relations
Binary Decision Diagrams (BDDs) [30] are used to represent and manipulate the characteristic func-
tions of the relations. All the transformations, evaluation of cost functions and the ISF minimization
are implemented using BDD operations.

Since all the relations generated by the solver come from a single original relation, there is a lot
of sharing in the BDD data representation. The solver invokes many similar low-level BDD opera-
tions that are cached and calculated only once. This has an important impact on the performance of
the solver.

3.7.2 Exploration of solutions
The branch-and-bound tree of solutions is explored using a partial breadth-first-search (BFS). This
requires a slight modification of the algorithm in Fig. 3.6. All the relations generated by splitting
are stored in a bounded FIFO implemented as a list.

The size of the FIFO of solutions is a parameter of the solver. Due to the bound on the number
of unresolved intermediate relations not all of the potentially generated relations are resolved into
compatible functions and reach the functional leaves of the semi-lattice of relations. Therefore, the
QuickSolver (Fig. 3.4) is used as the first step to guarantee that at least one compatible function
is found during the exploration.

The BFS enables a larger diversity in the exploration of solutions and prevents the solver of
spending all the resources in only one corner of the tree searching for a local optimum.

3.7.3 Cost function
A cost function is another parameter of the solver. For efficiency reasons, BDD-based cost functions
are desirable since they are easy to compute. Even though the size of BDDs is not always the best
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estimation of complexity for a Boolean function, typically there is a correlation between both. In
the experiments we have used different cost functions depending on the minimization goal: sum of
BDD sizes when targeting at area minimization and sum of the squares of BDD sizes when targeting
at delay. The latter cost function biases the exploration towards solutions in which the complexity
of the functions is balanced, and hence the delay is more evenly distributed along all paths. The
former tends to minimize the overall size regardless of the relative complexity of the sub-functions.

The experimental results, demonstrating application of the BREL to logic decomposition (pre-
sented in Section 3.10.2), show that these cost functions lead to significant area and delay optimiza-
tion.

3.7.4 Split strategy
When conflicts appear after the minimization of the MISFR , an input vertex x and an output yi must
be selected for splitting (line 9 in Fig. 3.6). Intuitively, the solver selects the largest input cube
within the characteristic function of all input conflicting vertices.

More precisely, given the characteristic function of the conflicts, Incomp, the outputs are exis-
tentially abstracted (C = ∃Y Incomp). Next, the shortest path in the BDD representing C is extracted.
The shortest path represents the largest set of adjacent conflicting input vertices. Constraining the
value of the relation in one of the vertices of this set forces many other adjacent vertices to acquire
the same output value during the minimization.

The input vertex x is obtained from the incompatible input cube by assigning the value 1 to the
variables with don’t care value ({−}). The selection of the output yi must fulfill Theorem 3.5.2.
Therefore, an output such that (R ↓ yi)(x) = {0,1} is selected following the variable order in the
BDD manager.

3.7.5 Minimization of ISFs
We will next explain the details of the Minimize operation in the solver. Each ISF of the MISFR
is individually minimized with BDD-based optimization methods. A BDD-based approach con-
tributes to the speed up the solver. ISFs are defined by a pair of functions that represent the interval
of flexibility [Min,Max] (or [On,On∪Dc]). There are different methods to minimize the ISF imple-
mentation using the flexibility within the specification interval. Versions of generalized cofactors,
such as constrain and restrict [58, 59], have been often used to reduce the size of BDDs. A BDD
operation to find irredundant SOPs is also possible by using Minato-Morreale’s algorithm [117],
even though the obtained solutions can be far from the optimum.

Another way to reduce the complexity is to reduce the support by eliminating non-essential
variables. A variable z is called not essential if the interval [∃zMin,∀zMax] is not empty (cf. [37],
pp. 107–112).
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ISOP Constrain LICompact
LIT CPU LIT CPU LIT CPU

Eliminate non-essential 1.00 1.00 1.09 1.03 1.02 1.02
Keep non-essential 1.16 1.59 1.16 1.57 1.17 1.57

Table 3.1: Normalized comparison between several ISF minimization based on BDDs.

Our solver first reduces the support of the ISF by greedily eliminating non-essential variables
from the top to the bottom of the BDD representation. After that, an irredundant SOP is calculated
using Minato-Morreale’s algorithm. We found this combined approach more efficient, in perfor-
mance and quality of the solutions, than other tested techniques. Three techniques have been tested:
minimization of irredundant SOPs (ISOP) based on Minato-Morreale’s approach [117], a constrain-
restrict minimization (Constrain) [58, 59], and a BDD safe minimization (LICompact) [79]. Ta-
ble 3.1 shows the normalized comparison of these ISF minimization approaches with regard to the
selected ISOP minimization with the elimination of non-essential variables. The table reports the
increment of the number of literals in SOP representation of the final solution (LIT) and the required
CPU time (CPU) for the benchmarks used in Table 3.2. The elimination of the non-essential vari-
ables contributes to significantly reduce the runtime and improves the quality of the solutions of the
ISF minimization. The table also demonstrates that the irredundant SOPs minimization on average
provides slightly better solutions than other methods as measured by the literal count in the SOP
form.

3.7.6 Symmetries in Boolean Relations

Symmetries in Boolean functions are often used for speeding-up equivalence checking between
two functions by analyzing when functions (or their sub-functions) are structurally equivalent after
permutation of some variables. Symmetries can be also exploited in the characteristic functions of
Boolean relations.

Figure 3.8(b) depicts the first and second recursion of BREL solving a 2-input and 2-output BR
shown in Fig. 3.8(a). Initially, BREL finds the solution (x⇔ 1)(y⇔ 1) with three incompatible
vertices {ab,ab,ab}. Let us assume that the input vertex ab and the output x is selected to perform
the split. In the second recursion, the solutions are

f (a,b,x,y) =

{
(x⇔ a)(y⇔ 1) for x=1,

(x⇔ 1)(y⇔ a) fot x=0.

Note that, these solutions are fully symmetric with respect to permutation of variables x and y.
The two symmetric relations lead to solutions with equal cost as calculated by a BDD-based cost
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Figure 3.8: Example of a symmetry in BRs.

function. Therefore, the exploration for a relation can be stopped if a symmetric relation has already
been processed by the solver.

BREL has a cache of processed relations. Symmetries can be checked for every new relation
from the Split process to identify if a symmetric relation is stored in the cache. If it is found the
exploration for this branch is stopped.

There are efficient methods for identifying the first-order [174, 175] and the second-order sym-
metries [49] in Boolean functions that can be applied to Boolean relations as well. However, the
analysis of BR symmetries has a high complexity especially for large BRs. Therefore, the applica-
tion of symmetry detection has to be limited in order to reduce the runtime impact. For BREL we
have made a few implementation decisions regarding the use of symmetries:

• Symmetries are only supported for output variables. This implementation decision was based
on experiments in the application domains (like logic decomposition) where BREL is cur-
rently used. In this domain, output variable symmetries appear very often: e.g. if the large
stage of logic is a symmetric gate (such as AND, OR, NAND, NOR, etc.) permutation of two
functions that feed this gate leads to a symmetric implementation of the same function.

• The solver supports all types of the first-order symmetries and the nonskew nonequivalence
second-order symmetries [49]

• Symmetries are only explored during the initial recursions on the exploration tree for largest
sub-relations that are close to the original relation. Here, significant cuts on the exploration
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branches can be expected. Later, the symmetry check is turned off to avoid spending signifi-
cant CPU time in the search for symmetries in the smaller relations.

An experiment has been done to identify the impact of the symmetry detection on the quality of
results and runtime in logic decomposition problem (the experiments on logic decomposition will
be described in details in Section 3.10.2). When the symmetry check is turned on the results are
on average improved by 1.6% in delay and on 1.2% in area after technology mapping at the cost of
runtime increase by 10.6%. The literal count in the SOP representation also decreases (on average
by 1.30%). However, the improvement on some particular examples is significant. In the small
netlist s208, there is an improvement of 16% on delay and 11% on area with similar runtime. In a
larger netlist, s641, the delay is improved by 13% and the area is reduced by 17%. Nevertheless,
the cost of the symmetry check increases the runtime by 15%.

The reason in improving the quality of results is as follows. For large BRs, BREL runs in a non-
exact mode, since only a subset of solutions can be explored within the limited time and memory
resources. Without symmetry detection the solver can explore more sub-relations within the given
runtime. However, many of these sub-relations are symmetric and hence useless. With symmetry
detection, the solver spends slightly less time in solving relations (due to the penalty of symmetry
detection), but actually solves more relations from different equivalence classes and hence explores
more different solutions.

3.8 Solving Boolean equations
Many problems in Boolean algebra with a finite number of elements can be reduced to solving a
system of Boolean equations (cf. [37], pp. 153-154). In this section, we illustrate how to solve a
system of Boolean equations by solving the corresponding BR. We use characteristic functions to
represent BRs.

Definition 3.8.1 Boolean equation. A Boolean equation is defined as

P(X,Y) � Q(X,Y)

where P and Q are multiple-output Boolean functions of independent variables X and dependent
variables Y and � is the equivalence (=) or the inclusion-relation operator (≤).

2

Definition 3.8.2 A particular solution (or, simply, a solution) of a Boolean equation is a multi-output
function Y (X) such that P(X,Y(X)) � Q(X,Y(X)) is a tautology. A Boolean equation is consistent if
it has at least one solution. A general solution of a Boolean equation is a representation of the set of
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all its particular solutions [37]. A parametric general solution can be formed from any particular
solution using Löwenheim formula [37]. 2

Here, we will focus of finding particular solutions for the system of Boolean equations.

Definition 3.8.3 Boolean system. A Boolean system is a set of Boolean equations

P1(X,Y) � Q1(X,Y)
...

Pk(X,Y) � Qk(Y,Y)

2

Property 3.8.1 A Boolean equation P(X,Y)�Q(X,Y) can be transformed to the form T (X,Y) = 1
using the following equivalence properties [37]:

P = Q ⇔ P ⊕ Q = 1
P≤ Q ⇔ P+Q = 1

2

Example 3.8.1 The following system of Boolean equations with a set of independent variables
{a,b} and a set of dependent variables {x,y,z}

x+b y z+bz = a
xy+ xz+ yz = 0

can be transformed using the previous equivalence properties to

a b z+a x+a b y z+a b x z+a b x y+a b x z = 1
x y+ x z+ y z = 1

Note that, the characteristic function of a Boolean equation matches with the definition of the
characteristic function of a Boolean relation. Fig. 3.9(a) depicts the two Boolean equations of the
system as sets of vertices of Boolean relations with {a,b} as input variables and {x,y,z} as output
variables of the BRs. 2
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Figure 3.9: Representing a Boolean system of equations as BRs.

Theorem 3.8.1 Reduction. A Boolean system

T1(X,Y) = 1
...

Tk(X,Y) = 1

can be reduced to a single equation E(X,Y) = 1 where E is the characteristic function

E(X,Y) =
k̂

i=1

Ti(X,Y)

2

The characteristic function E(X,Y) only contains the feasible solutions of the system. Note that,
E(X,Y) can be also represented as a Boolean relation.

Example 3.8.2 The Boolean system of the Example 3.8.1 is reduced to the following single equa-
tion:

a b y z+a b x y z+a x y z+abxyz+a b x y z+a b x z = 1

Figure 3.9(b) shows the single BR associated with the characteristic function used in the above
equation. It is easy to see from the figure that this BR only covers the solutions that are feasible in
both BRs represented in Fig. 3.9(a). 2

Property 3.8.2 Consistency of a Boolean system. A Boolean system is consistent if for all x ∈ X,
there exists a y ∈ Y such that (x,y) ∈ E(X,Y). 2
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Figure 3.10: Example of the expand-reduce-irredundant approach.

Note that, a consistent Boolean system is equivalent to a well-defined BR. If the system is
inconsistent, then it has no solutions and therefore there is no corresponding well-formed BR.

Example 3.8.3 The set of functions x = ab, y = a b and z = ab+ab forms a particular solution of
the Boolean system from Example 3.8.1. This can be checked by substitution into the equation from
Example 3.8.2 and checking that the equations simplifies to a tautology 1 = 1. Hence this system is
consistent. 2

As shown in [37]4 Boolean equation E(X) = 1 is consistent if and only if existential quantifica-
tion of all variables (also called smoothing of all variables) gives constant 1:

∃XE(X) = 1

Given a Boolean system, we convert it to a single Boolean equation, then check its consistency
using quantification. If the system is inconsistent there are no solutions, otherwise we obtain an
optimized particular solution by solving the corresponding BR using BREL solver.

3.9 Efficiency of the method

3.9.1 Comparison with the expand-reduce-irredundant paradigm
In this section, we illustrate the limitations of the expand-reduce-irredundant paradigm used
in Herb [72] and gyocro [166] BR solvers. Let us consider the Boolean relation depicted
in Fig. 3.10. The best compatible function with the smallest number of product terms is
f (a,b,x,y) = (x⇔ b)(y⇔ a). Although, this relation covers a small set of only eight compatible

4The consistency check presented in this section is a modification of Theorem 6.1.1 in [37] that gives conditions for
a complemented form of a Boolean equation.
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gyocro BREL
PI PO CB LIT ALG AREA CPU CB LIT ALG AREA CPU

int1 4 3 5 8 8 9280 0.03 7 12 9 8352 0.01
int5 4 3 7 14 11 11136 0.02 7 14 11 11136 0.00
int10 6 4 25 88 32 44544 0.08 29 102 34 41296 0.02
c17b 5 3 7 12 12 10208 0.03 7 12 12 10208 0.00
c17i 5 3 15 37 34 34336 0.04 13 32 30 32016 0.01
she1 5 3 6 20 16 16240 0.04 9 26 15 17632 0.00
she2 5 5 10 33 31 30624 0.09 12 30 24 26448 0.01
she3 6 4 9 26 23 24592 0.08 9 27 21 21344 0.01
she4 5 6 20 91 56 62176 0.14 27 120 40 46864 0.03
gr 14 11 54 455 318 346608 3.43 86 590 313 322016 6.79
b9 16 5 270 2833 321 382336 4.68 137 1174 256 306240 0.19
int15 22 14 131 1083 506 525248 21.94 166 1062 459 472352 19.14
vtx 22 6 424 4460 117 151728 30.10 244 1809 101 94656 0.58
Normalized sum 1.00 1.00 1.00 1.00 1.00 0.77 0.55 0.89 0.86 0.44

Table 3.2: Comparison with gyocro [166].

functions, the expand-reduce-irredundant local search technique is not able to explore the whole
search space and find the best one.

The initial solution f (a,b,x,y) = (x⇔ 1)(y⇔ ab+ab) is obtained using the procedure Quick-
Solver. This solution is a local minimum and therefore gyocro gets trapped and cannot explore the
complete set of compatible functions. From the initial solution, the reduce procedure can not sim-
plify the function any further. The expand procedure can only be applied to the input vertex {10} to
reach another MISF compatible with the original relation with the output vertices {−1}= {01,11}.
This expansion results in two possible solutions: the initial compatible function and the function
f (a,b,x,y) = (x⇔ a+b)(y⇔ ab+ab) that has higher cost. The expansion of the other input ver-
tices {00,01,11} produces MISFs incompatible with the original relation. At this point the explo-
ration is stopped. Therefore, there is no feasible cube expansion that leads to the optimal solution.
The reason for this limitation is that this local search exploration is not capable of exploring the
range of output vertices since they cannot be covered with a set of cubes.

3.9.2 Experimental results

Table 3.2 presents comparative results with gyocro. In [166], a similar analysis is done between
gyocro and the exact minimizer from [35] and Herb [72]. The cost function used by BREL in these
runs is the sum of BDD sizes for each output, aiming at area minimization. The tree of solutions
has been limited to the partial exploration of 10 Boolean relations. During this exploration, the
QuickSolver procedure is applied on each smaller Boolean relation to obtain a solution, as it was
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explained in Section 3.7.2. Exploring more solutions did not significantly contribute to improving
the results. The table summarizes the number of input (PI) and output (PO) variables for all BR
examples and reports the number of cubes (CB) and literals (LIT) in the sum-of-products represen-
tation obtained by each solver.

When comparing cubes and literals gyocro obtains better results in several examples, since its
objective cost function targets to reduce these parameters.

For more practical comparisons, we also performed two more experiments to check the qual-
ity of solutions after multi-level logic synthesis and technology mapping in SIS [143]. First, the
multi-output Boolean function in sum-of-products representation obtained from the BR solvers is
transformed to a multi-level Boolean network in SIS by applying the algebraic script. This script
reduces the size of the network by sharing common sub-expressions. BREL obtains 11% of im-
provement on average in literal count after algebraic (ALG column). gyocro obtains better results
only in two cases: int1 and int10.

The improvement is also observed after technology mapping. For this comparison we used
the technology mapper map [133, 162] and the library lib2 of SIS for mapping a multi-level logic
network into the library of logic gates. The area results obtained by BREL are better than gyocro in
all cases except for she1 (see column labelled with AREA). BREL obtains on average a 14% area
reduction. Although gyocro aims at minimizing the number of cubes, while BREL minimizes the
number of BDD sizes, there are cases in which the solution obtained by BREL is significantly better
(b9 and vtx) in the number of cubes as well. We attribute this phenomenon to the fact that gyocro
could be trapped in a local minimum (e.g. after generating the initial solution), from which it cannot
easily escape by simply reducing and expanding cubes. On the other hand, the BFS strategy used
by BREL allows to perform hill climbing and explore a larger set of solutions.

Finally, the runtime (columns CPU) is usually better for BREL, with a tangible speed-up for
two examples (b9 and vtx). The runtime of gyocro is significantly better than BREL’s only for gr.

3.10 Application of Boolean relations
In this section we present an application to the problem of a multi-way logic decomposition and
report experimental results.

