
Web customer modeling for automated session
prioritization on high traffic sites

Nicolás Poggi ∗, Toni Moreno †‡, Josep Lluis Berral ∗,
Ricard Gavaldà §, Jordi Torres∗†

February 10, 2007

Abstract

In the Web environment, especially for e-commerce sites, user iden-
tification is becoming a major challenge for admission control on high
traffic sites. As previously demonstrated by several authors [5, 2],
when a web server is overloaded there is a significant loss of through-
put when we compare finished sessions and the number of responses
per second; longer sessions are usually the ones ending in sales but also
the most sensitive to load failures. Although there is some work on
session-based admission control [2, 13], this approach does not max-
imize revenue as it treats all non-logged sessions the same. In this
paper we present a novel method for learning to assign priorities to
users with higher purchasing intentions. For this, we use traditional
machine learning techniques and second order Markov-chain models;
we test our approach on access logs obtained from a high-traffic online
travel agency. We are able to train a system to estimate the probabil-
ity of the possible user’s purchasing intentions according to its early
navigation clicks and other static information. The predictions can be
used by admission control systems to prioritize sessions or deny them
if no resources are available, thus improving sales throughput per unit
of time.

∗Computer Architecture Department, U. Politècnica de Catalunya, Barcelona, Spain
†Barcelona Supercomputing Center, Barcelona, Spain
‡Department of Management, U. Politècnica de Catalunya, Barcelona, Spain
§Department of Software, U. Politècnica de Catalunya, Barcelona, Spain

1



Keywords: Web traffic prediction, navigation patterns, machine
learning, data mining, admission control, resource management, au-
tonomic computing.

1 Introduction

During the recent years there have been important changes in the way web-
sites work. There has been a shift from originally serving mainly static
content to fully dynamic sites. Dynamic applications for the web have a
huge demand on CPU power, opposed to network bandwidth that has been
the traditional bottleneck of the web. Not only web programming languages
have become more complex over the years, but also user requirements. Web-
sites now rely on technologies such as AJAX to make pages more interactive,
XML based languages such as SOAP to exchange B2B information among
companies, and SSL for security. These technologies let sites improve user
experience and privacy, but also increase the demand for CPU power [4].

Due to the rising complexity of these systems, an attractive solution is to
try to make the system components able to manage themselves. This can be
solved using proposals from the Autonomic Computing research area, that
draw in an enormous diversity of fields within and beyond the boundaries
of traditional research in computer science [6]. Our approach touches on
the user modeling area, and adds some form of machine learning based on
historical observations.

This trend towards more autonomic web applications has two major im-
plications in the user modeling area. On one hand, web user modeling tech-
niques must be enriched and adapted to use the data generated and logged by
the dynamic websites, and to capture relevant features in order to properly
account for the actual behavior or the user in the site. On the other hand,
the increased demand for CPU processing and other resources in this kind of
dynamic applications presents a scenario where user modeling can be applied
in order to make a more efficient use of the available resources. This paper
proposes a novel approach consisting of generating a model for web user be-
havior in a real, complex website and using it to support decisions regarding
the allocation of the available resources, based on a revenue-related metrics.
In our user models, we try to understand how to best capture the features
that make a customer more likely to make a purchase, and therefore more
attractive -from the point of view of maximizing revenues- to maintain in the

2



system even in the case of a severe overload. In this sense, we are proposing
a user-adaptive policy for admission control and session prioritization.

System overload is a common situation and its incidence is growing along
with the increase of complex applications that demand more and more re-
sources. Improving the infrastructure of a website might not be simple;
for cost reasons, scalability problems or because some peaks are infrequent,
websites might not be able to adapt rapidly in hardware to user fluctuations.
Almost no company can plan the dimension of their systems according to the
resource consumption in rare peaks, and therefore overload does occur. To
the analyzed travel agencys website, depending if holidays are approaching
or if there is a media marketed campaign e.g. of airline companies, traffic
increases substantially. These fluctuations create peak loads and user count
can quintuple for a couple of days. When a server is overloaded what hap-
pens typically is that it won’t server any connection as resources get locked
and a race condition occurs.

