
Computational Learning of Weighted Automata

Ricard Gavaldà
Universitat Politècnica de Catalunya, Barcelona

7th Intl. Workshop on
Weighted Automata: Theory and Applications (WATA)

Leipzig, May 8th, 2014

With thanks to Borja Balle, Jorge Castro, Franco Luque, Ariadna Quattoni, Xavier

Carreras, the WATA 2014 organizers, the BASMATI and SGR2009-1428 projects

1 / 40

The story in this talk

1 Weighted Automata over fields are provably, efficiently
learnable in a formal model of function learning

2 Until recently: Probabilistic automata learnable from
heuristics or (provably) if deterministic

3 Recent news: Full class of probabilistic automata provably
learnable with WA algorithm + Singular Value
Decomposition

2 / 40

Outline

1 Background: Computational learning

2 Learning WA from queries

3 Learning probabilistic automata as WA

4 Conclusions and further work

3 / 40

Outline

1 Background: Computational learning

2 Learning WA from queries

3 Learning probabilistic automata as WA

4 Conclusions and further work

4 / 40

Learning: what and why

Inferring a useful description of
a phenomenon from observing
and/or interacting with it

5 / 40

Learning: what and why?

Alternative to explicit modeling by some human expert

Traditional topic of machine learning, grammatical
inference, statistics, pattern recognition, . . .

Computational Learning Theory (80’s): Formal models of
learning, study computational resources needed to learn

6 / 40

Representation classes

Target is supposed to belong to some representation class
with an associated notion of “complexity” or “size”
“more complex”, “larger” targets require more resources

Example:
“Learning regular languages” not well defined
“Learning DFA” well defined
Say, size = DFA states × letters

Hypotheses in the same or larger representation class

7 / 40

Query Learning [Angluin87-88]

Goal: Exactly learning the target

Algorithm produces queries, target returns answers

Time, memory of algorithm = poly(complexity of the target
+ length of longest answer)

Complexity of computing the answers not considered

8 / 40

Query Learning [Angluin87-88]

We focus on the case targets are functions f : A→ B

Most common protocol:

Evaluation queries: “given x ∈ A, return f (x)”
Equivalence queries: “is f = g?”

YES, or
a counterexample x ∈ A with f (x) 6= g(x)

9 / 40

PAC learning [Valiant84]

Algorithm can ask for random samples (x , f (x))

Samples are drawn independently from an unknown,
arbitrary distribution D

Goal is to approximately learn f , w.r.t. D, most of the times

Theorem [Angluin 88]: For every reasonable repr. class,

Exact learning with Eval+Equiv queries
=⇒

PAC learning with Eval queries

10 / 40

PAC learning [Valiant84]

Let f and D denote unknown target function and distribution
Let g denote the output of the algorithm upon seeing a sample
S of f i.i.d. according to D, and reading parameters ε,δ ∈ (0,1)

PAC learning occurs if

Pr
S∼D

[D(f4g)≤ ε]≥ 1−δ

Additionally, we require runtime and sample size polynomial in
the complexity of target f , 1/ε, and 1/δ

11 / 40

Outline

1 Background: Computational learning

2 Learning WA from queries

3 Learning probabilistic automata as WA

4 Conclusions and further work

12 / 40

Early results

If target complexity = states × letters,
in the Equivalence + Evaluation query exact model,

Theorem [Angluin 87, Schapire 92, KV 94]
Deterministic Finite Automata are learnable

Theorem [AngluinKharitonov95]
Nondeterministic Finite Automata are not learnable under
plausible cryptographic assumptions

13 / 40

Weighted Automata

Let R be a semiring
A WA with n states is a tuple 〈α0,α∞,{Ta}a∈Σ〉,

α0 ∈ Rn

α∞ ∈ Rn

Ta ∈ Rn×n

Defines a function f : Σ?→ R

f (x1 · · ·xm) = α
T
0 Tx1 · · ·Txm α∞ = α

T
0 Tx α∞

Deterministic Weighted Automata (DWA) also make sense

14 / 40

Learning Weighted Automata

Theorem [BergadanoVarricchio94, Beimel+97]

Weighted automata over any field are learnable from Evaluation
and Equivalence queries, assuming constant time for field
operations

Extends to commutative Artinian rings [Bshouty+ 98]
with hypotheses that are decision trees of WA

Unlikely for the boolean semiring: implies learning NFA

Not systematically studied for other semirings

15 / 40

Learning Weighted Automata

Theorem [BergadanoVarricchio94, Beimel+97]

Weighted automata over any field are learnable from Evaluation
and Equivalence queries, assuming constant time for field
operations

WA define, in a certain algebraic setting, the largest class
of Boolean functions learnable without learning DNF
formulas [G-Thérien 09]

16 / 40

Importance in learning theory

Unifies and subsumes many learning results
at the expense of the larger hypothesis class, WA

Unambiguous NFA
Polynomials over finite fields
Bounded degree polynomials over infinite fields
Boolean decision trees
Certain geometric boxes
Certain subclasses of boolean DNF formulae
. . .