3.10.1 Logic decomposition
The multi-way logic decomposition problem can be formulated as follows

Definition 3.10.1 Let us assume a function F(X) with the set of variables X = {x1,x2, · · · ,xm} and
a gate G(Y ) with the set Y = {y1,y2, · · · ,yn}. The decomposition of the function F(X) with the



56 CHAPTER 3. A RECURSIVE PARADIGM TO SOLVE BOOLEAN RELATIONS

gate G(Y ) is F(X) = G(F1(X),F2(X), . . . ,Fn(X)). The Boolean relation that subsumes all possible
decompositions of the function F(X) with the gate G(Y ) is defined as follows:

R(X ,Y ) = F(X)⇔ G(Y )

2

We next present an example to clarify the decomposition problem. Consider the following
Boolean function

f (x1,x2,x3) = x1(x2 + x3)+ x1x2x3

The goal is to decompose this function using a multiplexor and, therefore, to absorb part of
the original function f within the multiplexor with the function Q(A,B,C) = A ·C +B ·C. A BR
will enclose all possible decompositions than can be performed using the multiplexor. The next
tabular representations show the original function f (x1,x2,x3) and the corresponding BR for the
multiplexor.

x1x2x3 f
000 0
001 0
010 0
011 1
100 1
101 1
110 1
111 0

x1x2x3 ABC
000 {−00,0−1}
001 {−00,0−1}
010 {−00,0−1}
011 {1−1,−10}
100 {1−1,−10}
101 {1−1,−10}
110 {1−1,−10}
111 {−00,0−1}

The construction of the BR can be done intuitively. The relation is built finding all the possible
values of the inputs of the multiplexor that yield to the desired output value in the function. For
instance, the multiplexor produces the output value Q(A,B,C) = 0 whether the value of (A,B,C)
is −00 or 0− 1. Therefore, the output of the relation for the minterms where f (x1,x2,x3) = 0 is
{−00,0−1}. The same reasoning can be followed to find the output set of the remaining minterms
of the relation. Note that the solution of one output of the BR is conditioned to the values of the
other outputs. For instance, the output A can only achieve the value 1 for the minterm x1x2x3 if BC
obtains the value 00.

Many decompositions can be found using the BR. Figure 3.11 depicts some of these solutions. A
solver of BRs will explore the set of solutions and will return one of them based on the minimization
objective.
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Figure 3.11: Some decompositions of f (x1,x2,x3) using a multiplexor.

3.10.2 Experimental results
Table 3.3 reports the results of an experiment designed to illustrate the applicability of BREL and the
customization of its cost function. We consider the existence of a flip-flop with an embedded mux
in the library, and the next-state equation Q+ = A ·C +B ·C. This three-input flip-flop (typically
available in the industrial gate libraries) enables the implementation of the next-state function F(X)
as the composition of three functions: A(X), B(X) and C(X). The Boolean relation specifying this
flexibility is F(X)⇔ (A ·C +B ·C) where A, B and C are the output variables. The table summarizes
the number of primary inputs (PI), primary outputs (PO) and number of flip-flops of the network
(FF). The last row of the table summarizes the results and shows the global improvement obtained by
the mux-based decomposition with Boolean relations. The table reports the results for two different
cost functions. First, the cost function has been defined as the sum of the squares of the BDD sizes
for the three functions. The squaring favors a tendency to balance the complexity of the function
and, therefore, reduce the delay of the circuit. The second part of the table, the sum of BDD sizes
has been used, aiming at minimizing the total area. In this table, BREL is limited to explore up to
200 BRs for each next-state function.

The table reports the area and delay of the combinational part of the circuit for each cost function.
Only the area and the delay of the combinational logic are considered. We make an optimistic
assumption considering that the mux is embedded in the flip-flop without any extra area and delay
overhead. In the delay optimization, the results have been obtained by collapsing the next-state
functions, running the algebraic script, speed up5 and technology mapping in SIS. For the mux-
latch, the decomposition is done before running the algebraic script. In general, the results manifest
several features of the approach: (1) the delay is usually reduced (sometimes significantly: e.g. s382,
s641, s832), (2) in many cases area is also reduced due to the power of Boolean decomposition (e.g.
s420, s526, s641), (3) in some cases the delay is reduced at the expense of increasing area due to
the balancing tendency of the cost function (e.g. s953, sbc) and (4) the CPU time is affordable. In
two cases (s349 and s1196), both area and delay became worse with the mux-based decomposition.

5This command in SIS produces more balanced solutions and contributes to improve the global delay of the network.
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Delay Minimization Area Minimization
ORIGINAL Decomp. mux-latch ORIGINAL Decomp. mux-latch

PI PO FF Area Delay Area Delay CPU Area Delay Area Delay CPU
daio 2 3 4 18096 3.47 11136 3.12 0.1 18560 4.39 12064 3.68 0.1
s27 4 1 3 15312 4.47 18096 4.01 0.2 13456 4.74 15312 3.81 0.2
s208 10 1 8 88160 7.58 77952 4.79 0.8 80272 9.91 35264 10.37 0.7
s298 3 6 14 140128 6.72 91408 4.18 1.4 125744 8.37 62176 4.72 1.4
s349 9 11 15 233856 9.45 333616 9.54 5.2 157760 10.81 199984 13.33 5.0
s382 3 6 21 223648 9.63 192560 6.68 4.0 154512 8.87 127136 6.94 3.9
s386 7 7 6 182352 7.84 155904 5.87 2.4 144304 7.96 115072 6.97 2.3
s420 18 1 16 207408 9.67 108112 6.74 41.3 160544 18.08 61248 19.77 41.3
s444 3 6 21 213904 8.54 182816 6.07 4.0 181424 10.23 75632 8.57 3.9
s510 19 7 6 300208 8.42 316448 7.91 297.0 287216 9.40 245456 9.17 303.6
s526 3 6 21 225504 8.75 166112 5.60 3.7 188848 9.02 97904 8.90 3.5
s641 35 23 19 522464 12.16 376304 8.18 9.5 191632 22.48 214480 10.69 9.2
s832 18 19 5 338256 10.28 327584 7.81 27.3 337328 11.15 270976 8.85 27.4
s953 17 24 29 503904 9.82 528032 8.31 32.3 423632 12.89 380944 9.66 27.3
s1196 14 14 18 1062560 11.91 1220784 12.62 5.7 558192 19.20 642384 13.77 5.6
s1488 8 19 6 741472 9.98 802720 9.73 7.6 723840 12.25 660272 11.85 7.4
s1494 8 19 6 729872 10.14 759104 10.00 7.7 688112 12.46 611088 13.03 7.4
sbc 40 56 28 920112 8.88 979504 8.73 21.0 775344 14.50 756320 11.18 21.2
Normalized sum 1.00 1.00 0.98 0.82 1.00 1.00 0.87 0.85

Table 3.3: Logic decomposition for mux-latches.

For area optimization, the process of minimization is the same that the previous one without
the speed up command. The behavior of the results are similar: (1) the area is also reduced
considerably (e.g. s298, s420, s444), (2) and in many cases the delay as well, (3) only in few cases
the delay increases (e.g. s208, s420, s1494) (4) sometimes related to circuits where the area is also
worse (e.g s349), and (5) the CPU time is similar to the delay decomposition. There are four cases
(s27, s349, s641 and 1196) where the results were worse. Some of these circuits (s349 and 1196)
are worse in both area and delay minimization. The heuristic methods applied in BREL and the
limitation on the number of explored BRs sometimes lose some of the good solutions.

3.11 Conclusions
We have described a new algorithm for solving Boolean relations and Boolean equations. Ex-
perimental results demonstrate that this approach is capable of finding better solutions in shorter
runtimes than the previously known techniques. The reason for this advantage is that our explo-
ration technique is more immune to be trapped in local minima and better explores the solution
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space. Depending on the complexity of the original BR our solver can work in the exact or in the
approximate mode.

In this chapter we also demonstrated a successful application of our solver to the problem of
decomposing a Boolean function. In the Chapter 5, this experiment is extended to a recursive n-way
decomposition using the solver of Boolean relations.
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Chapter 4

Dominator-based Partitioning for Logic
Synthesis

4.1 Introduction
As we introduced in Section 2.3, graph partitioning is a well-known strategy to decrease the
complexity of the synthesis problems. Mostly, the runtime is improved considerably by apply-
ing partitioning. However, there is also a degradation of the quality of the results. Many of the
graph partitioning methods proposed in the synthesis domain are reduced to the min-cut prob-
lem [46, 47, 54, 89, 128]. The min-cut partitioning techniques are suitable in problems like place-
ment [3] or FPGA partitioning [31, 156], where the minimization criteria is the number of wires
among different parts of the circuit. Moreover, the low interaction among the different clusters con-
tributes to reduce the gap between the cost of the solutions of the partitioning and the flat method1.
However, min-cut is not always appropriate for delay and area logic optimization, since it only
takes into account the structure the graph. However, the Boolean information is crucial on logic
optimization to obtain good minimizations.

In this chapter, a new partitioning method for delay logic optimization is presented based on
the concept of vertex dominator. A partition performed with vertex dominators generates clusters
with acyclic connectivity that enables the correct propagation of the delay information. Tangible
improvements can be obtained in delay with this strategy, thus better exploring the area-delay trade-
off of Boolean networks. This chapter is based on the results presented in [19]

The rest of the chapter is organized as follows. A detailed description of the previous work on
partition-based delay optimization is done in Section 4.2. An overview of the approach is presented
in Section 4.3. Section 4.4 presents the required background on vertex dominators. The new parti-

1A flat method refers to an approach without partitioning.
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tion method is described in Section 4.5. Finally, the overall delay minimization strategy is explained
in Section 4.6, and experimental results are reported in Section 4.7.

4.2 Previous work
Different approaches have been developed for timing optimization [9, 45, 56, 147]. However, most
of them cannot be used in large circuits because of their complexity.

On logic optimization, some of the work performed on partitioning has been proposed for
FPGAs [31, 156, 172]. Here, the basic objective is to divide the circuit in a fixed number of clus-
ters that is determined by the number of LUTs that are used to implement the FPGA. Note that,
the min-cut is mostly applied as an objective function since the interconnections between clusters
are constrained by the number of pins of the LUTs. A timing-driven method in FPGAs refers to
a technique to reduce the cuts on the critical path to merge into the same clusters the maximum
number of critical nodes. This contributes to decrease the number of components that the critical
path has to pass through.

Our graph partitioning objective is different. The objective is to apply a good delay minimization
algorithm on each cluster. The current state-of-art delay optimization processes are mostly restricted
by the size of the netlist. Therefore, instead of performing delay minimization on the whole network,
the optimization is performed on smaller netlists extracted by a partitioning approach. Here, there is
a basic constraint to take into account: the size of the clusters. The size must be selected accurately
depending on the complexity of the optimization technique. Note that, there is a trade-off between
the size of the clusters and the result of the minimization, since few optimizations can be applied
on small netlists compared to larger ones. Let us review some of the approaches that have been
published to perform delay-driven partitions.

In [101], the Lawler’s algorithm is presented. This work has been the foundation of timing-
driven partition techniques. The authors defined an efficient labeling approach for Boolean networks
in tree representation. Two main definitions were introduced on a directed acyclic graph (DAG):
rooted and non-rooted trees. The main difference is graphically illustrated in Fig. 4.1.(a). Assuming
that the DAG goes from inputs to outputs, a rooted tree has only a node with in-degree zero or a node
with out-degree zero. A non-rooted tree is a tree where there are not for all pairs of primary inputs
and primary outputs more than one path that connects them. By definition, a non-rooted tree can be
decomposed into several rooted trees. Note that, there are multiple decompositions of a non-rooted
tree into rooted trees.

The main algorithm is described in Fig. 4.2. Initially, the non-rooted tree is partitioned into
rooted trees. Therefore, a particular decomposition is selected based on a labeling algorithm. Basi-
cally, all paths from an arbitrary primary input to the outputs are firstly traversed. The fanins of a
traversed node such that they are not included in the explored path are defined as root nodes of new
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Figure 4.1: Rooted and non-rooted trees.

rooted trees. Figure 4.1.(a) shows the decomposition starting for the primary input a. Note that, the
decomposition and the number of rooted trees is different depending on the starting node. If input b
is selected the number of rooted trees is reduced to three (See Fig. 4.1.(b)).

After the division, a labeling process is done for each rooted tree. The labeling is performed
in DFS order from the root node based on the depth of each node (See Fig. 4.3.(a)). Finally, a
relabeling on the non-rooted graph is performed to create a better delay-oriented partition and taking
into account the maximum capacity constraint of the clusters. The process begins from the primary
outputs. Basically, the relabeling produces a partition onto the rooted trees. Many of the new
clusters are included in the previous rooted trees. The minor changes only appear in the intersection
edges between rooted trees. Note that, an estimation of the total length of the path can be computed
in the intersection edges based on the depth of the adjacent nodes. The relabeling process checks the
length of the paths (using the previous depths) and it relabels the fanins depending on the critical
path. The most critical fanins will be merged in the same cluster of the current node even if they
belong to different rooted trees (See Fig. 4.3.(b)). The drawback of the Lawler’s labeling technique
is that it is a limited delay-oriented approach. It only performs local modifications on the intersection
edges depending on the criticality of the rooted trees.

The authors could not find a good heuristic for conventional graphs where there are multiple
paths from inputs to outputs. Therefore, two methods are defined depending on whether duplica-
tion is allowed. Basically, the duplication approach creates a non-rooted tree for each path from
a primary input to a node with multiple fanouts. Later on, a redundancy removal is performed to
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Lawler algorithm (G, S)
{Input: Network’s graph G. Size limit for a cluster, S}
{Output: Graph G labeled into clusters }

Listtrees:=Partition non-rooted trees into rooted (G);

foreach rooted tree T in Listtrees do
Labeling in DFS order from inputs (outputs) until

out-degree (in-degree) zero root node (T ,G,S);
endfor

Relabel nodes from primary outputs (G, S);
end;

Figure 4.2: Lawler’s algorithm.
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Figure 4.3: Labeling algorithm. (a) Computation of the depth of the rooted trees. (b) Labeling
algorithm with maximum capacity constraint equal to three nodes.
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Reduce Depth Script (G)
{Input: Boolean Network G }
{Output: Boolean Network G minimized }

/* initial decomposition */
sweep; /* Eliminate all the single-input nodes */
decomp -q; /* Decomposition using algebraic divisors */
tech decomp -o 2; /* Decompose in OR2 gates */
resub -a -d; /* Resubstitute nodes into other nodes in the network */
sweep;

/* clustering */
reduce depth -b; /* Lawler’s algorithm with partial collapsing */

/* logic minimization */
eliminate -l 100 -1; /* Eliminate nodes aiming at reducing the global literal count by 1*/
simplify -l; /* Simplify each node with local don’t cares */
full simplify -l; /* Simplify each node with global don’t cares */
decomp -q;

/* Area recovery */
fx -l; /* factor extraction */
tech decomp -o 2;

end;

Figure 4.4: reduce depth script.

decrease the exponential grown of the network. The second approach assumes that no duplication
can be done and the graph is divided in non-rooted trees. The second approach solves the exces-
sive duplication, but the performance of the partition method drastically decreases since smaller
non-rooted trees are extracted from the complex graph. The large number of nodes with multiple
in-going and out-going edges prevents to create large non-rooted trees.

Several extensions of these algorithm were proposed. In [125], the labeling algorithm was ex-
tended to a more general delay model where nodes have an associated cost depending on the gate
that represents and the number of fanouts. In [130], this approach is refined to a near-optimal delay-
oriented partition. However, all these approaches do not report any result on logic minimization.

Finally, the Lawler’s algorithm was introduced in a logic optimization procedure in [161]. The
authors were concerned about the increment of area of Lawler’s algorithm in general Boolean net-
works due to the excessive duplication. The relabeling approach was modified to reduce the number
of duplicated nodes. This approach, called reduce depth, is illustrated in Fig. 4.4. Note that, the
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DEPART (G, S, DelayScript)
{Input: Boolean Network G;
Size limit for a cluster, S; Script for delay minimization DelayScript}
{Output: Boolean Network G minimized }

Bins:=Create bins from transitive fanins of POs(G);
Clusters:= Find Clusters with no-overlap(Bins,S);

foreach cluster T in Clusters do
Minimization Process(T ,DelayScript)

endfor

end;

Figure 4.5: DEPART algorithm.

figure gives the details of the optimization procedure in terms of commands in SIS [143]. We at-
tach a small description for each command. Mainly, the minimization process consists to apply
the clustering algorithm in a Boolean network in AND2/OR2 representation. The nodes have the
same complexity in this representation and, thus, the unit delay model can be used to determine the
complexity of the paths. After the Lawler’s labeling, the clusters are collapsed into single nodes
where don’t care minimization is applied. Afterwards, area recovery methods, like common factor
extraction, are applied to decrease the area on non-critical regions of the network. This method is
relatively fast in small networks, but it runs out of time for large networks due to the computation of
don’t cares. Moreover, the results are far from the obtained ones with delay minimization methods
applied without partitioning.

To our knowledge, DEPART [5] is the best method to perform a delay-driven partitioning for
large Boolean networks suggested so far. The algorithm is presented in Fig. 4.5. This algorithm
only has one constraint, the maximum capacity of the clusters, and it uses the unit delay model
to calculate the criticality of the nodes. Initially, a partition based on the transitive fanins of the
primary outputs is created. The clusters are called bins. Note that, the transitive fanins of two
outputs may overlap in some nodes. The algorithm maximizes the sizes of the bins. Therefore, it
merges multiples bins (multiple primary outputs) in a larger one if the size is less than the capacity
constraint. The final partition is performed on top of the bins. Basically, the overlapping regions are
pushed to the most critical bin and a primary input is created on the least critical bins. The drawback
of this method emerges when the cone of logic of a critical output does not fit in one cluster. In this
case, new clusters are greedily created removing the root nodes recursively until all sub-clusters are
small enough to fit in the size constraint. Finally, the clusters are processed for minimization based
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on the criticality of the root nodes (primary outputs) of the clusters. In this chapter, DEPART is
taken as one of the references for comparison.

Another possible delay-oriented partitioning is the application of a generic partitioning method.
hMetis [89] is a general purpose multi-level hypergraph partitioning method that recursively applies
bisection to perform a k-way partition. This algorithm performs a fast coarsening step to obtain
the partition and a final refinement step to improve the quality of the min-cut. Note that, hMetis
accepts weights on nodes and edges of the hypergraph. Therefore, a delay partition approach can
be performed by increasing the weight on the critical path. This method has been also selected for
comparison.

4.3 Overview

The method DBP (Dominator-based partitioning) presented in this chapter aims at capturing frag-
ments of critical paths that have small fanout to the rest of the circuit. Thus, the clusters tend to be
deep (many levels) with internal nodes having little fanout to external nodes. This type of clusters
offers more possibilities for restructuring towards delay minimization.

Clusters with little external fanout are sought by finding dominators. Intuitively, a dominator of
a node n cuts all paths from n to the outputs [104]. This concept can be extended to multiple-vertex
dominators [66] when the paths are cut by several nodes.

