Computational Learning of Weighted Automata

Ricard Gavaldà Universitat Politècnica de Catalunya, Barcelona

7th Intl. Workshop on Weighted Automata: Theory and Applications (WATA) Leipzig, May 8th, 2014

With thanks to Borja Balle, Jorge Castro, Franco Luque, Ariadna Quattoni, Xavier Carreras, the WATA 2014 organizers, the BASMATI and SGR2009-1428 projects

The story in this talk

- Weighted Automata over fields are <u>provably</u>, <u>efficiently</u> learnable in a formal model of function learning
- Until recently: Probabilistic automata learnable from heuristics or (provably) if deterministic
- Recent news: Full class of probabilistic automata provably learnable with WA algorithm + Singular Value Decomposition

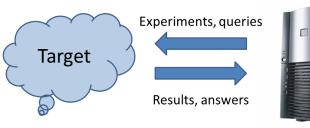
Outline

- Background: Computational learning
- Learning WA from queries
- 3 Learning probabilistic automata as WA
- 4 Conclusions and further work

Outline

- Background: Computational learning
- Learning WA from queries
- 3 Learning probabilistic automata as WA
- Conclusions and further work

Learning: what and why



Inferring a useful description of a phenomenon from observing and/or interacting with it

E = mc² v = d/t F = Gm/d²

Learning: what and why?

- Alternative to explicit modeling by some human expert
- Traditional topic of machine learning, grammatical inference, statistics, pattern recognition, . . .
- Computational Learning Theory (80's): Formal models of learning, study computational resources needed to learn

Representation classes

- Target is supposed to belong to some representation class
- with an associated notion of "complexity" or "size"
- "more complex", "larger" targets require more resources
- Example:
 - "Learning regular languages" not well defined
 - "Learning DFA" well defined
 - Say, size = DFA states × letters
- Hypotheses in the same or larger representation class

Query Learning [Angluin87-88]

- Goal: Exactly learning the target
- Algorithm produces queries, target returns answers
- Time, memory of algorithm = poly(complexity of the target + length of longest answer)
- Complexity of computing the answers <u>not</u> considered

Query Learning [Angluin87-88]

We focus on the case targets are functions $f: A \rightarrow B$

Most common protocol:

- Evaluation queries: "given $x \in A$, return f(x)"
- Equivalence queries: "is f = g?"
 - YES, or
 - a counterexample $x \in A$ with $f(x) \neq g(x)$

PAC learning [Valiant84]

- Algorithm can ask for random samples (x, f(x))
- Samples are drawn independently from an unknown, arbitrary distribution D
- Goal is to approximately learn f, w.r.t. D, most of the times

Theorem [Angluin 88]: For every reasonable repr. class,

Exact learning with Eval+Equiv queries

PAC learning with Eval queries

PAC learning [Valiant84]

Let f and D denote unknown target function and distribution Let g denote the output of the algorithm upon seeing a sample S of f i.i.d. according to D, and reading parameters $\varepsilon, \delta \in (0,1)$ PAC learning occurs if

$$\Pr_{S \sim D}[D(f \triangle g) \le \varepsilon] \ge 1 - \delta$$

Additionally, we require runtime and sample size polynomial in the complexity of target f, $1/\varepsilon$, and $1/\delta$

Outline

- Background: Computational learning
- Learning WA from queries
- 3 Learning probabilistic automata as WA
- Conclusions and further work

Early results

If target complexity = states \times letters, in the Equivalence + Evaluation query exact model,

Theorem [Angluin 87, Schapire 92, KV 94]

Deterministic Finite Automata are learnable

Theorem [AngluinKharitonov95]

Nondeterministic Finite Automata are not learnable under plausible cryptographic assumptions

Weighted Automata

Let R be a semiring

A WA with *n* states is a tuple $\langle \alpha_0, \alpha_{\infty}, \{T_a\}_{a \in \Sigma} \rangle$,

- $\alpha_0 \in R^n$
- $\alpha_{\infty} \in R^n$
- $T_a \in R^{n \times n}$

Defines a function $f: \Sigma^* \to R$

$$f(x_1 \cdots x_m) = \alpha_0^T T_{x_1} \cdots T_{x_m} \alpha_{\infty} = \alpha_0^T T_x \alpha_{\infty}$$

Deterministic Weighted Automata (DWA) also make sense

Learning Weighted Automata

Theorem [BergadanoVarricchio94, Beimel+97]

Weighted automata over any field are learnable from Evaluation and Equivalence queries, assuming constant time for field operations

- Extends to commutative Artinian rings [Bshouty+ 98]
 - with hypotheses that are decision trees of WA
- Unlikely for the boolean semiring: implies learning NFA
- Not systematically studied for other semirings

Learning Weighted Automata

Theorem [BergadanoVarricchio94, Beimel+97]

Weighted automata over any field are learnable from Evaluation and Equivalence queries, assuming constant time for field operations

 WA define, in a certain algebraic setting, the largest class of Boolean functions learnable without learning DNF formulas [G-Thérien 09]

Importance in learning theory

Unifies and subsumes many learning results at the expense of the larger hypothesis class, WA

- Unambiguous NFA
- Polynomials over finite fields
- Bounded degree polynomials over infinite fields
- Boolean decision trees
- Certain geometric boxes
- Certain subclasses of boolean DNF formulae
- ...