17 / 40

The Hankel matrix

The Hankel matrix of f : Σ?→ R is

Hf ∈ RΣ?×Σ?

Hf [x ,y] = f (xy)

λ a b aa ab . . .

λ f (λ)
...

a
...

b
...

aa
...

ab
...

ba f (baab)
...

Note: f (z) goes into |z|+ 1 entries

18 / 40

Weighted Automata and Hankel matrices

Hankel matrices provide information on WA size

Let f : Σ?→ R

Theorem (Myhill-Nerode)
if f is 0/1 valued (a language),

distinct rows in Hf = # states in smallest DFA for f

Theorem (Castro-G13, probably known before)
For fields, # distinct rows in Hf up to scalar multiplication = #

states in smallest DWA for f

19 / 40

Weighted Automata and Hankel matrix rank

Let f be f : Σ?→ F, for F a field

Theorem (Schützenberger61,Carlyle+71,Fliess74,Beimel+97)

f has a WA of size ≤ n iff rank(Hf)≤ n.

20 / 40

Weighted Automata and Hankel matrix rank

Theorem (Schützenberger61,Carlyle+71,Fliess74,Beimel+97)

f has a WA of size ≤ n iff rank(Hf)≤ n.

Only if: take an n-state WA for f . Then Hf = BF , where
B ∈ F∞×n and F ∈ Fn×∞

B[x , :] = α
T
0 Tx

F [:,y] = Ty α∞

rank(Hf)≤ rank(B)≤ n

21 / 40

Weighted Automata and Hankel matrix rank

Theorem (Schützenberger61,Carlyle+71,Fliess74,Beimel+97)

f has a WA of size ≤ n iff rank(Hf)≤ n.

If: Choose X = {x1, . . . ,xn} and Y = {y1, . . . ,yn} a rank basis of
Hf with x1 = y1 = λ . Define αT

0 = (1,0, . . . ,0) ∈ Fn,
αT

∞ = (f (x1), . . . , f (xn)) ∈ Fn, and Ta ∈ Fn×n as Ta[i , j] = ai
j

satisfying:

Hf [x ia, :] = ai
1Hf [x1, :] + · · ·+ ai

nHf [xn, :].

By induction on |w |, it can be proved

f (x iw) = Tw [i , :]α∞

Thus,
f (z) = f (x1z) = Tz [1, :]α∞ = α

T
0 Tzα∞

22 / 40

The algorithm

Grow sets X ,Y ⊆ Σ?, initially empty

Build WA:
fill H = f (XY), Ha = f (XaY) using Evaluation queries
αT

0 = (1,0, . . . ,0) = (H H−1)[λ , :] = H[λ , :]H−1

α∞ = H[:,λ]
Ta = HaH−1

Ask 〈α0,α∞,{Ta}a〉 as Equivalence query
If answer is YES, we are done
else, use the counterexample to expand X and Y ,
increasing rank(Hf [X ,Y])

The algorithm must stop when rank(Hf [X ,Y]) = rank(Hf)

23 / 40

Outline

1 Background: Computational learning

2 Learning WA from queries

3 Learning probabilistic automata as WA

4 Conclusions and further work

24 / 40

Probabilistic automata (PA) as WA

Setting:
Target f : Σ?→ R is a probability distribution computed by a PA

(Ref.: Colin de la Higuera’s tutorial)

Evaluation: “Give me the exact probability of x”
Equivalence: “Does automaton h exactly compute the
target distribution?”

Particular case of WA over R, so exactly learnable

But this scenario is not very realistic

25 / 40

Stochastic setting

More realistic model:

We sample independent runs of a target PA computing D

We obtain a multiset of m strings = sample of Dm

We want to compute a distribution D′ “close to” D

26 / 40

PAC learning distributions [after Valiant84]

Let D be a probability distribution over Σ?