The moderate size of the clusters enables the use of conventional delay optimization techniques
and to iterate over the network several times to gradually reduce delay with different cluster bound-
aries. This strategy produces results with better quality, still keeping the method scalable for large
networks.

Figure 4.6 emphasizes the difference between hMetis [89] and DBP in a particular example2.
It is an “artificial” circuit with 2-input AND gates that has been created only for this comparison.
In both cases, the graph is partitioned into two clusters, denoted by the ◦ and • nodes, respectively.
The cut-size generated by hMetis is 5 (the output edges of the same node are assumed to belong
to the same hyperedge), whereas the one generated by DBP is 7. However, the clusters generated
by hMetis cannot be topologically ordered, since there are edges ◦ → • and • → ◦. The clusters
generated by DBP can be topologically ordered. Finding a topological order is crucial to propagate
the arrival times of the outputs of one cluster to the inputs of the successor clusters. The partition
obtained by DBP has been determined by the output node, that is a single dominator of the whole
graph. The leftmost cluster has been obtained by taking the nodes closer to the dominator without
exceeding the pre-defined cluster size. The rightmost cluster has been obtained by gathering the
remaining nodes.

2For simplicity, the arrows of the edges are not shown and are implicitly assumed to go from the inputs to the outputs.
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Figure 4.6: Comparison of hMetis and DBP.

Another consequence of the dominator-driven partition is that the longest path is divided into
two parts using DBP. However hMetis splits it into six subpaths, thus preventing the optimization
across the cluster boundaries. DBP can optimize every cluster in topological order, from inputs to
outputs, propagating the obtained arrival times. This propagation is essential to achieve a global
restructuring of the network. In this example, the circuit originally has 36 levels. The final circuit
after restructuring each cluster, produces a result with 26 levels with hMetis and only 10 with DBP.

A second comparison between the partition performed by DEPART and DBP is done in Fig. 4.7.
The white nodes and squares represent nodes and primary outputs that have not been selected in the
cluster. Let us assume that only one cluster is performed. The black nodes correspond to the selected
nodes and the black squares represent the new primary outputs of the subnetlist extracted from the
cluster. DEPART (Fig. 4.7-(a)) clusters the nodes following the transitive fanins of the original
primary outputs. The partition performed by DBP is shown in Fig. 4.7-(b). DEPART creates a
cluster with larger number of outputs that implies a higher interaction with the rest of the network
in comparison with the cluster obtained by DBP. The high interaction reduces the freedom in the
subnetwork for restructuring. Only the shadowed region has total freedom. DBP increases the
freedom to the whole the subnetwork, since the interaction with the rest of the network is limited by
the dominators of the cluster.
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Figure 4.7: Comparison of DEPART and DBP.

4.4 Preliminaries

4.4.1 Vertex Dominator

The problem of finding single-vertex dominators in a graph was introduced in [111]. The authors
proposed an O(n4) algorithm to compute all single-vertex dominators in a graph with n vertices.
After several refinements [8, 127, 159], the Lengauer-Tarjan’s algorithm was published in [104]
with O(α(m,n)) complexity, where m and n represent the number of edges and vertices respectively,
and α is the functional inverse of the Ackermann’s function. Basically, this algorithm performs a
DFS-based approach with a good data structure to search the dominators in a graph. Linear time
algorithms have been also presented in [14, 39, 76]. However, these approaches consume more
computation time than Lengauer-Tarjan’s algorithm on average. For this reason, we use Lengauer-
Tarjan’s approach in DBP.

The process to find multiple-vertex dominators is more complex. The first approach to compute
all multiple-vertex dominators was presented in [66] with cost O(nk), where k is the size of the
multiple-vertex dominator. However, as pointed out in the paper, the algorithm is only feasible for
small k. In [160], a refinement for two-vertex dominators was presented. A new data structure
(dominator chain) is introduced to reduce the memory space to compute the dominators. DBP uses
these approaches to search multiple-vertex dominators.

The concept of dominator is a key in our approach. Dominators are widely used in several
areas, such as code optimization in compilers [77] and test pattern generation techniques [15]. Re-
cently, dominators have been used in logic synthesis for non-disjoint decomposition of Boolean
functions [66].
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Figure 4.8: Example of several vertex dominators.

Definition 4.4.1 (Dominator) Given a network G = (V ,E), a subset of nodes
X = {x1,x2, · · · ,xk} ⊂ V is a dominator of a node u∈V \X, denoted by {x1,x2, · · · ,xk} ∈ Dom(u),
if:

• Every path from u to a primary output contains some vertex xi ∈ X, and

• no proper subset of X is a dominator of u.

This definition can be naturally extended to sets of nodes, i.e. a subset of nodes being the dominator
of another subset of nodes. 2

Example 4.4.1 In Fig. 4.8, {b} is a single dominator of {g,h,q}, but does not dominate r since
there is a path from r to c that does not cross b. {r,s} is a double-vertex dominator of {z,C}.
Dominators of larger size can also be found, e.g. the 4-vertex dominator {h, i, j,k} of {r,s,z,C}.
Note that every node (or set of nodes) can have different sets of multiple-vertex dominators. For
example, {C} is also dominated by {r,s} and {h, i,s}. 2

4.4.2 Windows
In our work, we are interested in windows using vertex dominators. A subset of nodes induces
a window (cluster) in a Boolean network. The window contains all edges between nodes of the
window. A window can be extracted from the Boolean network, transformed and inserted back into
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the window
dominators of corresponding outputs

of the window

Figure 4.9: Window extraction in a Boolean network.

the network. For that, the set of inputs and outputs of the cluster must be identified to preserve
the interface with the rest of network, as shown in Fig. 4.9. The dominators are important for
partitioning since the produced windows have few primary outputs and, thus, low interaction in the
rest of the network. In the example of Fig. 4.9, the extracted window has three primary outputs,
derived from the three pins connected from the two-vertex dominator nodes of the window to their
fanouts.

4.5 Partition Method

The method presented in this chapter aims at partitioning the nodes of the Boolean network into
a set of disjoint windows. This process is initiated by considering every node as a window and
iteratively clustering them to build larger windows without exceeding some capacity constraint. In
this iterative clustering, the concept of dominator plays an essential role. We next describe the
details of the partitioning algorithm, presented in Fig. 4.10. The execution of the algorithm is later
illustrated with the example shown in Section. 4.5.2.

4.5.1 Core of the algorithm

Initially, several cost functions are computed in the graph. A weight is associated to each edge to
denote the number of wires between a pair of windows. At the beginning, each node of the network
is a window. Therefore, the associated cost to each edge is one. Moreover, the vertices have a delay
cost based on the slack between the arrival and the required time of the network that represents the
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DominatorPartition (G, S)
{Input: Network’s graph G(V,E). Size limit for a window, S}
{Output: Graph G clustered into windows }

repeat
Doms := FindDominators (G)
while Doms 6= /0 do

bestDominator := SelectBestDominator (Doms, S)
window := ClusterDominatedWindows (G, bestDominator)
Doms := Doms - {Dom(vi) ∈ Doms | vi ∈ window} -

- {Dom(x) ∈ Doms | vi ∈ window ∧ x ∈V −{vi} ∧ {v1, . . . ,vi, . . . ,vk} ∈ Dom(x)}
endwhile

until No changes
ClusterSmallWindows(G, S)

end;

Figure 4.10: Algorithm for partition a network into windows.

graph. In our experiments, the unit delay model has been used to calculate the delay information,
after having decomposed the network into 2-input nodes.

The algorithm receives two parameters: the graph of the network G to be partitioned and the size
S that defines the maximum capacity for a window. The function FindDominators calculates all
the single and double-vertex dominators of the graph. Dominators of larger size are not computed
due to the complexity of the process (O(nk)). Moreover, it has been observed experimentally that
calculating larger multiple-vertex dominators has a negligible impact on the results, while increasing
the computational complexity significantly.

The innermost loop merges windows using the calculated dominators. The selection of the
best dominator is performed according to the characteristics of the window of dominated nodes
(including the dominator itself). The criteria to select the best dominator are the following in priority
order:

1. Smallest number of output nodes in the window. The output nodes are those having fanout
outside the window. Initially, the output nodes are the dominators themselves in the single-
node windows. In a partially-clustered network, a window acting as a node in a dominator
can have several clustered output nodes.

2. Smallest weight of the outgoing edges from the window.

3. Largest size of the window

The selection aims at capturing windows with low interaction with the rest of the network. Windows
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with many output nodes are not desirable, since they favor large external fanout. As a consequence,
this type of windows have fewer optimization opportunities.

When the size of the window induced by a dominator exceeds S, some of the nodes are excluded
from the window. In the case of delay optimization, these nodes correspond to the least critical
nodes in the window (largest slack).

The procedure ClusterDominatedWindows merges the dominated windows into a single
one. The process of clustering updates the cost associated to the new node and the surrounding
edges. The slack associated to the new node corresponds to the minimum slack among all clustered
nodes, and every edge computes the number of subsumed interconnections on it.

The new window may contain other dominators of the network (a dominator can be dominated
by another dominator). For this reason, all the nodes from the window are removed from the set of
dominators. Moreover, some clustered nodes may be included on other dominators. Therefore, an
efficient elimination process traverses the list of dominators in Doms and removes these nodes from
the existing dominators. The clustering proceeds until no more dominators exist.

The outermost loop executes the clustering loop to build larger windows. After the first iteration,
most of the windows are not single nodes any longer and the new windows are built by merging
windows from the previous iteration. The process continues until no more clustering is possible.

It is important to realize that the partitioning algorithm never explicitly looks for dominators with
more than two nodes. However, multiple-vertex dominators are implicitly used for clustering by
iteratively applying the clustering with single- and double-vertex dominators. This property enables
an efficient use of multiple-vertex dominators without an excessive computational complexity.

At the end of the main loop, some small windows or individual nodes might remain orphan,
out from the large windows generated by clustering. The procedure ClusterSmallWindows
still gives an opportunity for further clustering. Here is where S is taken as a soft constraint and
a moderate growth of the windows is tolerated to incorporate neighbouring small windows. In the
experiments done in this chapter, a 25% increase from S is tolerated in the final phase of partitioning.
The criteria for selecting the small windows to be merged is similar to the used criteria to select the
dominators:

1. Smallest number of output nodes in the small window.

2. Smallest weight of the outgoing edges from the small window.

3. Smallest size of the small window to be merged.

These criteria give priority to small windows with less weight on the edges. Windows with a
large number of output nodes are not suitable for merging, since this decision would increase the
number of outgoing edges of the new window and, as a consequence, the interaction with other
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windows. It may occur that a small window has output connectivity with multiple windows. The
next criteria is used to select the edge:

1. Largest weight on the edge.

2. Smallest slack on the new window.

3. Smallest size of the resulting window.

Therefore, orphan/small windows are merged with the windows with largest output connectivity
rate and with smallest slack on the resultant window. This criteria will create windows that tend to
be deep (many levels) with internal nodes having little fanout to external nodes.

4.5.2 Example of a partitioning
Figure 4.11 shows an example of applying the DominatorPartition algorithm to a small
graph. The size limit for a window is defined as S = 8. The circles represent simple nodes, the
boxes represent windows obtained after clustering. The numbers in boldface inside every window
indicate the number of nodes contained in the window. The two other small numbers indicate the
number of output and input nodes on the interface of the window. The connectivity cost is indicated
by the weights in the edges (omitted if the cost is 1).

Using the original network graph (Figure 4.11.a) the single vertex dominators are first selected,
since they produce windows with the least number of outputs. These dominators are used to cluster
simple nodes into windows as indicated by the shadow clouds. If the size limit is exceeded, like in
the case of the dominator c that dominates 9 nodes {c, i, j, t,A,B,D,E,F}, some nodes are excluded
from the window using delay criticality information. Assuming, in this example, that all arrival
times on the primary inputs are the same, node A is excluded from the window since it has a delay
slack larger than other nodes dominated by c.

When the clustered object is a window with multiple nodes, the delay slack is calculated as the
minimum slack among all the outputs of the window. Therefore the most critical path captured
inside the window is the one that determines the criticality of the window.

After the first iteration, the partially-clustered graph shown in Fig. 4.11(b) is obtained. At this
point, two windows (labelled with 4 and 2) are selected as a double-vertex dominator for node y.
The clustering of the three nodes derives another window with 7 nodes and leads to the graph shown
in Fig. 4.11(c).

The main loop of the algorithm completes and delivers the clustering in Fig. 4.11(c). We
can observe that there are still some orphan nodes in the graph. Here is where the procedure
ClusterSmallWindows does the rest of the work. First, node A is selected, since it is a single
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Figure 4.11: Example of a dominator-based partitioning.



76 CHAPTER 4. DOMINATOR-BASED PARTITIONING FOR LOGIC SYNTHESIS

2

6
2

3

1

5

1

2

10

6

 8

 2

2

 9  5

 7

c da b

e f g h i j k l

m n o p q r s t u v

y z A

D

w B

C

E F

Topological order
not preserved

(b)(a)

Figure 4.12: Example where the topological order is not preserved. (a) Clustering windows with 9
and 2 nodes. (b) Resulting partition after the clustering.

node with one outgoing edge. Its neightbour on top has reached the maximum capacity S = 8. How-
ever, an increment of the capacity (25%) is allowed in the procedure ClusterSmallWindows
and node A is merged. Next, node C is merged with the node s since a smaller cluster is built.
Figure 4.11(d) shows the clustering of the node w and the small window with 2 nodes. Node w with
5 outgoing edges in total is processed. Here, the merging criteria push the node to the window with
higher interaction. Finally, the window with 2 nodes is merged with the window with 5 nodes. Note
that, it should be combined with the window with 9 nodes, since the edge has largest size. However,
node s is a special case that will be explained in the next section. Figures 4.11(e-f) depict the final
result of the partitioning and the nodes on each cluster respectively.

4.5.3 Preserving topological order
A clustering algorithm using dominators preserves the topological order among the windows. How-
ever, the procedure ClusterSmallWindows does not guarantee this order. Consider the hy-
pothetical partial partitioning of Figure 4.12. The partitioning algorithm should have clustered the
window with 2 nodes with the window with label 9, since there are two wires that interconnect them.
However, this clustering would create a cycle in the graph due to the three edges 2→ 7, 2→ 9 and
7→ 9 that form a cycle. Graphs with cycles cannot be topologically ordered, which makes the
propagation of the delay information between windows impossible.

The DBP algorithm prevents cycles by imposing the following constraint:

A window cannot be created if one of its output nodes belongs to the transitive fanin of
one of its input nodes in the graph before clustering.
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Figure 4.13: Order of clustering in a vertex dominator. (a) Topological order is not preserved. (b)
Non-critical nodes are also selected to preserve the topological order.

Note that, this constraint is also applied when the number of dominated nodes exceeds the
capacity constraint. As we explained, the most critical nodes are included in the window and the
least critical are excluded. Figure 4.13(a) illustrates the order. Let us take the single dominator
of the figure with a maximum capacity constraint of 5 nodes. The number assigned to each node
refers to the order of selection. As we can observe, critical nodes may have non-critical outgoing
branches included in the dominator. Therefore, these non-critical nodes in the transitive fanout must
be previously selected to avoid potential cycles and fulfill the topological order between the nodes.
Figure 4.13(b) depicts the current order of selection.

4.6 Timing-driven optimization

Figure 4.14 presents the algorithm for timing-driven optimization of large Boolean networks. Ini-
tially, a pre-processing step with low computational cost can be applied to the whole network. In
our case, we implemented the algorithms in SIS [143] and used some of the typical scripts for logic
synthesis. The network was finally decomposed into 2-input gates.

The algorithm has two main loops: one for delay optimization and another for area optimization.
These loops use different optimization scripts (DelayScript or AreaScript in Fig. 4.14).

The structure of each loop is similar. It is a set of procedures that are repeated until no further
improvement is observed. This iterative process is captured by the outermost repeat-until
loops.

We next describe the details inside each optimization loop. Initially, the delay information is
calculated: arrival times, required times, and slacks based on the unit delay model. Next, the critical
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DelayOptimization (N, DelayScript, AreaScript, Slack, Sd , Sa)
Inputs:

N: Boolean network;
DelayScript: Script for delay optimization;
AreaScript: Script for area optimization;
Slack: slack to select the critical region;
Sd : size limit for windows during delay optimization;
Sa: size limit for windows during area optimization;

Output:An optimized network N

Preprocess(N)
{Delay optimization}
repeat

CalculateDelayInformation(N)
Critical := SelectCriticalRegion(N, Slack)
DominatorPartition(Critical, Sd)
for each window W in Critical visited

in Topological Order from PIs do
DelayScript(W )
PropagateDelays (W )

endfor
until No delay improvement

{Area optimization}
repeat

CalculateDelayInformation(N);
NonCritical := SelectNoncriticalRegion(N, Slack)
DominatorPartition(NonCritical, Sa)
for each window W in Noncritical visited

in Topological Order from PIs do
AreaScript(W )
PropagateDelays (W )

endfor
until No area improvement

return N

Figure 4.14: Algorithm for optimizing large networks.
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hMetis
DEPART GhM hM DBP

Duplication Non-overlap Non-overlap Non-overlap
Region of application overall network overall critical/non-critical critical/non-critical

network region region
Partition method Select transitive min-cut + Dominator-based

fanin of POs criticality weight on edges
Order minimization criticality of POs Topological order from PIs + Topological order from PIs

break cycles [67]
Size constraint exceeded remove root node Never exceeded remove the least critical nodes

Table 4.1: Comparison of DEPART, hMetis and DBP.

region of the network is extracted. The critical region is defined as the set of nodes with slack
smaller than a pre-defined slack (parameter Slack in Fig. 4.14). In case of the area optimization
loop, we select a non-critical region according to the same slack information.

The selected region of the network (either for delay or area optimization) is partitioned using
the dominator-based algorithm described in Section 4.5. After this step, a set of disjoint windows
that cover the region is defined. The size of the windows (Sd or Sa) is defined according to the
computational complexity of the optimization script that is used in the innermost loop. For synthesis
scripts with large run-time, the size of the windows must be smaller than the one used for simpler
scripts.

The innermost loop visits the windows in topological order, from inputs to outputs. For each
window, the synthesis script is applied to optimize either for delay or area. This script transforms
the window W without changing its interface to other windows. Next, the delay information is
propagated and re-calculated incrementally.