The Hankel matrix

The Hankel matrix of $f: \Sigma^* \to R$ is

		λ	а	b	aa	ab	
$H_f \in R^{\Sigma^\star imes \Sigma^\star}$	λ	$f(\lambda)$				÷	
	а					÷	
	b					÷	
$H_f[x,y]=f(xy)$	aa					÷	
	ab ba :					: f(baab)	

Note: f(z) goes into |z| + 1 entries

Weighted Automata and Hankel matrices

Hankel matrices provide information on WA size

Let $f: \Sigma^* \to R$

Theorem (Myhill-Nerode)

if f is 0/1 valued (a language),

distinct rows in H_f = # states in smallest DFA for f

Theorem (Castro-G13, probably known before)

For fields, # distinct rows in H_f up to scalar multiplication = # states in smallest DWA for f

Weighted Automata and Hankel matrix rank

Let f be $f: \Sigma^* \to \mathbb{F}$, for \mathbb{F} a field

Theorem (Schützenberger61, Carlyle+71, Fliess74, Beimel+97)

f has a WA of size $\leq n$ iff rank $(H_f) \leq n$.

Weighted Automata and Hankel matrix rank

Theorem (Schützenberger61, Carlyle+71, Fliess74, Beimel+97)

f has a WA of size $\leq n$ iff rank $(H_f) \leq n$.

Only if: take an *n*-state WA for *f*. Then $H_f = BF$, where $B \in \mathbb{F}^{m \times n}$ and $F \in \mathbb{F}^{n \times \infty}$

$$B[x,:] = \alpha_0^T T_x$$

$$F[:,y] = T_y \alpha_\infty$$

$$rank(H_f) \le rank(B) \le n$$

Weighted Automata and Hankel matrix rank

Theorem (Schützenberger61, Carlyle+71, Fliess74, Beimel+97)

f has a WA of size $\leq n$ iff $rank(H_f) \leq n$.

If: Choose $X=\{x^1,\ldots,x^n\}$ and $Y=\{y^1,\ldots,y^n\}$ a rank basis of H_f with $x^1=y^1=\lambda$. Define $\alpha_0^T=(1,0,\ldots,0)\in\mathbb{F}^n$, $\alpha_\infty^T=(f(x^1),\ldots,f(x^n))\in\mathbb{F}^n$, and $T_a\in\mathbb{F}^{n\times n}$ as $T_a[i,j]=a_j^i$ satisfying:

$$H_f[x^i a, :] = a_1^i H_f[x^1, :] + \cdots + a_n^i H_f[x^n, :].$$

By induction on |w|, it can be proved

$$f(x^i w) = T_w[i,:]\alpha_\infty$$

Thus,

$$f(z) = f(x^1 z) = T_z[1,:]\alpha_\infty = \alpha_0^T T_z \alpha_\infty$$

The algorithm

Grow sets $X, Y \subseteq \Sigma^*$, initially empty

- Build WA:
 - fill H = f(XY), $H_a = f(XaY)$ using Evaluation queries
 - $\alpha_0^T = (1,0,\ldots,0) = (HH^{-1})[\lambda,:] = H[\lambda,:]H^{-1}$

 - $\alpha_{\infty} = H[:, \lambda]$ $T_a = H_a H^{-1}$
- Ask $\langle \alpha_0, \alpha_\infty, \{T_a\}_a \rangle$ as Equivalence query
- If answer is YES, we are done
- else, use the counterexample to expand X and Y, increasing $rank(H_f[X, Y])$

The algorithm must stop when $rank(H_f[X, Y]) = rank(H_f)$

Outline

- Background: Computational learning
- Learning WA from queries
- 3 Learning probabilistic automata as WA
- Conclusions and further work

Probabilistic automata (PA) as WA

Setting:

Target $f: \Sigma^* \to \mathbb{R}$ is a probability distribution computed by a PA (Ref.: Colin de la Higuera's tutorial)

- Evaluation: "Give me the exact probability of x"
- Equivalence: "Does automaton h exactly compute the target distribution?"