An algorithm PAC-learns D if upon seeing a sample from Dm

and reading parameter ε,δ ∈ (0,1) it outputs a representation a
distribution D′ such that

Pr[dist(D,D′)≤ ε]≥ 1−δ

where, e.g.

dist(D,D′) = L1(D,D′) = ∑
x∈Σ?

|D(x)−D′(x)|

Additionally, we require the running time and m to be
polynomial in the complexity of the target D, 1/ε, and 1/δ

27 / 40

Good and bad news

Say “complexity of target PFA” = states × letters

[AbeWarmuth92] There is an algorithm using polynomial
sample size, but exponential time (pspace, actually)
[AbeWarmuth92,Kearns+94] With plausible
complexity-theoretic assumptions, poly-time learning is not
possible, even for PDFA

“RP 6= NP” for unbounded alphabet size
“noisy parity learning is hard” for binary alphabet

Many heuristics proposed and used
EM (Baum-Welch), state merge - split (ALERGIA), Gibbs
sampling

28 / 40

Changing perspective

Maybe states × alphabet is not the right “complexity measure”

Theorem [Clark-Thollard 04,Ron+96]
PDFA are PAC learnable in time polynomial in #states, alphabet
size, 1/ε, and a certain distinguishability parameter of the
target PDFA

Theorem [Denis+06,Hsu+09,Bailly+09,Balle+11]
PFA are PAC learnable as WA in time polynomial in #states,
alphabet size, 1/ε, and e.g. some spectral value of the target
distribution

29 / 40

Learning PFA from a sample

We get a finite sample S
X = prefixes(S), Y = suffixes(S)

Ĥ[x ,y] = empirical probability of xy in S
= approximation to H[x ,y](= f (xy))

It can be shown ‖H− Ĥ‖F = O(1/
√
|S|)

So, can we apply the WA algorithm on Ĥ?

Problem: Ĥ probably has maximal rank, even if |X |, |Y | � n

30 / 40

Learning PFA from a sample

Central idea of spectral method: how to clean up Ĥ

Find Hn s.t.

1 Hn easy to compute
2 Hn same dimensions as Ĥ, but rank n
3 Hn “as close as possible” to Ĥ under some metric

31 / 40

Singular Value Decomposition

Let A ∈ Rm×n. There are matrices U ∈ Rm×m, D ∈ Rm×n and
V ∈ Rn×n such that:

A = UDV T

U and V are orthonormal: UT U = I ∈ Rm×m and
V T V = I ∈ Rn×n

D is a diagonal matrix of non-negative real numbers.
Diagonal values are the singular values
Column vectors of U are the left singular vectors

∴ rank(A) = rank(D) = number of non-zero singular values

W.l.o.g., diagonal values are nondecreasing, σ1 ≥ σ2 ≥ . . .

32 / 40

Singular Value Decomposition

Let H = UDV T be the SVD of H

D is diagonal with nonnegative entries

For each n, let Dn keep only the largest n diagonal values of D

Fact

Hn = UDnV T has rank n and minimizes ‖H−G‖F among all
rank-n matrices G

Frobenius norm: ‖A‖F =
√

∑i ,j A2
i ,j =

√
∑i D2

i

33 / 40

Singular Value Decomposition

We now want to replace H with Hn in our algorithm

Problem: the algorithm uses H−1, which now may not exist

Luckily, we do not need the true inverses. One notion of
pseudoinverse satisfies what we need for the proof, and is
easily computable from the SVD decomposition

34 / 40

Convergence & Generalization

The following PAC result holds for every D computed by PFA

Run the algorithm above on a sample S of D, get D′

Theorem (Hsu+ 09, Balle+ 12)
Let σn be the nth largest singular value of HD. If
|S| ≥ poly(n, |Σ|,1/σn,1/ε), then for each t with high probability

∑
|x |=t
|D[x]−D′[x]|< ε

Observation: σn 6= 0 iff rank(HD)≥ n

35 / 40

Pros and cons

It actually works. Faster than EM

Can be rephrased / relaxed as the minimization of a
convex loss function [Balle+12]

Mainstream in current Machine Learning today

Con: Hypothesized WA need not be a probabilistic
automaton

Weights and values not in [0,1], not summing to 1
Bad in some applications

36 / 40

Extensions

Structured output. E.g. transducers, parsing [Balle+13,...]

Some functions Σ?→ R that are not probability
distributions [BalleMohri12]

but uses “low rank matrix completion” instead of SVD

To non-string case, as “moment of methods” or “unmixing”

37 / 40

Outline

1 Background: Computational learning

2 Learning WA from queries

3 Learning probabilistic automata as WA

4 Conclusions and further work

38 / 40

Conclusions

WA + SVD at the heart of new methods for learning
probabilistic automata

Efficient and with rigorous PAC guarantees

Extensible to more complex tasks (transduction, parsing)

39 / 40

Some suggestions for further work

Which semirings give learnable WA?

Extensions to valuation monoids?

Timed weighted automata?

40 / 40

	Background: Computational learning
	Learning WA from queries
	Learning probabilistic automata as WA
	Conclusions and further work