Once the innermost loop is completed, another iteration of the outermost loop is executed, until
no improvements are produced.

4.7 Experimental results
To evaluate the efficiency of the optimization algorithms presented in this chapter we have con-
ducted three types of experiments:

1. comparison with DEPART [5] on medium-size examples,

2. comparison with mincut partitioning (hMetis) on large examples, and

3. evaluation of the trade-off between area and delay depending on the size of the windows.
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The next section summarizes the basic differences between DBP, DEPART and hMetis. More-
over, the configuration of the algorithms is also described.

4.7.1 Configuration of the algorithms
Table 4.1 shows the differences between the three tools. There are two different applications of
the hMetis tool. The two variations differ on the region where they are applied. GhM performs the
partition in the whole network similar to DEPART, meanwhile hM is applied on the critical region
produced by the selected slack. Note that, DEPART and GhM do not have any area recovery step.
Basically, hMetis has been applied using the algorithm of Fig. 4.14. The DominatorPartition
procedure has been substituted by hMetis where Ghm has Slack = ∞ and hm has Slack = 2 (the
same as in DBP). In both cases, the weights of the edges between nodes on the critical region were
multiplied by a constant factor to bias hMetis towards avoiding cuts in the critical paths (the results
of hMetis partitioning are much worse without weights). With these experiments, we estimated the
contribution of running different optimization scripts for the critical and non-critical regions of the
network.

As explained in Section 4.3, the main drawback in DEPART appears when the cone of logic
of a primary output does not fit in the maximum capacity constraint. The root nodes are removed
recursively until the capacity constraint is not exceeded. This technique deletes the top nodes of the
transitive fanin of the primary output preventing to apply balancing techniques, commonly used on
delay minimization, between the children of the primary output.

hMetis does not guarantee a topologically-ordered partition. Therefore, the delay information
between windows is impossible to propagate. A minimum set of feedback edges is calculated and
ignored to obtain an order close to topological order [67]. The delay information in the feedback
edges is obtained from the one calculated in the previous iteration since it is not possible to propagate
it in topological order in the current one.

All our experiments were run on a PC with a 3 Ghz Intel Pentium 4 CPU and 512 MB main
memory. For the first two experiments, the size of the windows for DBP is Sd = 50 for delay
optimization and Sa = 100 for area optimization with a Slack of 2 units. The delay script used
for optimization was simply the speed up [147] command in SIS, whereas the area script was the
algebraic.

4.7.2 Comparison with DEPART and speed up
The results for the first experiment are shown in Table 4.2. A technology-independent comparison
is performed. The goal of this experiment is twofold: to compare our method with DEPART [5] and
with speed up applied to the flat netlist. The number of literals, the number of levels in 2-input gates
and the runtime are reported for each netlist. The normalized average results are shown in the last
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Bench. Levels Literals CPU (sec)
sp up DEP. DBP sp up DEP. DBP sp up DBP

C880 21 21 20 834 913 873 8 8
alu4 26 26 25 1214 1917 1398 25 19
C2670 16 17 15 1450 1482 1442 50 46
apex5 14 14 14 1465 1580 1504 2 3
table3 40 44 40 1746 2750 1746 120 37
C3540 33 33 33 2275 2382 2359 33 14
apex3 13 12 13 2569 2810 2575 21 14
seq 14 15 15 2895 3003 2905 19 25
C5315 22 25 22 3081 3099 3152 29 23
pair 18 20 15 3105 3158 3522 16 6
C7552 23 22 21 4127 4577 4547 61 37
des 19 20 19 6083 6223 6385 52 51
C6288 69 75 66 6627 6367 7655 464 236
Norm 1.00 1.05 0.97 1.00 1.08 1.07 1.00 0.58

Table 4.2: Comparison of speed up, DEPART and DBP.

row of the table. The experiment has been performed on the same MCNC benchmarks used in [5],
using the same pre-processing script (twice script.rugged followed by eliminate -1; speed up -i)
and the same measurement units for delay and area.

The results for DEPART are the ones reported in [5] in which the windows were constrained to
have 200 nodes at most. We observed that this size was excessive for speed up in the optimization
of some windows and, for this reason, we chose a smaller size (Sd = 50) for running DBP.

Even using smaller windows, DBP is on average superior to DEPART in delay (0.97 vs. 1.05),
while similar in area. Since the networks have moderate size, speed up was also executed on the
whole network to compare with the same command applied within a window using the DBP-based
partitioning. Surprisingly, the application of speed up to the DBP-windows was superior in delay
than applying it to the whole network (3% improvement in delay at the expense 7% increase in
area). One of the reasons for that is that the restructuring obtained by speed up depends on the
order in which the transformations are performed (e.g. see Fig. 2 in [56]). The dominator-based
clusters offer a better guidance for speed up and prevent transformations that can later result in
worse delays. Additionally, the runtime time between the flat method and DBP is compared, and
a clear reduction for DBP is observed. The runtime for DEPART is not shown, since the CPU and
the windows sizes used for the experiments were different.

This experiment gives us the confidence that our partitioning method does not incur in large
penalties with regard to the flat method, even on relatively small examples.
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Bench. Literals Levels CPU (sec)
Orig. GhM hM DBP Orig. GhM hM DBP GhM hM DBP

b14 11122 15972 14443 14515 92 44 32 32 167 180 404
b14 1 9424 14701 11871 12393 70 40 30 30 191 117 329
b15 17829 22962 20359 20229 91 63 54 49 298 140 686
b15 1 17116 21422 18766 18829 71 38 31 30 590 157 528
b17 56405 77962 62990 63332 128 62 55 53 4266 617 1613
b17 1 53188 66455 57323 57889 71 37 33 32 2697 415 1274
b20 22727 34644 30969 32634 108 54 37 36 668 349 488
b20 1 19663 36471 27408 26008 105 46 36 36 1111 385 515
b21 23654 37815 30127 31364 109 51 38 36 893 538 523
b21 1 19652 33726 27465 28544 99 46 35 35 751 338 675
b22 34441 59030 39316 44592 101 43 51 38 2246 166 1078
b22 1 29799 54271 34535 40969 102 47 48 36 1711 229 892
s35932 16304 19376 19352 19500 22 10 9 9 267 620 104
s38417 22172 25785 23184 23694 31 25 24 23 546 69 84
s38584 20086 21470 20146 20222 28 22 21 20 71 184 327
Norm 1.00 0.80 0.82 1.00 0.85 0.78 1.00 0.27 0.57

Table 4.3: Technology independent comparison between hMetis and DBP for large networks.

4.7.3 Comparison with hMetis

The results of the second experiment are presented in Table 4.3 and Table 4.4. They have been
executed on the largest ISCAS’99 benchmarks, selecting only those that were larger than 9000
literals in factored form after applying the pre-processing script. In this experiment, a lighter script
was applied as pre-processing step (algebraic script and speed up -i) instead of the script.rugged,
since don’t care calculation is infeasible on large examples.

The experiments were also run using reduce depth [161]. This command was fast on small
examples, but ran out of time for large networks. The obtained results were worse than the hMetis-
based algorithm and, for this reason, are not shown in the table.

Table 4.3 reports the results of the technology independent optimization after the initialization
script (Orig.), and for all three methods. Table 4.4 reports the results after technology mapping
using the tree-mapping algorithm map [133, 162] in SIS with the lib2 library. In the technology
independent comparison, DBP improves delay by 22% and area by 18% when compared to global
hMetis (GhM). After technology mapping the delay and area improvement are reduced to 16% and
18% respectively. Global hMetis produces networks with larger area, since non-critical regions are
also optimized for delay. After technology mapping, DBP offers a 5% delay improvement with a
cost of 4% in area comparing with hMetis focused on the critical path. DBP creates windows where
the delay minimization script performs a better optimization.The runtime of DBP is approximately
2x higher than hMetis, since the delay script spends more time on the minimization of individual
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Bench. Area Delay
GhM hM DBP GhM hM DBP

b14 11017 9893 9809 44.4 37.7 36.7
b14 1 10058 8222 8706 40.5 34.3 33.6
b15 14734 12811 12814 61.9 56.4 53.4
b15 1 13636 11947 12127 40.5 35.4 35.1
b17 50048 38704 38669 68.6 60.3 58.0
b17 1 41832 35550 36630 43.1 38.0 35.2
b20 23123 20617 22072 57.3 41.5 40.1
b20 1 25101 18425 17512 46.3 40.7 40.5
b21 25859 20040 20988 50.0 41.6 40.6
b21 1 23288 18607 19531 48.2 40.0 40.2
b22 40543 24946 29228 45.2 51.3 42.0
b22 1 37291 22201 27111 48.9 47.6 40.1
s35932 13657 12742 12787 14.0 13.6 13.8
s38417 17349 15067 15462 26.6 26.7 24.5
s38584 13480 12787 12810 22.5 23.2 21.5
Norm 1.00 0.78 0.82 1.00 0.89 0.84

Table 4.4: Technology dependent comparison between hMetis and DBP for large networks.

windows (that have on average larger depth in case of DBP) and more iterations are executed to
reach a network with no further improvements. Note that, the CPU time for partitioning is negligible
compared to the time for the logic optimization within the windows.

4.7.4 Trade-off between area and delay

The objective of this experiment is to evaluate the impact of the window size on the results obtained
by the previously described methods (Figure 4.15). The experiment is conducted using different
sizes for S (12, 25, 37, 50, 62, and 75 nodes) and, as a reference point, the method GhM with
S = 50.

The main conclusion is that DBP always obtains better results in delay regardless the size of the
windows. Moreover, as the plot shows, the impact of the window size on the results of the DBP is
much smaller than the impact on the results of the mincut-based methods.

The mincut-based methods (hMetis and global hMetis) perform better (delay-wise) results for
windows with size of 20-40 nodes. For smaller sizes there is a significant degradation, which is
easily explained by the restructuring limitations imposed by the size of the window. However, a
similar degradation in delay is also observed when the window size grows. We studied this strange
phenomenon in more detailed and we observed that the topological order of the clusters was violated
more often when the window size grew, i.e. the larger the windows, the smaller the probability
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Figure 4.15: Trade-off area-delay depending on window sizes.

to obtain a topologically ordered partition. For this reason, the suboptimal propagation of delay
information has a negative influence on the resulting delay.

The CPU time is also affected by the size of the windows. For DBP, the runtime increases
with the size of the windows, whereas it decreases for hMetis. The dependency is the opposite with
larger windows, hMetis stops on local minima much earlier and executes fewer iterations of the
algorithm.

4.8 Conclusions

Scalability is a crucial aspect for the applicability of logic synthesis techniques on large networks.
A partitioning technique based on the calculation of dominators has been proposed to tackle the
complexity of delay optimization. The drawback of the conventional min-cut partitioning is that
only the structure of the graph is considered. A dominator-based partition captures the Boolean
information inherent in the graph. A second advantage in a dominator-based partition is that the
topological order is preserved allowing the proper propagation of the delay information.

Related to the experimental results, we showed that DBP is superior to the other techniques in
delay optimization. However, there is a trade-off between the results and the maximum capacity
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constraint as we showed in Section 4.7.4. Depending on the delay optimization technique used on
the windows, the maximum capacity constraint should be adjusted to not incur in large penalties
in the runtime. However, the size has to be reasonable since a very small window could produce a
non-effective minimization.

DBP is focused to improve the delay of a network. Internally, the selection of the windows is
targeted at capturing blocks of logic where a major improvement on delay can be achieved. How-
ever, this selection can be modified. As future work, we propose to modify DBP to consider several
objective functions. In DSM technologies, the combination of logic and physical synthesis seems to
be essential to meet the demand of today’s designers regarding delay and power optimization. We
believe that the proposed partitioning strategy, enhanced with layout information, could be a valid
approach for integrating and exploring logic and physical parameters of the design.
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Chapter 5

Window-based timing-driven n-way
decomposition

5.1 Introduction

Logic decomposition is a logic transformation that has been extensively used in multi-level logic
minimization [28, 120, 169, 171]. Algebraic and Boolean divisors are computed for each node
in the network and they are extracted as new nodes. Next, the existing nodes are re-expressed
using the new introduced ones. Mostly, logic decomposition has been used aiming at reducing the
area of the Boolean network, since common factors of different functions can be shared during the
decomposition. Moreover, logic decomposition has been also applied targeting to other objective
functions like timing [154] or layout [105].

Logic decomposition mostly depends on the initial structure of the network. Sharing common
factors is more likely in networks with large functions on the nodes. Therefore, some decomposition
approaches perform a partial collapse of the network, or even a complete collapse of the primary
outputs, to obtain more factors and perform a better decomposition. In this chapter, we refer to
timing-driven recursive decomposition methods applied to entirely or partially collapsed networks.
In partially collapsed networks, the method is specifically applied in the collapsed regions.

This chapter presents a timing-driven n-way decomposition method as an application of the
Boolean relation solver. The technique is an extension of the bi-decomposition method presented
in [56]. The presented algorithm shows improvements on area and delay with regard to [56]. How-
ever, the range of application is limited to small- and medium-sized networks due to the complexity
of the decomposition problem with Boolean relations. In order to process larger networks, we pro-
pose to apply the DBP partitioning method presented in Chapter 4.

This chapter is organized as follows. First, timing-driven logic decomposition methods are

87
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Decomposition (F , Cost)
{Input: A function F ,

Objective cost Function Cost}
{Output: A decomposed function}

var
List dec: list of decompositions;
Best dec: decomposition;

end var

if F is a primary input then return F ;

List dec:=Calculate Several Decompositions(F);
Best dec:=Evaluate Cost Decompositions(List dec,Cost);

// Best dec = α( f1, f2, . . . , fn)
// α refers to which function has been selected
// to perform the decomposition, e.g. AND,OR,XOR,. . .

for each subfunction fi ∈ Best dec do
Deci:=Decomposition ( fi,Cost)

end for

return α(Dec1,Dec2, . . . ,Decn);
end;

Figure 5.1: Standard decomposition algorithm

reviewed on Section 5.2. An overview of the n-way decomposition approach is presented on Sec-
tion 5.3. Section 5.4 describes a brief background on logic decomposition. Section 5.5 presents the
n-way decomposition method and the implementation aspects are described in Section 5.6. Finally,
the experimental results are reported in Section 5.7.

5.2 Previous work
In this section, an introduction to several timing-driven logic decomposition methods is presented.
Due to the extensive literature in this topic, the most relevant approaches are reviewed.

The basic structure of a recursive decomposition algorithm, showed in Fig. 5.1, can be divided
in two steps. First, several decompositions are computed and evaluated based on the objective cost
function. The best solution is selected and the algorithm is recursively applied on each subfunction
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fi. This process stops when the targeted function is a primary input. The second step rebuilds the
Boolean function based on the selected decompositions on each recursive call.

The proposed techniques tend to use an algorithm similar to the presented one, but they differ
on how the decompositions are searched and which cost function is used. The main differences
between the decomposition techniques are described next:

• Disjoint and non-disjoint supports: The basic difference is in the intersection or not between
the support of the subfunctions. Sometimes it is difficult to find disjoint decompositions,
Mostly, the proposed methods tend to allow some intersection between the supports since a
larger search space can be explored.

• BDD decomposition: BDDs contribute to improve considerably the runtime of the decompo-
sitions on large functions. However, the evaluation of a BDD decomposition may differ from
the real cost1, since cost functions based on BDD representation, like BDD size or length of
the largest path to leaf 1, are highly dependant on the variable ordering.

• Sharing: The algorithm presented in Fig. 5.1 frequently produces equivalent functions during
the recursive decomposition. The BDD representation enables to check the Boolean equiv-
alence between functions in constant time. This property allows to share the decomposition
and avoids the application of the recursive approach multiple times in the same function. A
look-up table is commonly used to store the BDD of a function together with its decomposi-
tion to check if the current function has been already processed. However, if sharing is not
applied, the same function can be decomposed using a different structure depending on the
criticality of its fanouts in the network. Delay-driven decompositions with not sharing have
notable improvements on delay at the expenses on increasing substantially the area.

• Technology-dependent or technology independent: Logic decomposition is usually performed
in the technology independent phase. However, some technology mapping techniques for
FPGA are combined with decomposition to improve the quality of the final mapped circuit.

There are several techniques combining logic decomposition with technology mapping [42,103]
or layout-aware [105]. Logic decomposition has been also applied for restructuring critical regions
of a Boolean network [138]. However, this section is focused on timing-driven recursive decompo-
sition paradigms in the technology independent phase.

In timing-driven optimization, several methods have been proposed. A non-disjoint technique
was presented in [169]. This approach is a bi-decomposition process that explores the AND and
XOR decompositions. Basically, a branch-and-bound algorithm is used in other to explore all pos-
sible decompositions of a Boolean function. Figure 5.2 graphically illustrates the algorithm. First,

1Real cost refers to the cost in area and/or delay of the decomposition in 2-AND/OR DAG representation.
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an initial decomposition is selected. The branch-and-bound starts selecting one input variable and
choosing whether the variable is removed or not from the children. Note that, the variables must be
kept at least in one of the children. When an input variable is removed from one child, the other one
must adopt the lost functionality to fulfill the original function. The search space is pruned by the
cost of the best solution during the exploration. This process obtains high quality results. However,
a high runtime is required on large functions.

In [171], this drawback is solved with the introduction of BDD decomposition and enabling
sharing between equivalent functions. However, the results are slightly worse than the previous ap-
proach. Instead of using an exact branch-and-bound approach to seek the optimal decomposition,
a good heuristic decomposition based on the BDD representation of the functions is obtained. Ini-
tially, a pre-process is performed to search a good order in the BDD variables since the evaluation
of the solutions depends on it. Then, the recursive decomposition starts exploring algebraic and
Boolean AND/OR/XNOR decompositions for each function.

The approach presented in [120] improves considerably the previous method. A BDD decom-
position approach using EXOR-gates is performed allowing sharing and overlapping between the
support of the children. Basically, this method is concerned about creating better balanced de-
compositions. The authors claim that their approach finds better balanced decomposition since
strong decompositions are mostly selected. The concept of strong and weak decomposition is
presented in [28]. Fig. 5.3 shows the difference. Let us assume the following decomposition
F(X) = F1(X1) ∗ F2(X2), where X1 ⊆ X and X2 ⊆ X . The next condition is never fulfilled in a
strong decomposition: X1∪X2 = X1 or X1∪X2 = X2.