To prevent serving no users, session admission control systems [5, 2] allow
only a certain number of session so that the site can work for some users.
In this case, firewalls and load balancers should only accept sessions if there
is available capacity. Denied sessions could be forwarded to a static server
with the proper explanation message to retry later. Session admission control
maximizes throughput in terms of an established variable, such as the number
of finished sessions or their revenue. If we take the number of sales per minute
as a metric, sessions with higher purchase probability should be accepted or
prioritized when the load balancer has to choose between more than one
session. Websites offering premium services can also use this technique to
send most profitable users to premium servers or to increase their bandwidth.
Our early experiments showed that the user’s intention to as site can be
predicted from its early navigation clicks. In this context, a profit-based
admission control policy leveraging user models can help to avoid the revenue
to drop from having to delay or drop connections. Defining admission policies
based on information generated from user behavior models can contribute
to devising cost-effective infrastructures, and it seems to be a promising
application field for user modeling.

In this paper we present a method for learning, from the analysis of session
logs, how to assign priorities to customers, in this case, according to their
probability of purchasing in the current session. We have gathered session
logs from a high-traffic online travel agency that makes use of the above
mentioned state-of-the-art web technologies. Our approach consists in using

3



the server log files to learn models that can be used to make predictions about
each user’s future behavior, with the objective of assigning a priority value
to every customer based on the expected revenue that s/he will generate,
which in our case essentially depends on whether s/he will make a purchase.
Our proposal combines static information (time of access, URL, session ID,
and whether a user is a registered customer) and dynamic information (the
path followed by the user in the host’s web graph). For dynamic information
we use Markov-models, closely related to other models such as Customer
behavior Graphs [9] and finite-state machines, among others. For static
information we can use several of the traditional models in machine learning,
e.g. C4.5 decision trees, Näıve-Bayes, or linear regressions.

We have developed a program that extracts the static information from
session logs, and creates two second-order Markov chains, one for purchasing
users and another for non-purchasing users. Each entry on the log (user
action) is then passed through both Markov models and their probabilities
are added as new variables to the static information. The dataset formed in
this way is used to train a predictive model or predictor using the WEKA
machine learning package [14], which therefore takes into account both static
and dynamic information. After the predictor is built, incoming sessions can
be run against the predictor, which will produce a probability on the users’
purchasing intentions.

We obtain promising results in the sense that the predictions made with
our system are far from random: While in real traffic only 2% of the sessions
end in purchase, this percentage rises to about 16% among those sessions
predicted to buy, a 8x increase. Furthermore, the learning system is adaptive,
in the sense that if we further restrict the allowed number of admissible
sessions over the baseline value, the precision grows accordingly. As web
infrastructure capacity is limited, the probabilities produced by our system
can be used by load balancer applications to prioritize sessions; the number
of allowed session can be set dynamically by modifying the threshold by
modifying the lower limit for the purchasing intentions.

The rest of the paper is organized as follows. Next section reviews some
of the most relevant related work. Section 3 describes our approach, detailing
the information contained in the log files, the methodology that we follow to
generate the training data that we need in order to learn the models, and
the architecture of the system. Section 4 describes the set of experiments
that have been performed using our method with the available data and
discusses the results obtained. Finally, Section 5 presents some conclusions

4



and discusses possible future work.

2 Related Work

The present work lies in the intersection between research in user model-
ing, machine learning, resource management and autonomic computing. Al-
though there is extensive literature in each of the individual topics, few works
address the automated learning of user models for and efficient and autonomic
resource management. Recent works on web user prediction [1, 10, 8, 15] have
focused on web catching or prefetching of web documents, to reduce latency
of served pages and improve the cache hit rate. Another studied approach is
to model users for link prediction generating navigational tours and next-link
suggestions to users. The mentioned approaches are best suited for large and
mostly static web pages, where users navigate vast information such as an en-
cyclopedia. Prefetching a dynamic page that includes DB transactions might
be too costly in the case of a miss or user exit. Other authors [11, 1] focus on
dynamic content adaptation, where the page adapts to the type of user; it
could include images, colors an even products or links. The results obtained
from our work could be suited for dynamic content adaptation, however we
are focusing this study on user prioritization.