Particular case of WA over \mathbb{R} , so exactly learnable But this scenario is not very realistic

Stochastic setting

More realistic model:

- We sample independent runs of a target PA computing D
- We obtain a multiset of m strings = sample of D^m
- We want to compute a distribution D' "close to" D

PAC learning distributions [after Valiant84]

Let *D* be a probability distribution over Σ^*

An algorithm PAC-learns D if upon seeing a sample from D^m and reading parameter $\varepsilon, \delta \in (0,1)$ it outputs a representation a distribution D' such that

$$\Pr[dist(D, D') \le \varepsilon] \ge 1 - \delta$$

where, e.g.

$$dist(D,D') = L_1(D,D') = \sum_{x \in \Sigma^*} |D(x) - D'(x)|$$

Additionally, we require the running time and m to be polynomial in the complexity of the target D, $1/\varepsilon$, and $1/\delta$

Good and bad news

Say "complexity of target PFA" = states \times letters

- [AbeWarmuth92] There is an algorithm using polynomial sample size, but exponential time (pspace, actually)
- [AbeWarmuth92,Kearns+94] With plausible complexity-theoretic assumptions, poly-time learning is not possible, even for PDFA
 - "RP ≠ NP" for unbounded alphabet size
 - "noisy parity learning is hard" for binary alphabet
- Many heuristics proposed and used
 - EM (Baum-Welch), state merge split (ALERGIA), Gibbs sampling

Changing perspective

Maybe states × alphabet is not the right "complexity measure"

Theorem [Clark-Thollard 04,Ron+96]

PDFA are PAC learnable in time polynomial in #states, alphabet size, $1/\epsilon$, and a certain <u>distinguishability parameter</u> of the target PDFA

Theorem [Denis+06,Hsu+09,Bailly+09,Balle+11]

PFA are PAC learnable as WA in time polynomial in #states, alphabet size, $1/\varepsilon$, and e.g. some <u>spectral value</u> of the target distribution

Learning PFA from a sample

- We get a finite sample S
- X = prefixes(S), Y = suffixes(S)
- $\hat{H}[x,y]$ = empirical probability of xy in S = approximation to H[x,y](=f(xy))

It can be shown $\|H - \hat{H}\|_F = O(1/\sqrt{|S|})$

So, can we apply the WA algorithm on \hat{H} ?

Problem: \hat{H} probably has maximal rank, even if $|X|, |Y| \gg n$

Learning PFA from a sample

Central idea of spectral method: how to clean up \hat{H}

Find H_n s.t.

- \bullet H_n easy to compute
- 2 H_n same dimensions as \hat{H} , but rank n
- **1** Θ H_n "as close as possible" to \hat{H} under some metric

Singular Value Decomposition

Let $A \in \mathbb{R}^{m \times n}$. There are matrices $U \in \mathbb{R}^{m \times m}$, $D \in \mathbb{R}^{m \times n}$ and $V \in \mathbb{R}^{n \times n}$ such that:

- $A = UDV^T$
- U and V are orthonormal: $U^TU = I \in \mathbb{R}^{m \times m}$ and $V^TV = I \in \mathbb{R}^{n \times n}$
- D is a diagonal matrix of non-negative real numbers.
 Diagonal values are the singular values
- Column vectors of *U* are the left singular vectors

 \therefore rank(A) = rank(D) = number of non-zero singular values

W.l.o.g., diagonal values are nondecreasing, $\sigma_1 \geq \sigma_2 \geq \dots$

Singular Value Decomposition

Let $H = UDV^T$ be the SVD of H

D is diagonal with nonnegative entries

For each n, let D_n keep only the largest n diagonal values of D

Fact

 $H_n = UD_nV^T$ has rank n and minimizes $||H - G||_F$ among all rank-n matrices G

Frobenius norm:
$$||A||_F = \sqrt{\sum_{i,j} A_{i,j}^2} = \sqrt{\sum_i D_i^2}$$

Singular Value Decomposition

We now want to replace H with H_n in our algorithm

Problem: the algorithm uses H^{-1} , which now may not exist

Luckily, we do not need the true inverses. One notion of <u>pseudoinverse</u> satisfies what we need for the proof, and is easily computable from the SVD decomposition

Convergence & Generalization

The following PAC result holds for every D computed by PFA Run the algorithm above on a sample S of D, get D'

Theorem (Hsu+ 09, Balle+ 12)

Let σ_n be the nth largest singular value of H_D . If $|S| \ge poly(n, |\Sigma|, \frac{1}{\sigma_n}, 1/\varepsilon)$, then for each t with high probability

$$\sum_{|x|=t} |D[x] - D'[x]| < \varepsilon$$

Observation: $\sigma_n \neq 0$ iff $rank(H_D) \geq n$

Pros and cons

- It actually works. Faster than EM
- Can be rephrased / relaxed as the minimization of a convex loss function [Balle+12]
 - Mainstream in current Machine Learning today
- Con: Hypothesized WA need not be a probabilistic automaton
 - Weights and values not in [0,1], not summing to 1
 - Bad in some applications

Extensions

- Structured output. E.g. transducers, parsing [Balle+13,...]
- Some functions $\Sigma^* \to \mathbb{R}$ that are not probability distributions [BalleMohri12]
 - but uses "low rank matrix completion" instead of SVD
- To non-string case, as "moment of methods" or "unmixing"

Outline

- Background: Computational learning
- 2 Learning WA from queries
- 3 Learning probabilistic automata as WA
- 4 Conclusions and further work

Conclusions

- WA + SVD at the heart of new methods for learning probabilistic automata
- Efficient and with rigorous PAC guarantees
- Extensible to more complex tasks (transduction, parsing)

Some suggestions for further work

- Which semirings give learnable WA?
- Extensions to valuation monoids?
- Timed weighted automata?