The technique proposed in [56] combines the best characteristic of each previous approach. Al-
gebraic, function approximation and BDD decomposition with AND/OR/XOR gates are explored.
Sharing is also applied to reduce the total area of the function and the runtime of the algorithm.
Moreover, a tree-height reduction technique is applied after the decomposition to balance the corre-
spondent functions of the children. Tree-height reduction [97] was originally proposed in the scope
of compilers for the generation of optimized code for multiprocessor systems. Basically, a decompo-
sition can be iteratively improved by applying simple transformations (associative and distributive).
Figure. 5.4, extracted from [56], shows an example. Initially, the function is bi-decomposed. The
result is far from a balanced solution. However, the total height is reduced from 8 to 4 levels by
applying twice the distributive law. After that, the bi-decomposition continues on the children.

5.3 Overview
Let us assume the next Boolean function:

F = abcd f g+ab(c+ f +g)e
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Figure 5.5 illustrates three possible decompositions. The DAG representation has been used where
the bubbles in the edges represent inverters. The shadowed nodes represent the functions used to de-
compose2. Figure 5.5(a-b) illustrates a decomposition based on OR and AND function respectively,
and a MUX function is used in Fig. 5.5-(c). The AND/OR functions are able to find good solutions.
The OR function requires one level of logic more, however, a solution with less number of nodes is
produced. The MUX-decomposition finds an intermediate solution between them. A solution with
the same number of levels than the AND decomposition and similar number of nodes than the OR
decomposition is obtained. Therefore, n-way decomposition can produce better solutions since a
large search space of decompositions is explored.

Bi-decomposition methods can also achieve the decomposition obtained by the multi-
plexor function using tree-height reduction post-processing approaches like speed up [147] or
acd speed [56]. However, these post-processing methods are highly dependant on the original
decomposition.

In this chapter, we propose an n-way decomposition approach to improve the bi-decomposition
method presented in [56]. N-way decomposition is also merged with tree-height reduction tech-
niques to improve the results.

5.4 Background
The n-way decomposition problem can be formulated as follows:

Definition 5.4.1 N-way decomposition. Let us assume a function F(X) with the set of variables
X = {x1,x2, · · · ,xm} and a gate G(Y ) with the set Y = {y1,y2, · · · ,yn}. The n-way decomposition of
the function F(X) with G(Y ) is F(X) = G(F1(X),F2(X), . . . ,Fn(X)). 2

Bi-decomposition is a particular case of n-way decomposition where G(Y ) is a two-input func-
tion. Hereafter, we will refer to bi-decomposition and n-way decomposition as BIDEC and NDEC
respectively. The n-way decomposition problem can be naturally represented by a Boolean relation.
A Boolean relation covers the potential set of decompositions.

Definition 5.4.2 Decomposition problem formulation. Let us assume a function F(X) with the set
of variables X = {x1,x2, · · · ,xm} and a gate G(Y ) with the set Y = {y1,y2, · · · ,yn}. The Boolean
relation that represents all possible decompositions of the function F(X) with the gate G(Y ) is
defined as follows:

BR(X ,Y ) = (F(X)⇔ G(Y ))+DC(X)

where DC(X) are the external don’t cares of the function F(X).

2We assume that the multiplexor function is internally represented by two levels of logic.
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2

The function being decomposed usually belongs to a network where flexibility described with
don’t cares can be taken into account. The Boolean relation uses the don’t care information to
constraint the search to decompositions not covered in other regions of the network.

Finally, let us define the data structure to represent a decomposition.

Definition 5.4.3 Decomposition representation. A bi-decomposition D can be represented as a
triples

D≡ (op, le f t,right)

where op is the Boolean function used in the decomposition, and le f t and right are the resulting
children. A decomposition can be represented as a node in a binary tree, in which the Boolean
function op is the Boolean operator of the node that can be ∗, + or input if the node is a literal.
Recursively, le f t and right can be defined as other triples until the whole tree is constructed. 2

A recursive decomposition can be represented by a binary tree where each node corresponds to
a logic function 2-AND/OR. Note that, an n-way decomposition can be also represented as a binary
tree if the gate is decomposed in two-input nodes (See the MUX function in Fig. 5.5-(c)).

A binary tree represented by these triples can be transformed to an And-Inverter Graph (AIG)
by merging nodes that represent isomorphic functions.

Definition 5.4.4 And-Inverter Graph (AIG) [98]. An And-Inverter graph is a directed acyclic
graph, in which a node has either 0 or 2 incoming edges. A node with no incoming is a primary
input. A node with 2 incoming edges is a two-input AND gate. An edge is either complemented or
not. A complemented edge indicates the inversion of the signal. 2

An example is shown in Fig. 5.5-(c). The MUX-decomposition generates the functions abe, ab f
and cd. The recursive decomposition of the functions abe and ab f generates the common factor ab
that is shared in both functions.

5.5 Recursive n-way decomposition
In this section the recursive n-way decomposition is presented. Figure 5.6 illustrates the algorithm
called BRCDEC(Boolean Relation Combinational DEComposition). The input of the procedure
is the targeted function to be decomposed and the don’t care information captured from the envi-
ronment. A library with the set of logic functions that the procedure will explore to select the best
decomposition is also provided. The last input specifies the desired required time that the result
should have. This required time is measured in number of levels and it is decreased each time a new
recursive call is invoked.
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BRCDEC (F , DC, library, Req time)
{Input: Function F to be decomposed, External don’t cares DC,

List of logic functions used in the decomposition, Required time.}
{Output: Function decomposed in 2-AND/OR representation}

Collapse(F);

{Obtain bi-decomposition}
soltmp:=Bi-decomposition(F , DC, Req time);
Listsol := Listsol∪ Tree-Height Reduction(soltmp,Req time);

{Obtain decompositions using the logic functions of library}
for each function G in library gates do

soltmp:=Decomposition BR(F , DC, G, Req time);
Listsol := Listsol∪ Tree-Height Reduction(soltmp,Req time);

{All decompositions are in 2-AND/OR representation}
sol:=Get Best Decomposition(List sol);

if Levels(sol.le f t)>Levels(sol.right) then swap(sol.le f t,sol.right);

{First descompose fastest child}
decle f t :=BRCDEC(sol.le f t,DC, library gates,Req time−1);

{Add observability don’t cares}
decrigth:=BRCDEC(sol.rigth,DC +ODCle f t child , library gates,Req time−1);

return Create decomposition(sol.op,decle f t ,decrigth);
end;

Figure 5.6: Recursive algorithm for logic n-way decomposition.

Initially, the function is collapsed into a single node. For each logic function in the library a
decomposition is obtained. The decomposition problem is formulated as a Boolean relation as we
defined in Def. 5.4.2 and the relation is solved with a BR solver3. Note that, a Boolean relation
covers a huge space of decompositions and the calculation of the best solution may require a high
runtime. In order to cut this runtime, a small set of decompositions is explored (e.g. 200 decom-
positions) and tree-height reduction is used to balance and, therefore, improve the decomposition.
After this post-process the decomposition is represented by an AIG.

Therefore, our approach improves the technique used in [56] by providing n-way decomposi-

3The configuration of the solver will be described in the following section.
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tions to the tree-height reduction algorithm. As we defined previously, BIDEC is a particular case
of NDEC. In addition to the decompositions of the logic functions of the library, the procedure also
explores the bi-decompositions performed in [56]. This includes algebraic and BDD decomposi-
tion based on function approximation. Experimentally, we observed there is a relationship between
the selected decomposition (BIDEC or NDEC) and the number of levels of logic of the function.
When the function has few levels, there are few feasible decompositions, therefore, a near-optimal
balanced solution is easily obtained using BIDEC. NDEC obtains better balanced decompositions
when the complexity of the function grows. The accuracy of bi-decomposition is affected by the
complexity of the function. Figure 5.7 shows a plot between the number of levels of the logic func-
tion and the selected decomposition. This plot is obtained by decomposing around 500 functions
of several levels. Functions with larger number of levels are mostly decomposed with the n-way
method since there is a larger search space of decompositions.

Next, the algorithm selects the best decomposition. The selection is performed evaluating their
AIG representation using the cost function defined in the following section.

Finally, the algorithm recursively decompose the children. First, the smaller child is selected.
The reason for this choice is due to the possibility to apply the observability don’t cares from the
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smaller child to posteriorly decompose the other one. Don’t cares will help to avoid redundancy
between the children. When the children are completely decomposed, the decomposition for the
current function is constructed.

5.6 Implementation aspects

This section describes the heuristics applied in BRCDEC. Moreover, the configuration of the solver
and the cost functions are also defined.

5.6.1 BREL solver

BREL solver is used to solve the n-way decomposition. The solver has been customized to support
two cost functions The first function filters the huge space of solutions using the BDD represen-
tation of the decompositions and a small set of the best solutions is stored. The number of stored
solutions can be customized by the user. The latter one selects the final decomposition using the
AIG representation over the best solutions found by the former cost function. The solver has been
limited to perform a partial exploration for each decomposition problem due to the large space of
potential solutions.

5.6.2 BREL cost functions

The former cost function deals with Boolean functions represented with BDDs. Cost functions
based on BDD representation are not accurate, since sometimes there is no correspondence between
the complexity of the BDD and the function. Moreover, there is a high dependence on the variable
ordering of the BDD manager. However, a BDD-based cost function provides a fast estimation.

Some cost functions, like number of levels of a function, are difficult to be computed in BDD
representation. Although a BDD can be transformed to its AIG represenation to obtain an accurate
estimation, it is not recommended since the execution can be slow down considerably.

A naive BDD-based cost function, presented in Section XX, to estimate the balance of a decom-
position is the sum of squares of the BDD size. This approximation gives an intuition of the size of
the function and, therefore, a perception of the quality of the balance of the decomposition.

Consider the bi-decomposition of the function F = abc + f gh + f gh + f gh with the OR logic
operation with the same arrival time for all the inputs. Two possible decompositions are:

d1 = (+,d11,d12) d11 = abc, d12 = f gh+ f gh+ f gh
d2 = (+,d21,d22) d21 = abc+ f gh, d22 = f gh+ f gh
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Figure 5.8 shows the BDD representation of these two decompositions. The BDD cost function
”sum of squares” selects the first decomposition since the cost of d1 is 34 compared to the cost of
52 of d2.

The drawback of this cost function is that the arrival times of the inputs are not taken into ac-
count. Note that, the function being decomposed usually belongs to a larger network. The input
variables also have timing information that has to be taken into consideration during the decompo-
sition to obtain a better balanced solution.

The next BDD-based cost function is proposed to obtain a better estimation of the delay and
the area. A balanced binary tree can be constructed from the disjunction of all prime implicants of
the function where each prime implicant is a conjunction of input variables. The arrival time of the
inputs is used to build the tree towards a balanced delay. Note that, this construction can be done
by BDD operations without explicitly building the binary tree. The delay and area can be evaluated
during the computation of the prime implicants. The delay is estimated by the depth of the tree and
the area from the sum of the support of the primes.

Consider the same decompositions of Fig. 5.8. Figure 5.9 depicts both decompositions in binary
tree representation where the cost function based on prime implicants is used. The selection of
the best solution changes since the costs are (d = 4,a = 12) and (d = 3,a = 12) for d1 and d2
respectively.

The BDD-based cost function obtains a set of candidates. The latter cost function deals with
this set of candidates and amends the inaccuracy using a cost function based on AIG representation.
The complexity will be higher but the cost is affordable since a small set of the solutions will be
processed. The cost is also defined as a pair (delay,area). The delay and area cost functions can be
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computed based on the next formulas:
The delay D(T ) can be calculated by the depth of a tree T as follows:

D(T ) =
{

AT (T ) if T.op = input
1+max(D(T.le f t),D(T.right)) otherwise

where AT (T ) is the arrival time when the node is a primary input.
The number of nodes N(T ) of a tree T can be calculated as follows

N(T ) =
{

1 if T.op = input
N(T.le f t)+N(T.right) otherwise

These cost functions are more accurate since they work on top of the AIG representation of the
decomposition. As we described, AIG representation allows to merge isomorphic functions that
contributes to obtain a better estimation of the area of the function.

In the algorithm BRCDEC, the same cost function based on AIG representation is used to select
the best decomposition over all logic functions of the library in Get Best Decomposition.

5.6.3 Look-up table

To prevent the decomposition of equivalent Boolean functions, a hash table stores all the previously
decomposed Boolean functions. Note that, this look-up table reduces significantly the computation
time of the decomposition process.
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5.7 Experimental results
Two experiments have been performed to show the efficiency of the n-way decomposition approach
presented on this chapter:

• Comparison with the bi-decomposition proposed in [56] on small and medium-sized exam-
ples.

• Comparison with bi-decomposition on large examples using a window-based approach pre-
sented in Chapter XX.

Our n-way decomposition approach BRCDEC has been implemented in SIS using the BREL
solver. A library of multiple-input functions has been provided to BRCDEC to compute several
decompositions. Specifically, the library consists in four functions: AO22, OA22, MUX, and XOR.
Note that, no post-process is run after decomposition, like speed up [147] or acd speed [56]. The
main objective of these experiments is to compare the performance of the decomposition processes.
Any post-process may alter considerably the decomposition results.

The next sections summarize the results of these experiments. The tables of results report for
each example the number of primary inputs and primary outputs, the number of levels of logic in
the technology independent phase, the delay and area after technology mapping and the runtime.
The circuits have been mapped using the tree-mapping map [133, 162] with the academic library
lib2.genlib. The last row of the tables reports the normalized sum of the columns.

5.7.1 Comparison with bi-decomposition
In this section, a comparison with the bi-decomposition approach presented in [56] is performed.
The experiment is run on a subset of small and medium-sized circuits of the MCNC benchmarks.
The objective of this experiment is to show the performance of BRCDEC with regard to bi-
decomposition.

Table 5.1 summarizes the results. The netlists on this table are a subset of the selected ones
in [56]. The smallest circuits are not reported since the decomposition obtained with NDEC is
identical to the solution provided by BIDEC.

The number of levels of logic is similar in both methods. NDEC reduces the depth of the circuits
by 3%. However, the number of levels is actually reduced only on few examples (alu2, apex6 and
b9). The improvement is closely related to the size of the network. For instance, the circuit alu2 the
number of levels is reduced from 11 to 9. However, NDEC contributes to obtain better delay after
technology mapping with similar results on area. In some examples the results are substantially
better (alu2, apex6, apex6 and example). Only, the results are slightly worst in four examples
(c8, i7, term1 and x2 ), since some bad decision is taken based on the cost functions. Nevertheless,
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bi-decomposition [56] n-way decomposition
PI PO LEV DEL AREA CPU LEV DEL AREA CPU

9symml 9 1 9 7.17 117392 6 9 6.73 131776 196
alu2 10 6 11 8.91 509008 13 9 8.15 475136 579
apex6 135 99 7 7.39 1529808 11 7 6.92 1517280 788
apex7 49 37 8 7.69 881136 7 7 7.57 919648 511
b9 41 21 6 5.29 212976 1 5 5.14 218080 64
c8 28 18 6 5.50 212048 1 6 5.55 207408 57
cht 47 36 4 4.94 272368 1 4 4.71 270048 29
count 35 16 7 6.46 497408 3 7 6.34 517360 142
cu 14 11 5 4.70 95120 1 5 4.73 100688 14
example2 85 66 6 8.54 1331680 7 6 7.49 1288528 379
f51m 8 8 7 6.43 219008 2 7 6.14 210192 85
frg1 28 3 7 5.40 72384 3 7 5.41 81200 121
i5 133 66 6 6.28 1013376 6 6 6.23 990176 363
i7 199 67 5 6.83 833808 4 5 7.10 942384 251
lal 26 19 6 5.30 220864 1 5 5.19 230144 59
pcle 19 9 6 5.48 139664 1 6 5.36 150336 43
pcler8 27 17 5 5.77 229216 1 5 5.73 237104 69
sct 19 15 5 4.90 167040 1 5 4.77 161008 43
term1 34 10 9 6.89 361456 4 9 6.93 353568 288
ttt2 24 21 6 6.40 362848 2 6 6.13 388368 139
x1 51 35 6 5.76 487200 4 6 5.62 498336 279
x2 10 7 5 4.46 62640 1 5 4.57 62176 16
x3 135 99 7 6.92 1543728 11 7 6.82 1525632 16
x4 94 71 5 6.74 1046784 6 5 6.63 1056064 424
z4ml 7 4 5 4.98 82128 1 5 4.90 84912 27
Norm. 1.00 1.00 1.00 1.00 0.97 0.98 1.00 50.6

Table 5.1: Comparison with the bi-decomposition method presented in [56] on small networks.

there is an improvement of 2% on average, since NDEC generates some decompositions that BIDEC
is unable to find. These decompositions after tree-height reduction deliver AIGs with better delay
and area characteristics. However, the cost on runtime to apply NDEC using Boolean relations is
considerably higher with comparison to BIDEC.

These statements are confirmed in Table 5.2. This table reports the results on the largest MCNC
netlists that can be run with BRCDEC without not incurring on large penalties on runtime. On larger
ones, BRCDEC blows up due to the construction of too large BDDs. Here, the improvement on
delay is more significant (5%) with a slightly reduction on the area. However, NDEC uses more CPU
time than BIDEC. Performing an analysis on individual functions, we have observed that NDEC is
able to find decompositions with similar number of levels but with less area on large functions (i8, i9
and vda). On a recursive decomposition, the solution provided by NDEC is commonly selected on
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bi-decomposition [56] n-way decomposition
PI PO LEV DEL AREA CPU LEV DEL AREA CPU

frg2 143 139 8 9.38 4139808 47 8 8.99 4360672 4284
i8 133 81 9 10.37 4084128 64 8 9.35 3849344 3691
i9 88 63 8 10.75 4447904 54 8 10.18 4382016 4146
table3 14 14 10 10.67 3216912 121 10 10.05 3258208 3580
vda 17 39 8 8.70 2219776 24 8 9.01 2093568 1307
Norm. 1.00 1.00 1.00 1.00 0.98 0.95 0.99 56.77

Table 5.2: Comparison with the bi-decomposition method presented in [56] on medium-sized net-
works.

the initial steps where larger functions are tackled. On inferior decompositions where the functions
have a lower complexity, NDEC and BIDEC find similar results.