Path analysis [12, 3] and Customer Behavior Model Graphs (CBMG)
such as [9] are similar to our dynamic part of the approach, where we use
Markov chains. Menascé et al. [9] propose to build the CBMG using k-means
clustering algorithm, creating a probability matrix for the possible paths from
a state. What we try to accomplish in this paper is not to predict what the
next click will be, but rather to detect the user’s intentions when visiting
the site, and in particular whether s/he will eventually buy. Session-based
admission control has been widely studied [5, 2, 13]; however, it treats all non
logged users with equal priority, and we believe that it could benefit from
the extra information from our predictor when peak loads occur.

The underlying vision of the approach that we are presenting in this
paper is consistent with that of autonomic computing, i.e. building systems
that can manage themselves according to high-level objectives from their
administrators. This vision is presented in [7].

5



3 Our Approach

3.1 What’s in a log file?

As mentioned before, we try to develop a system that could be adapted
easily to different sites and servers. Therefore, we want to assume the least
possible about the information that is stored for each transaction, that is, in
our generic proposal we only want to use information that can be produced
by most dynamic applications. The produced log should be free of static
content i.e. images, CSS, javascript or other media files. It should also be
cleaned of non user initiated transactions i.e. AJAX autocomplete controls,
background checks and offsite requests (B2B communication).

In particular, we assume that each web transaction is a tuple like the
following

[date and time, session id, user id, request type, ip address, extra
information]

where

• date and time: indicate date and time of the transaction

• session id: is some unique identifier for each session; the session should
be provided from the site’s dynamic application.

• user id is some information that (often) identifies the user performing
the transaction, allowing us to relate different sessions of the same user
at different times. User IDs can be stored on COOKIES, if not present
IP addresses can be used although this is not 100% reliable (firewalled
users can share the same IP) but it is reasonable approximation.

• request type: this would generally be the requested URL and query
string, although if possible, the dynamic application would input the
exact page action, as the action performed is executed after the request
is made and the same URL might be used for different purposes ac-
cording to the situation. Most commercial sites already have these tags
for statistics and tracking purposes.

• ip address: IP address of the requesting client, it will only be used if
the user id is not present.

6



• extra information: extra information could be present on the log, such
as time and memory used to serve the request, type of browser origi-
nating the request, that could be useful, but will not be used for the
present study.

Our preprocessor produces a transformed log file, with one output line cor-
responding to each input line, but with different information. In particular,
information can be added by

• looking back at transactions from the same session e.g. computing how
many transactions have been made before.

• looking at historical information of other sessions by the same or similar
users e.g. if the user is a returning customer or if he ever actually
purchased from the site before.

• and by looking forward in the session e.g. if the session ended in a sale.

Purchase information is obtained by the request type (tag) and it is set man-
ually in the preprocessor. At the time of prediction, one can take into account
information from the past (same session or previous sessions), but not from
the future. Therefore, the information that we collect by looking forward in
the log can only be used in the training dataset that we prepare for learning,
and the task that we are concerned with is precisely learning to predict that
missing information.

3.2 Static information

In our case, for each log entry we produce a new entry in the preprocessed
file of the form:

[date range, time range, tag, is logged, returning customer,
buying customer, session length, class]

where

• date range is some discretization of possible days, decided by the do-
main expert. For example, we could have 7 values for 7 weekdays,
different tags for pre vacation, vacation, and normal times of the year,
etc.

7



• time range is some discretization of daytimes, such as morning, after-
noon, night.

• tag belongs to a set of categories into which the original request types
have been categorized, again decided by a domain expert from the
request type attribute. For us, two particular types of tags are very
important:

– the buying tag indicates that the customer is buying at this mo-
ment. Our example goal is to predict whether this session will
ever contain a transaction of this type. Other goals could include:
the magnitude of the transaction to be made, type of product and
margins. In the future our system should be able to combine more
than one goal to rate users.

– the signed-in tag indicates that the user is logging in the system
at this time, e.g. with a username and password.

• is logged Indicates whether or not the user has already signed in the
system during this session. Some websites will force the user to log
in immediately. Other websites will allow the user to browse for a
long time, and maybe login only when ready to buy. Therefore, the
relevance can greatly vary from site to site.