5.7.2 Window-based n-way decomposition

N-way decomposition is a powerful method since a large search space is explored using the Boolean
relations. However, this exploration incurs on large runtimes that are more stressed on large func-
tions. Therefore, NDEC is confined to be run on medium networks. In order to break this limitation,
DBP is used. A window-based approach is applied to run the decomposition methods on the largest
circuits of the ISCAS’99 benchmarks. DBP targets the decomposition methods on the critical re-
gions of the circuits. The size of the windows for DBP is reduced to Sd = 8 for delay optimization
and Sa = 100 for area optimization with a Slack of 2 units. We observed a reasonable trade-off
between performance and runtime in windows of 8 nodes. Larger windows slow down substantially
the execution of the window-based approach.

In this experiment, a pre-processing script is used to reduce the size of the netlist. algebraic
script and speed up -i are used to obtain a 2-input gates network. The area optimization script
is the algebraic and the delay script consists on the decomposition method (BIDEC or NDEC)
and acd speed. The decomposition methods increase considerably the area of the windows. This
drawback, that can be a problem on the largest netlist, is controlled by applying tree-height reduction
on the window (acd speed).

The results are summarized in the Table 5.3. Here, the results of speed up with DBP reported
in Section XX are also shown to see the comparison with the decomposition methods. The normal-
ized sum takes as a reference the BIDEC method. The number of levels of logic is similar between
speed up and BIDEC. There is only 2% of difference on average. However, NDEC overcomes
by 4% BIDEC. In some netlists, like b17, the improvement is notable. After technology mapping,
this improvement is also observed. BIDEC by systematically decomposing windows on the crit-
ical regions reduces the delay by 7% at the expenses of increasing by 17% the area compared to
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speed up bi-decomposition [56] n-way decomposition
PI PO L DEL AREA L DEL AREA CPU L DEL AREA CPU

b14 32 54 32 36.7 9809 32 33.0 12829 742 30 32.0 12151 10021
b14 1 32 54 30 33.6 8706 30 31.1 11075 521 28 30.5 14241 16086
b15 36 70 49 53.4 12814 46 50.4 18124 2026 44 49.8 15846 8697
b15 1 36 70 30 35.1 12127 29 31.8 14547 692 27 31.1 15706 10839
b17 37 97 53 58.0 38669 54 54.8 42118 3751 47 52.5 43730 32775
b17 1 37 97 32 35.2 36630 30 34.9 44169 13089 30 33.8 38150 23528
b20 32 22 36 40.1 22072 36 37.9 22650 1942 36 36.9 22727 12741
b20 1 32 22 36 40.5 17512 36 36.5 23312 2921 33 36.2 23510 12855
b21 32 22 36 40.6 20988 34 35.2 30308 4554 32 35.7 29926 22444
b21 1 32 22 35 40.2 19531 34 36.1 28010 3040 32 35.4 26168 13553
b22 32 22 38 42.0 29228 35 38.9 34914 12485 35 37.7 31555 15141
b22 1 32 22 36 40.1 27111 37 37.2 32363 4005 37 37.1 30947 24979
s35932 35 320 9 13.8 12787 8 13.0 12941 665 10 12.8 13235 5764
s38417 28 106 23 24.5 15462 22 25.4 16670 1151 21 24.6 16744 8580
s38584 38 304 20 21.5 12810 19 21.2 12677 468 21 20.7 12626 1699
Norm. 1.02 1.07 0.83 1.00 1.00 1.00 1.00 0.96 0.98 0.97 4.22

Table 5.3: Comparison between window-based bi-decomposition and window-based n-way decom-
position.

speed up. As in the previous section, NDEC slightly improves the results by 2% in delay and 3%
in area by selecting better decompositions.

5.8 Conclusions
In this chapter, a new application of the Boolean relations has been shown. The experimental results
confirm that the n-way decomposition can obtain better solutions than bi-decomposition, mostly, on
large functions. However, there is a limitation on the size of the decomposed functions and a high
runtime is required to run n-way decomposition.

A window-based approach has been proposed to apply this method on larger netlists. Although
the runtime is enormous, the experimental results show some improvements in the largest ones.
Note that, the runtime basically depends on the size of the windows. There is a trade-off between
the quality of the solutions, the size of the windows and the runtime of the window-based approach.
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Chapter 6

Layout-Aware Gate Duplication and Buffer
Insertion

6.1 Introduction

As miniaturization evolves down to deep-submicron technologies, the impact of layout details ac-
quire increasing relevance, since interconnect delays become dominant.

The work presented in this chapter, based on the results in [20], combines three different sub-
problems in the same framework in such a way that the loss of information between logic and layout
synthesis is reduced. The combination is performed by iteratively providing feedback from layout to
logic synthesis and vice-versa. The three related sub-problems are: gate duplication, buffer insertion
and placement.

The reason for the selection of these problems is because they are closely related, since they
are at the boundaries between logic and layout synthesis. Second, they can be combined with an
affordable computational complexity. Incorporating more sub-problems, e.g. technology mapping
or routing, would prohibitively increase the complexity. Note that, gate sizing is also performed
by our approach when considering different instances of the gates during duplication and buffer
insertion. Moreover, gate sizing over all the circuit can be performed after placement with some
existing tool to change some of the non-modified gates closed to the new inserted ones.

The method presented in this chapter, BufDup, is an approach that applies a technique similar
to Engineering Change Orders (ECOs). The circuit is incrementally improved by performing small
modifications on top of the current placement design. BufDup implements a reciprocal feedback
between placement and gate duplication and buffer insertion.

As we previously pointed out, the combination of these methods could suffer a combinatorial
explosion. There is a large potential set of possible gate duplication and buffer trees that can im-

105



106 CHAPTER 6. LAYOUT-AWARE GATE DUPLICATION AND BUFFER INSERTION

plement a net with high fanout. To avoid an exponential search of candidates, the fanout points of
each net are ordered according to the layout information. The trees are explored/generated using a
dynamic programming approach that creates subtrees of adjacent points according to the calculated
order. In this way, the set of gate/buffer trees are explored in a similar way as tree-based technology
mapping algorithms are executed.

Another important feature of the presented approach is that there are no pre-defined insertion
points for the new gates and buffers. In principle, there is total freedom to create any tree. The new
gates and buffers are placed on top of the existing layout. Incremental detailed placement is used to
legalize the new layout.

The experimental results show tangible benefits in delay that endorse the suitability of integrat-
ing the three sub-problems in the same framework.

The remainder of the chapter is organized as follows. In Sect. 6.2, the previous work in buffer
insertion and duplication is presented. In Sect. 6.3, the contributions of the presented approach
are introduced. Section 6.4 describes the interconnect optimization algorithm BufDup. The gate
duplication and buffer insertion algorithms are introduced in Sect. 6.5 and Sect. 6.6 respectively.
Finally, the experimental results are presented in Sect. 6.7.

6.2 Previous work

In this section, first the Elmore delay model is described. Later, we will review several approaches
on buffer insertion and duplication. Due to the extensive literature on these topics, here we will
survey the most relevant techniques.

6.2.1 Elmore delay model

In this section, we define the interconnect model used in BufDup. There are several ways to compute
the delay of a circuit [24, 48, 135]. Instead of using continuous models, many methods tend to use
discrete delay models since there are simpler to compute.

Here, the basic Elmore model [68] is used to estimate the delay of a RC circuit. In adddition to
the intrinsic delay of the gates, the Elmore model takes into account the delay associated to the wires.
First, the technological parameters (wire capacitance and wire resistance per unit length) are defined
depending on the selected process technology. The associated delay of a wire is estimated from its
length and these technological parameters. Figure 6.1-(a) depicts a network with its combinational
representation and Fig. 6.1-(b) corresponds to the same network as the discrete RC circuit where
the cells and wires have been replaced by their corresponding capacitance and resistance. The delay
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Figure 6.1: (a) Combinational representation and (b) RC representation of a circuit.

from the cell A to the cell B is defined by the following formula:

DAB = RA(CB +
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∑
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R j︸ ︷︷ ︸
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where the first term is the time to send the signal from the cell A, the second term is the time to send
the signal through the wire and the last term is the time to receive the signal on cell B.

6.2.2 Buffer Insertion
Several approaches on buffer insertion [124, 146] have been proposed in the past using a load-
based model. This problem, also called in this context fanout optimization, aims at reducing the
high fanout of several gates. Buffer insertion improves considerably the delay on critical paths.
Some approaches have also been integrated with technology mapping [110]. However, the insertion
decisions are taken without considering physical information.

Buffer insertion has also been incorporated in the routing step of physical layout. Here, the
goal of buffer insertion, also called repeater insertion, is to minimize the length and the conges-
tion of the wires among the placed cells. Buffers tend to be inserted on free positions to preserve
the legality of the placement. Some of these techniques are based on the dynamic programming
approach proposed by Van Ginneken [163], that solves the problem in polynomial time with re-
gard to the number of explored locations. Figure 6.2 illustrates an example of this approach. The
buffer insertion is performed on a predefined routing tree where only legal positions for the buffers
are explored. Initially, the tree is traversed from sinks to source. For each location, all the pairs
(Required Time,Capacitance) for the possible buffers are computed. The best pairs, commonly
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Figure 6.3: (a) Buffer insertion. (b) Inverter insertion. (c) Sink Polarity.

called Pareto points [86], are preserved. A post-process builds the buffered tree from source to
sinks. This process identifies for each position the Pareto point and, therefore, the buffer that has
led to the optimal solution in the source gate.

Several extensions to this algorithm have been proposed to improve the runtime, explore multi-
ple candidates locations for the buffers [13], and generalize the algorithm for other objective func-
tions, such us power consumption [106,131]. A Fast buffer insertion technique (FBI) was proposed
in [145]. It reduces the complexity of the conventional Van Ginneken’s approach to O(nlog2n) with
regard to the number of feasible locations. It uses several heuristics, such as predictive pruning and
redundancy check, to reduce the number of Pareto points. These heuristics are based on the con-
cept of dominance1. FBI also supports inverter insertion and sink polarity (See Fig. 6.3). Inverter
insertion enables the possibility to handle sinks with negative polarity.

Another technique to achieve a buffered tree is a simultaneous construction of a routing tree
and buffer insertion. This approach is more complex, since it has to deal with the routing tree
construction. General methods combine buffer insertion with fast heuristics to construct them. Let

1A solution characterized by a cost function dominates another solution if the value of the cost is better. Note that,
the concept of dominance can be extended to solutions with multiple cost functions.
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Figure 6.4: (a) Hanan grid. (b) Minimum Rectilinear Spanning Tree. (c) Minimum Rectilinear
Steiner Tree. (d) A-Tree. (e) P-Tree.

us recall some of these heuristics. Figure 6.4 illustrates these types of trees.

• Minimum Rectilinear Spanning Tree (MRST): The Rectilinear Spanning Tree (RST) was
the first type of trees used in a routing algorithm. The objective of a MRST is to connect a set
of vertices with a tree with minimum length. The complexity of the Prim’s algorithm [129]
is O(n2) with regard to the number of points. However, a MRST can be computed with
O(nlogn) using the approach in [73].

• Minimum Rectilinear Steiner Tree: Steiner trees allow to add new vertices in the tree in
order to reduce the length of a spanning tree. However, the construction of a Minimum
Rectilinear Steiner Tree is a NP-hard problem. Several heuristics have been proposed to
construct Steiner Trees. We next describe the most relevant.

• Batched Iterative 1-Steiner (BI1S) [87]: This approach starts from a RST. The algorithm
inserts one Steiner point based on the maximal reduction of the wirelength of the RST. The
cost of this algorithm is O(n3) since the improvement of the wirelength is iteratively computed
for all the points of the Hanan grid2 with regard to all terminal nodes.

2The Hanan grid is defined as the embedded region in the bounding box created by the terminal nodes (See
Fig. 6.4.(a)).
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(a) (b)

Figure 6.5: (a) LT-Tree example. (b) C-Tree example.

• Borah-Owens-Irvin (BOI) [29]: This approach reduces the complexity of the BI1S to O(n2).
The process is similar, although only the intersection points between adjacent terminal nodes
are candidates to become a Steiner point. Moreover, the cost function is only computed with
regard to the nearest terminal nodes.

• A-Tree [53]: The previous heuristics only take into account the location of the nodes. Here,
the technology dependent parameters, like resistance and capacitance of the gates and wires,
are also used to create the Steiner tree. The goal of this heuristic is to create the shortest path
from each sink to the source.

• P-Tree [108]: The A-Tree is refined including delay-oriented tree construction. Basically, the
Steiner tree construction targets at minimizing the delay of the tree. The cost of this approach
O(n5) limits its application on large instances. The complexity arises on the exploration of
the Steiner points. Using an approach similar to 1-Steiner heuristic, all the points of the
Hanan grid are explored for feasible intersection points. Due to the extremely large number
of possible tree constructions depending on how the sinks are connected, an order on the sinks
is initially predefined to reduce the complexity.

In buffer insertion techniques, A-Trees and P-Trees are preferred since wire delay is taken into
account. The other heuristics have been used in some routing techniques [173]. In [126], the authors
combine A-Trees with Van Ginneken’s algorithm. The algorithm builds an A-Tree from sinks to
source and performs the buffer insertion from source to sinks with several partial solutions stored
in the tree. Another approach is presented in [136], where the buffered Steiner tree is constructed
from sinks to source with a combination of LT-Trees [162] and P-Tree with a predefined order of
the sinks. This algorithm is optimal depending on the order of the sinks but it has a high runtime
complexity because of the explosion of the exploration of feasible locations for the buffers and the
construction of P-Trees. Moreover, the LT-Tree structure (See Fig. 6.5.(a)) restricts the creation of
cascaded buffered trees since a buffer can only drive at most one buffer.
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(a) (b)

Figure 6.6: (a) Initial configuration. (b) Three different gate duplications.

A variant of the P-tree heuristic is presented in [80]. This approach, called S-Tree, combines
the P-tree construction with buffer insertion. Initially, a predefined order of the sinks is given and
a partition among the sinks is also provided. This partition divides the sinks depending on some
criterion, i.e. polarity or criticality. During the construction from sinks to source, three trees are
constructed at the same time. For each location of the Hanan grid three possibilities are analyzed:
to merge two branches of the same clusters of sinks or to merge two branches from different clusters.
The authors claim that the runtime of the algorithm is reduced with regard to the P-Tree construction.
However, this is due to the support of obstacles and, therefore, the reduction of the search space.
In [12], a hierarchical technique, called C-Tree, is presented. This approach is a generalization of the
previous work where an n-way partition is performed depending on the polarity of the sinks. This
technique produces Steiner trees with less number of buffers. Moreover, the runtime is reduced
because the application of Dijkstra’s algorithm to create the Steiner trees instead of any delay-
oriented construction. Figure 6.5.(b) depicts an example of a C-Tree where each sink is depicted
with its polarity. The wirelength of the Steiner Tree is larger compared with other types of buffered
trees. However, only one inverter is required. Any other Steiner tree construction technique would
use four inverters.

In [157], the search space of possible locations is reduced taking into account the obstacles of the
layout. Although wire distances between locations are precomputed, this approach still has a high
complexity due to the exploration. There were some refinements of this approach to improve the
runtime. In [158], some of the partial solutions are pruned based on the concept of dominance be-
tween solutions. In [65], a similar technique based on precomputing some information is presented.
However, a simulated annealing technique is used instead of a dynamic programming approach
from sinks to source. This approach starts from a Steiner tree and iteratively performs perturbations
on the tree using simulating annealing.
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6.2.3 Gate duplication

Gate duplication has been extensively studied using a load-based model [41, 107]. The main work
was performed by Srivastava [151, 153]. He proved that the global gate duplication problem is NP-
Complete. Basically, the gate duplication algorithm has to take at least two decisions on which the
final result will depend: decide the gates to be duplicated and the assignment of fanouts to each
duplicated gate. Fig. 6.6 illustrates an example. There are several ways to perform the duplication.
However, the local decisions influence future duplications in the immediate fanins and fanouts.

This section will refer to techniques oriented to physical design. The basis of layout-aware gate
duplication was introduced in [27]. The nodes of the critical path are ordered depending on the
criticality. The objective of this method is to duplicate gates where some delay improvement can
be obtained. The new gates are placed on locations where the monotonicity of the critical path is
fulfilled. Note that, this ideal location may overlap with existing gates. An incremental placement
legalizes the placement. The drawback of this approach appears when the feasible region to place
the duplicated gate is computed. This region is calculated based on the positions of the immediate
fanins and fanouts of the targeted gate. Therefore, the monotonicity is only improved locally. An
extension was presented in [43, 44]. An incremental timing-driven placement with duplication is
also proposed. Here, the concept of feasible and super-feasible region to place the duplicated nodes
is introduced. The objective is also to produce monotonic critical paths. However, a super-feasible
region specifies the boundaries of a good region to place a node to improve the global monotonicity
of the path.

Another extension of [27] was proposed in [81, 96]. Because of the good results of the previous
approach, a more aggressive duplication is performed based on an arborescence tree embedding.
Instead of duplicating particular gates, all the nodes in the critical path are replicated and placed in
legal positions. Later on, a cell unification operation is done to save area on the global circuit.

6.3 Overview

Placement tools tend to place a cell with large fanout on a centered position among its immediate
fanins and fanouts. This position is due to the minimization of the wirelength pursued by the place-
ment tools. Even if the placement is timing-driven oriented, long wires may be implemented on the
critical path because the low freedom on critical gates with large fanout.

The focus of BufDup is the optimization of the interconnection delays taking physical infor-
mation into account. Buffer insertion and gate duplication are complementary techniques aiming
at this goal. An example is shown in Fig. 6.7(a,b), for a net that connects the source cell S with
the fanout cells { f1, · · · , f7}. Individually, each technique contributes to improve the delay of the
net, however the combination of both (Fig. 6.7(c)) can lead to superior results. The improvement
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Figure 6.7: Example: (a) buffer insertion, (b) duplication, (c) combination of both techniques.

can still be more tangible if physical information is considered and, reciprocally, the changes pro-
duced by buffer insertion and gate duplication have a positive impact by incrementally changing the
physical layout of the involved cells.

The main contributions of this method are the following:

• An interconnect optimization approach that combines the exploration of multiple Steiner trees
for each net with the incremental placement of the intermediate solutions. In this way, the
generated buffers are not restricted to be placed to free spaces. Note that, a legal placement is
delivered after the incremental placement.

• The approach integrates gate duplication, buffer insertion and placement in the same frame-
work.

• A gate duplication technique based on a modified layout-aware k-means algorithm for clus-
tering [112].

• A dynamic-programming approach to incrementally build Steiner trees for buffer insertion.
It is based on the approach proposed in [136], with several improvements aiming at (1) the
construction of cascaded buffered trees, (2) the smart exploration of feasible locations for the
buffers and, (3) the support of gate sizing, inverter insertion and polarity optimization.

To prove the effectiveness of our method, three experiments have been conducted on Section 6.7.
First, a comparison of our buffer insertion algorithm with FBI [145], a public domain Van Gin-
neken’s approach. Second, results on academic benchmarks are presented. Finally, results on future
semiconductor process technologies corroborate the increasing relevance of the interconnect opti-
mization.
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BufDup (Net)
{Input: A mapped netlist Net}
{Output: A placed circuit C}

C := Placement and Timing Analysis (Net);
do

Critical Gates := Calculate Critical Gates (C):
while Critical Gates 6= /0 ∧ cycle time not improved do

G := Extract Most Critical Gate (Critical Gates);
newGates1 := Duplication (G);
newGates2 := Buffer Insertion (G);
newGates3 := Duplication and Buffer Insertion (G);
NewGates := Select Best Solution (newGates1, newGates2, newGates3);
Insert Solution In Circuit (C, newGates);
Incremental Placement and Timing Analysis (C);
if New Worst Slack > Previous Worst Slack then

Undo Insertion (C, newGates):
end if

end while
while cycle time improved;
returnC;

end;

Figure 6.8: Algorithm for interconnect optimization.

6.4 Algorithm for interconnect optimization

We present a top-down description of the main algorithm (BufDup) for interconnect optimization.
The algorithm is presented in Fig. 6.8. It receives a mapped netlist as input and produces a placed
circuit as output. Initially, cell placement is performed to provide physical information during the
interconnect optimization. Delay information is calculated using the Elmore delay model [68].
The timing analysis is performed by considering the physical location of the cells and the Borah-
Owens-Irwin (BOI) heuristic for Steiner trees [29]. This heuristic is selected because it has a lower
complexity O(n2) with regard to the 1-Steiner heuristic. Although this heuristic is applied individ-
ually for each net and does not take into account congestion, it provides a valuable fast lowerbound
estimation of the routing cost.

The outermost loop of the algorithm iterates as long as the critical path is improved. At each
iteration, the cells at the critical paths are ordered according to their criticality, calculated as a
combination of their slack and their fanout. The worst negative slack is the priority factor for
optimization, however cells with similar fanout are prioritized according to their higher fanout.

The innermost loop processes gates iteratively according to their criticality. Three different
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solutions are calculated as shown in Fig. 6.7: (a) by inserting buffers, (b) by duplicating the gate
and, (c) by duplicating the gate and inserting buffers after the duplication. The details on how
duplication and buffer insertion solutions are computed will be described in the following sections.
Each solution provides a list of new gates to the circuit and has an estimated delay that affects the
critical paths of the circuit. The configuration with the best slack time is selected and physically
inserted in the circuit. Experimentally, we have observed that duplication is mostly selected for
gates with high fanout, whereas buffers contribute to reduce the delay on long wires.

The estimated slack time from the new inserted gates does not guarantee the final selection,
since the physical location of the new inserted cells may overlap with the existing cells. For this
reason, an incremental placement is done to perform slight modifications on the current placement
and legalize the position of the new cells. Finally, an incremental timing analysis is performed to
check if the selected solution, after legalization, improves the delay. If not improved, the last cell
insertion is undone.

6.5 Algorithm for gate duplication
Given a gate G, gate duplication aims at creating a pair of gates, G1 and G2, such that the original
fanout of G is distributed between them. As mentioned in Sect. 6.2, the techniques recently proposed
for gate duplication [81, 96] are restricted to legal solutions that do not change the placement of the
rest of the cells in the layout. In this section we present a layout-aware gate duplication approach
that can be later legalized by incremental changes on the placement.

Clearly, gate duplication explores a trade-off between output and input capacitance. Gates G1
and G2, individually, have a smaller output capacitance than G, however the output capacitance of
the gates at their fanin increases. The contribution of gate duplication to the performance of a circuit
will depend on the particular instance of the problem and the proposed solution.

The algorithm for gate duplication is described in Fig. 6.9. It is based on the well-known k-
means clustering algorithm [112]. This strategy is commonly used in data mining where efficient
algorithms were proposed to process large quantity of data [88]. The complexity of this algorithm is
O(kni), where k is the number of clusters, n is the number of points to be clustered, and i the number
of iterations to converge. In our case, k = 2 and n is the number of fanouts of the gate, which is
typically small. Experimentally, the algorithm converges very fast when n is small, thus showing
linear complexity on n.

The algorithm aims at clustering the fanout of G into two subsets, one for G1 and another for
G2. Initially, two fanout points are arbitrarily chosen as the potential centers of the clusters and
each fanout is assigned to the cluster with the closest center. Iteratively, the centers of each cluster
are re-calculated at each iteration as the centers of gravity of the components of each cluster. The
calculation stops when a fixpoint is reached. Note that, this algorithm is not optimal. The k-means
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Duplication (G)
{Input: A gate G to be duplicated}
{Output: Gates {G1,G2}}

C1,C2 := Coordinates of two fanouts of G;
while changes in C1 or C2 do

S1 := {Fanouts of G closer to C1};
S2 := {Fanouts of G closer to C2};
C1 := Center of gravity of S1;
C2 := Center of gravity of S2;

end while
Cin := Center of gravity of the fanins of G;
Place G1 at the mid-point between Cin and C1;
Place G2 at the mid-point between Cin and C2;
return {G1,G2};

end;

Figure 6.9: Gate duplication algorithm.

algorithm is a heuristic clustering approach that depends on the initially selected centers. Due to its
fast convergence, multiple runs can be executed and return the best clustering found.

Figure 6.10 depicts the evolution of the algorithm. A net with four fanouts driven by gate G is
depicted in Fig. 6.10(a). The gate only has one fanin X . Figures 6.10(b,c,d) show the locations of
C1 and C2 (shadowed circles) and the sets S1 and S2 at each iteration3. The initial selected points are
A and B (Fig. 6.10(b)), that classify the fanout in two subsets: S1 = {A} and S2 = {B,C,D}. After
re-clustering, point B is moved to the cluster S1 and convergence is reached.

At the end of the loop, the fanouts are partitioned into the clusters S1 = {A,B} and S2 = {C,D}.
The location for G1 and G2 is now calculated as the mid-point between the center of gravity of their
fanin (Cin) and the center of the clusters, respectively. In this particular case, Cin coincides with the
coordinates of the single fanin X .

6.5.1 Delay-oriented duplication
The previous method for gate duplication does not take into account any timing information. To
amend this unawareness, a postprocess can be performed to re-cluster some nodes before the final
location of G1 and G2 is calculated. We next explain the strategy used in our work.

After the clustering algorithm, G1 and G2 may have different criticality according to their slack.
Without loss of generality, let us assume that G1 is less critical. Some of the least critical fanouts

3To be precise, the figure shows the state of the loop after the calculation of S1 and S2 and before the re-calculation
of C1 and C2.
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Figure 6.10: Gate duplication: (a) Initial net, (b,c,d) evolution of the k-means algorithm, (e) calcu-
lation of the locations for G1 and G2, (f) possible routing after duplication.

of G2 that are physically closer to G1 can be shifted to G1. In this way, the total load for G2 is
reduced. This process can be iteratively done until the criticality of G1 and G2 is balanced. After
the process is finished, the positions of the gates G1 and G2 are updated based on the new clusters.
Note that, the new positions may change the required time of G1 and G2 and these gates may accept
new shifts. This approach is applied iteratively and, experimentally, we observed that it converges
on few iterations. In our approach, we have implemented a greedy postprocess along these lines.

6.5.2 Discussion

The current clustering approach is layout-oriented, with a postprocess that aims at improving timing
by some local re-clustering. One might argue that this could be done the other way around: a timing-
driven clustering and a layout-oriented postprocess. The initial experiments immediately showed
that the chosen approach is superior, since placement has an impact on timing, congestion and
routing, which results in better global results after layout.
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Figure 6.11: Buffer trees.

6.6 Algorithm for buffer insertion

Given a gate G with high fanout, the problem of buffer insertion consists of designing a tree of
buffers4 that drives the fanouts and minimizes the worst negative slack. This section describes a
layout-oriented buffer insertion approach taking into consideration timing information. New buffers
are allowed to overlap with other gates. As the gate duplication approach, the Steiner tree is later
legalized with a post-incremental placement.

6.6.1 Mitigating the combinatorial explosion

Figure 6.11 depicts an example with three different solutions for a gate G with four fanouts. The
number of buffer trees for n fanouts is enumerable but extremely large. To reduce the exploration,
we use different strategies.

• Binary trees. Only binary trees are explored, in which each edge can hold a different number
of buffers at different locations, according to their criticality. By only exploring binary trees
we are not loosing the chance of building k-ary trees. This can be achieved by inserting no
buffers at some intersection of the tree, as illustrated in the solution depicted in Fig. 6.11(c),
where the buffer is driving three fanouts since one of the sub-trees has no buffers.

• Ordered trees. The number of possible binary trees with n leaf nodes is5 T (n) = n! ·C2n−1.
We remove the factor n! by imposing an order in the leaves. In this way, the search is reduced
to binary trees whose traversal (pre- or post-order) gives the same order of the leaf nodes. For
the examples in Fig. 6.11, the depicted trees can be represented by the following parenthesized
expressions, respectively:

4We will indistinctively use the term buffers to refer to inverting and non-inverting buffers. The optimization of the
polarity of the buffers will be briefly discussed at the end of the section 6.6.4.
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((AC)(BD)) ((AB)(CD)) (A(B(CD)))

Only the last two expressions have the same order at the leaves.

• Which order? By imposing an order on the leaves, the search space is drastically reduced
preventing the exploration of the large set of possible Steiner trees where many of them have
similar structure. However, some optimal solutions may be lost. For this reason, it is important
to choose a good order for the exploration. Several orders could be used: depending on the
distances between the sinks, by delay criticality or, even, a combination of both criteria. The
order chosen in the proposed approach aims at designing layout-aware trees as follows (see
Fig. 6.12(a)):

The polar coordinates (angle and distance) of each fanout with respect to the
source node are calculated. The relative position of the nodes is defined by their
angle. The distance is used only in the case that the angles are similar. The first
and last point in the order is determined by the pair of adjacent fanouts with the
largest angle between them.

The criterion to select this order aims at reducing the wirelength and congestion similar to
the decision taken in gate duplication (See Sect. 6.5.2). The experimental results showed
that creating an order depending on the polarity or the criticality of the fanouts affects to the
wirelength and congestion (even it may appear intersections between different tree branches
of the same Steiner tree like in Fig. 6.11.(a)). These orders have a negatively impact to the
global results after the physical design.

6.6.2 Bottom-up construction of buffer trees
The exploration of binary trees for buffer insertion is performed bottom-up, from the leaves (fanouts)
to the root (gate). This strategy poses a major problem in providing an optimal solution when two
sub-trees converge in an intersection point: the criticality of each internal sub-tree is not known until
the complete buffer tree has been constructed until the intersection point. For this reason, several
solutions are calculated for each sub-tree, each one characterized by a pair (RT,Cin) that indicates
the required time and the input capacitance at the root. The solutions for the left and right sub-trees
are combined and provided as the solutions of the whole sub-tree.

5Ck is the k-th Catalan number, Ck = 1
k+1

(
2k
k

)
, and represents the number of possible binary tree structures with k

nodes (a tree with n leaves has 2n−1 nodes). The factor n! denotes all possible permutations of the leaves.
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Figure 6.12: (a) Order of fanouts, (b) calculation of the root point for two sub-trees and, (c) connec-
tion of the sub-trees by repeater insertion.

In this section, the basic step to construct a tree from two sub-trees is described. This step is
illustrated in Fig. 6.12(b,c), where a tree T12 is built from the sub-trees T1 and T2. The tree is built
in two steps:

• Calculation of the coordinates of the root R. Given the bounding box of the leaves of both
sub-trees, the root is the point of the box closest to the source node. In case the source node is
inside the box, the root is the source node itself. Note that, this tree construction may overlap
multiple buffers on the same intersection position. BufDup assumes that the incremental
placement will legalize the buffered tree moving apart them to closer locations.

• Generation of the buffers between the root of the tree and the roots of the sub-trees. This is
done by a repeater insertion algorithm that is next described.

6.6.3 Repeater insertion
The problem we want to solve is the following: given a library of buffers and inverters and two
points (source and sink) with a required time for the sink, design a chain of buffers/inverters that
maximize the required time of the source.

This problem is similar to technology mapping for delay and we use the approach presented
in [162] for our problem. The approach is simplified and adapted to the design of buffer/inverter
chains. The algorithm works in two steps:

1. The number of locations for repeater insertion is calculated. This number is estimated as-
suming that the same kind of buffer is used along the chain. With this assumption, the po-
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Figure 6.13: Repeater insertion.

tential locations are uniformly distributed along the wire using the optimum number given by
Bakoglu’s formula [17]:

N =
⌊√

RwCw

RbCb

⌋
where the Rw, Cw, Rb and Cb are the resistance and capacitance of the wire and the buffer,
respectively. The calculation is performed using Rb and Cb of the second smallest inverter in
the library.

2. A dynamic programming approach for repeater insertion is executed. The algorithm works
as a typical delay-oriented technology mapping algorithm [162], from sink to source. For
each insertion point, a set of solutions is calculated. Besides the buffers and inverters in the
library, the wire (no buffer) is also considered as a candidate for mapping. Note that, a subset
of points is only preserved for each position to avoid an explosion of solutions. The pruning
heuristic is explained in Sect. 6.6.6.

Figure 6.13 illustrates an example of repeater insertion. The dotted chain represents the set
of potential points for insertion defined by Bakoglu’s formula. At each point, a set of solutions
characterized by the pair (RT,Cin) is stored. The chain at the bottom shows a possible solution, in
which some of the locations have been simply substituted by wires.

When the no-buffer candidate is considered in an insertion point, its pair (RT,Cin) is stored in
a different curve of Pareto points. The source gate of the current constructed wire is not know
yet, therefore the resistance of the gate can not be used to compute the delay of the wire. The
computation of this partial solution will be completed on the next insertion point when a buffer will
be considered. Note that, the pruning heuristic is also applied to reduce the set of partial solutions.

When merging the solutions of the left and right sub-trees, chains with only one buffer at the
nearest location of the source are typically selected when the other sub-tree is critical. This phe-
nomenon is just an algorithmic approach equivalent to the critical sink isolation technique proposed
in [126].
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6.6.4 Polarity optimization
The exploration of inverters as candidates for buffer insertion gives some benefits. Mostly, inverters
are smaller in size and they contribute to reduce the total area of the circuit. For instance, Fig. 6.13
shows a buffer insertion where three repeaters are inserted: one with positive polarity and two
with negative polarity. In this example, a chain of two inverters reduces considerably the area and
the delay compared to a chain of two buffers. The process of exploration is more complex since
the solutions on each insertion point must be stored in the proper polarity. Therefore, two sets of
solutions are maintained for each chain, one for each polarity. These sets of solutions are propagated
towards the root of the tree to deliver the best solution for each possible polarity.

The exploration of both polarities enables the possibility to handle sinks with negative polarity
and to apply source polarity inversion. For example, a NAND gate can be substituted by an AND
gate (or vice versa) if the complemented polarity of the buffered tree is more convenient.

6.6.5 Exploration with dynamic programming
The main algorithm is described in Fig. 6.14. Initially, the order of the fanouts is calculated. The
rest of the algorithm calculates the solutions for all possible ordered sub-trees, starting from the
smallest trees ( f = 2) and ending with the complete trees ( f = n).

Each location of the matrix Trees stores several solutions for a sub-tree (only the elements at
the upper triangle of the matrix are used). Thus, Trees[i, j] stores all the solutions calculated for
the sub-trees with the leaves Fanout[i . . . j]. As an example, the sub-trees explored for n = 5 are the
following:

f = 2 (12) (23) (34) (45)
f = 3 (1(23)) ((12)3) (2(34)) ((23)4) (3(45)) ((34)5)
f = 4 (1(234)) ((12)(34)) ((123)4) (2(345)) ((23)(45)) ((234)5)
f = 5 (1(2345)) ((12)(345)) ((123)(45)) ((1234)5)

Let us assume that the sinks of this example are distributed as shown in Fig. 6.15-(a). The sinks
are ordered using the approach explained in Sect. 6.6.1 and the intersection points are obtained
using the procedure defined in Sect. 6.6.2. The explored trees for the tree (1(234)) are shown in
Fig. 6.15-(a,b). This tree is calculated when f = 4 and the solutions are obtained by combining the
fanout 1 with the solutions of the sub-trees with fanouts {2,3,4} calculated when f = 3, i.e. (2(34))
and ((23)4). Figure 6.15-(c) illustrates the distribution of the solutions of the buffered sub-trees in
the matrix Trees.

For every combination of sub-trees, the procedure Repeater Insertion inserts repeaters
from each root of the left and right sub-trees to the root of the tree, respectively. The insertion
is done using the approach described in the previous sections. The combination of both solutions
(Build Tree) also calculates the required time and the input capacitance at the root.
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Buffer Insertion (G)
{Input: The source gate G (assume the gate has n fanouts)}
{Output: A buffered Steiner Tree}

var:
Fanout[1 . . .n]: array of fanouts;
Trees[1 . . .n,1 . . .n]: Matrix of buffered trees;

Fanout := Sort Fanouts(G);
for f = 2 to n do
{Explore sub-trees with f fanouts}
for each pair (i, j) s.t. j− i+1 = f , 1≤ i, j ≤ n do

R := Root node for fanouts {i . . . j};
for k = i to j−1 do
{Create tree from sub-trees with fanouts {i . . .k} and {k +1 . . . j}}
for each pair (T1,T2) ∈ Trees[i,k]×Trees[k +1, j] do

B1:=Repeater Insertion (R, Root(T1));
B2:=Repeater Insertion (R, Root(T2));

T := Build Tree
(

R↗
B1 → T1

↘ B2 → T2

)
;

Trees[i, j] := Trees[i, j]∪{T};
Trees[i, j] := Select Subset of Best Solutions (Trees[i, j]);

return Best Solution (Trees[1,n]);

Figure 6.14: Algorithm of buffer insertion.
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Figure 6.15: Example of the dynamic programming approach. (a) Distribution of the intersection
points of the tree (1(2(34))) and (b) the tree (1(2(34)). (c) Stored solutions for the trees (1(2(34)))
and (1(2(34)) in the matrix of buffered trees.
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To avoid an explosion of solutions, only a subset of them are kept for each sub-tree. This
is performed by the procedure Select Subset Solutions. The number of solutions has a
direct impact on the runtime and the accuracy of the exploration. The strategy for this selection is
discussed in the next section.

At the end of the algorithm, the solutions for the complete tree are stored in Trees[1,n]. Note
that, the root node of Trees[1,n] may not overlap with the source gate G. The source gate G can be
outside the bounding box produced from its fanouts. Therefore, a repeater insertion must be done
from the root node R to the source gate G. Finally, the best solution is returned.

6.6.6 Pruning solutions
During the exploration of solutions for sub-trees and repeaters, several solutions are calculated
with different characteristics of required time and input capacitance. To reduce the complexity of
the exploration, only a subset of points is selected for further exploration. We next describe the
techniques that have been proven to be efficient and accurate.

• Only the Pareto points are represented. The worst solutions are removed based on the concept
of dominance. A solution characterized by a cost function dominates another solution if the
value of the cost is better. The dominance can be extended to solutions with multiple cost
functions.

• If we have n points and we want to select k < n, a k-means clustering algorithm is executed
(the same strategy used to find clusters on gate duplication [112]), starting with k distributed
points along the curve as initial centers. After clustering, the points closest to the centers of
the clusters are selected.

6.6.7 Area recovery
Although the non-critical solutions are also processed using the critical sink isolation heuristic, the
algorithm still inserts some buffers in the non-critical wires. As we previously pointed out, the
criticality of a sub-tree is not known until the intersection with other sub-trees. Therefore, extra
buffers may be inserted on subtrees that are not critical at the source gate.

After the dynamic approach, a post-process removes these buffers from the non-critical paths
that do not interfere with the critical delay of the buffered tree. This approach helps to save area
removing useless buffers.

Figure 6.16 shows an example of this area recovery process. The critical wires are initially
identified to block the deletion of their buffers. Next, the non-critical wires are traversed from the
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Figure 6.16: Area recovery post-process: (a) Initial buffer insertion. (b) After area recovery.

fanouts until a critical wire is reached. All the buffers that don’t affect the delay of any critical wire
are removed during the exploration.

6.6.8 Nets with high fanout

The computational complexity of the presented approach depends on the number of fanouts of the
processed Steiner Tree. The performance decreases significantly on instances with high fanout.

A possible approach to reduce the complexity is to use a hierarchical approach [12]. The sinks
can be partitioned in several clusters depending on their position and the buffer insertion can be
applied to each cluster. The drawback of this techniques appears when it is combined with an
incremental placement. The circuit may include useless buffers on non-critical paths after the op-
timization process since the topology of the sinks of the Steiner trees with high fanout can change
significantly after each incremental placement step.

A different heuristic is used in BufDup aiming at avoiding the insertion of an excessive number
of inverters on these instances. First, fanout optimization is applied after technology mapping to
decrease considerably the number of fanouts. The nets of the nodes with more than a certain number
of fanouts6 are considered nets with very high fanout. On these instances, a pre-clustering strategy,
using the k-means algorithm, is used to partition the fanouts into three clusters and connect each
of them to the source gate with a buffer. The objective of this approach is to use a divide-and-
conquer approach to reduce the size of the problem (See Fig. 6.17). This approach contributes to
run the buffer insertion algorithm on smaller instances. Moreover, after the buffer insertion, the

6This number depends on a user parameter that has been assigned to 30 fanouts in the experiments in Section 6.7.
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Figure 6.17: Buffer Insertion on large instances: (a) The k-means algorithm is used to create three
clusters and the source gate is connected to them with buffers. (b) The buffer is selected as the
critical gate in the next iteration of BufDup. The buffer gate has less fanouts and the dynamic
programming approach can be applied.

incremental placement performs few modifications on these smaller instances leaving the inserted
buffers closer to the original selected position.

6.7 Experimental results

To validate the presented approach, three experiments have been conducted: (1) comparison with
FBI, (2) results on public benchmarks, and (3) results on future semiconductor technologies.

The 0.13µm vxlib ALLIANCE library [11] has been used for technology mapping. It includes
three buffers and four inverters. The technological parameters have been scaled to different tech-
nologies, from 65nm to 22nm, using the Predictive Technology Model [83]. For 65nm, the wire
capacitance and resistance are 2.71Ω/µm and 0.19 f F/µm, respectively, that approximately corre-
spond to M2/M3 metal layers of the 65nm technology described in [16].

The experiments have been run on the largest netlists from the ISCAS’99 suite. The initial
netlists have been obtained by using the tree-mapping algorithm in SIS, including the fanout opti-
mization step. A square layout with 25% whitespace has been created, with the terminals uniformly
distributed around the bounding box.

Fastplace [164] has been used to calculate the initial placement. At each iteration, the detailed
placer is used for incremental placement. For the final timing analysis, labyrinth [91] has been used
to estimate the routing trees and calculate the delays using the Elmore model.
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Iter. fan. Wire Initial FBI BufDup
Length Delay buf inv −∆D buf inv −∆D

1 67 6680 8531 3 0 901 3 0 1824
2 76 6168 8246 11 16 1130 0 3 1297
3 17 5332 7945 13 0 123 4 1 126
4 35 6024 7870 12 23 394 3 0 313
5 15 6313 7751 6 7 548 6 8 619
6 28 6176 7732 12 10 227 4 2 227
7 27 5508 7692 13 8 202 2 3 202
8 15 8871 7677 13 3 43 6 11 43
9 11 4550 7612 5 1 18 4 9 22

10 14 5040 7590 2 0 81 1 1 89
Tot. 90 68 3668 30 38 4762

Table 6.1: Comparison of FBI and BufDup for individual trees.

6.7.1 Comparison of the Buffer Insertion algorithm
The first experiment compares the dynamic programming approach used in buffer insertion with
FBI 1.0 with the cost package [145]. To the best of our knowledge, this is the only public domain
tool based on Van Ginneken’s approach that supports inverter insertion and sink polarity. Moreover,
this approach improves Van Ginneken’s using predictive pruning and redundancy check heuristics.
This experiment has been designed to illustrate the impact of the features of BufDup. The Steiner
trees used on this experiment correspond to the output wire of the selected critical gate during the
first ten iterations of BufDup on the b14 netlist. For FBI, the Steiner tree is computed using the
BOI heuristic [29]. The potential locations for the buffers are the intersection points of the tree.
Additional distributed locations have also been included for long wires using the number of buffers
defined by Bakoglu’s formula [17].

The results are presented in Table 6.1. For each tree, it reports the number of fanouts, the
total wirelength of the estimated routing and the initial delay (in ps) of the tree using the estimated
routing.

For a fair comparison, the BufDup has only been used for buffer insertion (no gate duplication).
For each method, the number of buffers, inverters and improvement in delay (−∆D) are reported.

Only in iteration 4, FBI obtains a better delay reduction than BufDup. In the rest of trees,
BufDup obtains a better result or similar. The improvements are significantly better in the first trees
(the most critical), with high fanout. The improvements are also tangible in the number of buffers
and inverters produced by each method.

The improvements are mainly due to two reasons:

• The wider exploration of trees in BufDup (binary trees with dynamic programming). The ex-
ploration of multiple sub-trees improves the initial wire distribution provided by BOI heuris-
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Netlist Gates Critical-path delay (ps)
Initial FBI Buf Dup BufDup Initial FBI Buf Dup BufDup

b14 4936 5319 5184 5056 5297 8505 7763 7627 7765 7429
b14 1 4490 4616 4634 4566 4570 6018 5389 5224 5252 5184
b15 7386 7906 7526 7410 7562 8102 7754 7743 7857 7657

b15 1 7189 7628 7363 7245 7448 6767 6292 5913 6026 5632
b17 23358 23515 23610 23434 23603 16286 14814 13831 14621 13860

b17 1 22345 23083 22612 22445 22821 6796 6156 5944 6052 5789
b20 10103 10769 10294 10195 10505 10406 9592 9406 9591 8628

b20 1 8890 9037 8940 8954 8974 8403 7911 7830 7921 7948
b21 10689 10971 10920 10753 10877 9513 9352 9449 9583 9156

b21 1 9005 9142 9122 9029 9110 9978 9039 8581 8869 8670
b22 15233 15684 15548 15361 15591 9666 8808 8540 8602 8426

b22 1 13325 13830 13640 13377 13699 9350 8531 8372 8400 8117
s35932 8432 8725 8835 8456 9010 5346 4373 1912 2206 1909
s38417 10606 11008 10954 10666 10868 5310 4419 3707 3738 3750
s38584 9723 9883 10137 9755 10226 5338 4804 2337 3354 2345
Norm. 1.00 1.03 1.02 1.01 1.03 1.00 0.91 0.85 0.87 0.83

Table 6.2: Results for different interconnect optimization methods (65nm technology).

tic. Moreover, the selected distribution of the sub-trees reduces drastically the number of
buffers and inverters.

• The capability of flipping the polarity of the source gate (see Sect. 6.6.4) enables the possibil-
ity to deliver a better solution based on the complementary polarity of the source gate.

6.7.2 Academic benchmarks
Table 6.2 and Table 6.3 shows the results obtained by four methods: (1) FBI, (2) BufDup without
gate duplication (label Buf), (3) BufDup without buffer insertion (label Dup), and (4) BufDup. The
parameters of the netlist before buffer insertion are reported in the columns with label Initial.
Table 6.2 reports the number of gates of the netlists and the delay of the one of the critical path in
the netlist. Tablee 6.3 reports the routing wirelength and the runtime of the same experiment. The
last row of the table shows a normalized average of the results.

The experiments have been run for a 65nm technology and tree-mapping map [133, 162] with
fanout optimization has been run on these netlists before the results reported in the column with
label Initial. Several conclusions can be drawn:

• The layout-aware interconnect optimization reduces delay by 17% with regard to the original
netlist after technology mapping and fanout optimization.
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Netlist Global routing wirelength (λ ·10−3) Runtime (sec)
Initial FBI Buf Dup BufDup FBI Buf Dup BufDup

b14 2828 2850 2970 2929 2996 94 105 67 195
b14 1 3654 2648 2731 2749 2922 50 216 29 34
b15 5560 5718 5915 5642 5747 48 154 24 394

b15 1 4983 5214 5248 5016 5015 79 114 32 227
b17 26588 19943 20515 20702 20522 161 487 149 391

b17 1 15167 15042 15080 15019 15022 111 347 157 518
b20 6645 6728 6654 6584 6606 368 311 93 357

b20 1 5530 5310 5443 5330 5504 51 63 51 72
b21 6934 6803 7352 6995 7233 98 210 59 189

b21 1 9833 6527 7419 7356 7240 47 107 20 119
b22 9447 9756 9776 9776 9816 127 265 117 356

b22 1 8094 8020 7962 7946 8089 88 157 48 306
s35932 5905 5944 6755 6410 6886 144 250 21 358
s38417 10693 7084 7743 7724 7916 99 180 64 198
s38584 5258 5112 6194 5461 6137 33 205 29 267
Norm. 1.00 0.89 0.93 0.91 0.93 1.00 1.99 0.60 2.49

Table 6.3: Results for different interconnect optimization methods (65nm technology).

• The wide exploration of BufDup (including incremental placement) has a tangible impact in
the design of the Steiner trees (delay from 0.91 to 0.83 with regard to FBI). Even if only buffer
insertion is applied in BufDup, the results are better that FBI.

• Buffer insertion techniques are superior with respect gate duplication on wirelength optimiza-
tion at the expenses of increasing the total area of the netlist (1% of increment).

• The combination of gate duplication with buffer insertion contributes to improve delay in
something more than 2% at the expense of 1% area increase.

On average, the wirelength after global routing is also reduced for FBI and BufDup. The reduc-
tion is more important for FBI. Although not reported in the table, labyrinth also showed a slight
improvement in congestion for all examples. In one case (b17), the congestion was reduced by
79% when using BufDup. The runtime is significantly bigger in BufDup approach because of the
extensively exploration of several sub-trees in buffer insertion. The runtime for gate duplication is
meaningless compared to the runtime needed to apply buffer insertion.

6.7.3 Future semiconductor technologies
Table 6.4 summarizes the results of BufDup on several future technologies from 65nm to 22nm.
The parameters for each technology have been scaled using the interconnection calculator in [83].
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Tech. Gates Critical-path delay
Init. FBI Buf Dup BufDup Init. FBI Buf Dup BufDup

65nm. 1.00 1.03 1.02 1.01 1.03 1.00 0.91 0.85 0.87 0.83
45nm. 1.00 1.04 1.03 1.01 1.02 1.00 0.87 0.82 0.84 0.81
32nm. 1.00 1.06 1.04 1.01 1.04 1.00 0.80 0.76 0.79 0.76
22nm. 1.00 1.08 1.06 1.01 1.07 1.00 0.69 0.64 0.66 0.63

Table 6.4: Impact of interconnect optimization on future generations.

The table shows the normalized sums of delay and area of the netlists used in the previous section.
The table also compares the same methods: (1) BufDup, (2) BufDup without gate duplication and
(3) without buffer insertion and (4) FBI.

The results corroborate the same conclusions extracted from the previous section. Buffer in-
sertion contributes in larger ratio to the interconnection optimization at the cost of increasing the
total area of the netlist. Moreover, the results of this table confirm that interconnect optimization
will acquire an increasing relevance in future technologies due to the dominant role of wire delays.
Efficient and accurate buffer insertion approaches will be crucial to reduce critical-path delays. As
an example, BufDup was able to reduce the delay by 37% on average for a 22nm technology.

6.8 Conclusions
An integrated approach for layout-aware interconnect optimization has been presented. BufDup
combines gate duplication and buffer insertion in the same framework with incremental placement.
The combination with incremental placement reduces considerably the complexity of the intercon-
nect optimization problem since it can be unaware to place the cells on legal positions.

Related to the designed buffer insertion algorithm, the wide exploration of buffered trees using
an efficient dynamic programming approach and the incremental legalization of solutions has a
tangible impact in the quality of the solutions. The drawback of our algorithm appears on gates with
high fanout. However, a hierarchical approach has been presented to deal with these large instances.
Moreover, this approach contributes to reduce significantly the number of inserted buffers. Finally,
a fast heuristic to perform gate duplication based on the k-means algorithm has been also presented
with a good performance even in gates with high fanout.

In the experimental results, a comparison between gate duplication and buffer insertion is also
performed. There is a trade-off on the results of these techniques. Buffer insertion is superior to gate
duplication with regard to delay optimization at the expenses of consuming more gates. However,
the combination of both techniques improves significantly the results. The results have also shown
the relevant role of interconnect optimization in future technologies.

BufDup is a layout-aware wire optimization procedure and, therefore, the congestion is also
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affected after the minimization. As we pointed out in the experimental results, the congestion was
reduced by 79% in one of the largest circuits.
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Chapter 7

Conclusions

The complexity of digital circuits is continuously growing. The demand of high-performance cir-
cuits forces the designers to seek for innovative approaches in order to meet the specifications. The
research in manufacturing is still progressing. New materials and manufacturing methodologies
contribute to shrink the size of the transistors. This progress is an important factor on the reduction
of the area of the circuits. However, the increment of the circuit density also has negative effects,
mostly in the physical design. Congestion, power leakage, wire coupling, among others problems
make ideal designs sometimes unfeasible to manufacture.

CAD tools help to attenuate these problems. Moreover, the design development cycle and design
cost are dramatically reduced and large designs are sped up. However, the specialization of the
digital circuits requires new advanced design methods well-suited for the challeging requirements.
The new approaches are currently combining the logic and physical stages to lead to superior results
in DSM design flow.

In this thesis, several contributions have been proposed aiming at delay minimization. Some
experts on the area claim that logic synthesis is dying, e.g. [113], due to the integration with physical
design. Our contributions show that there is still high-quality methologies in logic synthesis. Finally,
our last contribution corroborates that the integration of logic and physical design is a good strategy.

Our contributions are summarized next. First, a new paradigm to solve Boolean relations has
been presented in Chapter 3. The branch-and-bound method explores more efficiently the search
space compared to previous heuristic approaches based on local search. Moreover, an exploration
towards a user-defined objective makes possible to model other problems as Boolean relations.

The second contribution presented in Chapter 4 is focused to perform delay minimization on
large Boolean networks. An iterative partition method is proposed. Compared with previous ap-
proaches, better clusters of nodes towards delay minimization are produced with the exploitation of
vertex dominators. Delay minimization procedures obtain better results on these clusters, since they
offer more possibilities for restructuring.

133



134 CHAPTER 7. CONCLUSIONS

In Chapter 5, an application of the previous contributions is presented. A timing-driven approach
is proposed to perform a n-way decomposition on large netlists using the partitioning approach. The
objective is the exploration of several decompositions of a Boolean function using a particular gate
targeting at reducing the depth of the decomposition tree. A Boolean relation is built to model the
problem and the search is guided towards delay minimization.

The final contribution in Chapter 6 uses physical information on the fanout optimization prob-
lem. Physical information gives a better approximation of the critical regions of the circuits.

Delay minimization is one of the most relevant objectives in circuit design. However, there are
other design objectives. As future work, the next natural step would be the integration of other
minimization objectives, like power consumption, into the introduced methods to make them more
general.

Our contributions are also opened to further improvements. For example, an option could be to
adapt the recursive paradigm to solve Boolean relations to solve multiple Boolean relations (MBR).
However, the set of compatible solutions of an MBR could be large and the method could be not
scalable.

Chapter 5 shows that Boolean relations can be applied to the n-way decomposition problem.
Boolean relations can also be applied to other problems, like pattern matching in technology map-
ping.

The paradigm developed for solving Boolean relations is a generic recursive approach that could
be applied to other problems. The objective is to relax the problem to another one with lower
computational cost. This relaxation could prevent to find a correct solution. However, the errors can
be fixed by splitting the problem in smaller ones. An example of application could be to solve the
binate covering problem using a unate covering problem solver.

Partitioning techniques are ideal to tackle with complex problem. Moreover, scalability is a
crucial aspect for the applicability of logic synthesis techniques on large networks. In DSM tech-
nologies, the combination of logic and physical synthesis seems to be essential to meet the demand
of today’s designers regarding delay and power optimization. We believe that the proposed parti-
tioning strategy, enhanced with layout information, could be a valid approach for integrating and
exploring logic and physical parameters of the design.
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