• returning customer Indicates whether this customer has ever visited
the website, as indicated by a COOKIE, IP address or by the fact that
s/he has logged. This variable can have different values, according to
whether it has been seen in the last day, week, month, etc.

• buying customer Indicates whether this customer has already bought in
the past, as this information is considered extremely relevant to predict
whether s/he will buy again and to the priority he should be assigned.
Again, one could introduce different values or variables to indicate the
frequency, amount, time spent since last purchase, etc.

• session length: the length of the session. We take this to be the number
of requests in the session so far. We could additionally add another
variable indicating the length (in, say, seconds) of the session, but we
have not done so in this version.

8



• class is the class assigned to this session, that is, what a correct pre-
diction should be for this log entry. In our case, there are two classes:
buyer and non-buyer. Note that this is the only information computed
by looking forward in the log file, for training purposes.

3.3 Generating Dynamic Information

We call the previous information static because it reflects little information
about the navigation path of the user in this session. On the other hand, it is
reasonable to believe that the sequence of requests made by the user should
help in predicting his/her future behavior. We call this sequence the dynamic
information of the session. In dynamic websites, it can be identified by a
sequence of URLs, request type for our logs. Unfortunately, most machine
learning algorithms are not well adapted to dealing with variables that are
themselves sequences, and some ad-hoc mechanism has to be designed. We
propose here to use Markov chains of variable order.

Recall that a k-th order Markov chain consists of a set of states S and for
each state s and path p of length k defines a probability that the next state
is s given that the k last visited states are those in path p. In particular, by
using a chain-type rule, a Markov chain M assigns a probability Pr[p|M ] to
each path p of any length. If the transition probabilities of M are inferred
from a set of observed paths, then one can take Pr[p|M ] as an approximation
of the probability of path p in the data obtained by forgetting all history
before the last k steps.

More precisely, for some parameter k, we create a two order k Markov
chain for each of the classes, which models the typical sequences of tags
(requests) for each class. In our case, we train two models: one for buyers
and one for non-buyers. At prediction time, and given the path followed in
the current session, these two chains can be used to compute probabilities
Pr[p|buyer] and Pr[p|nonbuyer], where p is the sequence of previous k tags in
the session. Using Bayes’ rule, we can then estimate the converse probabilities
Pr[buyer|p] and Pr[nonbuyer|p]. That is, given that the user has followed this
path, the Markov chains guess the probabilities that later in the future s/he
buys or doesn’t buy.

The buying and non-buying probabilities can be added as new variables to
the static information. The resulting sequence of transformed and enriched
log entries can be treated as a dataset where the order of examples is irrel-
evant and each example is a tuple of simple values (numeric or categorical

9



values). This is what is needed to apply most machine learning algorithms
in the literature, such as Näıve Bayes or Bayesian nets, decision trees, linear
and nonlinear regression, and most neural network models, among others.

3.4 Architecture of our system

Figure 1 presents and summarizes the architecture of our proposal.

Figure 1: Architecture of our system

The preprocessor is in charge of reading the raw log file and extracting the
static information. Additionally, it passes the information on the sequence of
tags (or path) followed in each session to the Markov model builder, which
produces one Markov chain for each class. These Markov chains are then
run again on the preprocessed sessions to estimate a probability that each
session belongs to one of the classes. These probabilities are then added as
new variables to the transformed log file. Finally, this new log file is passed
to one or more machine learning algorithms to produce a predictor model.
For building predictors we have used the popular WEKA [14] package, which
incorporates dozens of machine learning algorithms ready to use.

10



4 Experiments

4.1 The Data

The data for the experiment was provided by high traffic Spanish online
travel agency. It consisted of about 122,000 transactions collected over ap-
proximately 2 days (from 06/29/2006 to 06/30/2006). The web access log
was produced by the site’s dynamic application; additional code was added at
the end of each executing script to log the transaction data after the actions
were executed. By doing so, the data is already cleaned and more accurate,
as opposed to the access log from a web server. In contrast to the web server,
the application can log directly the user session, not only its IP address; al-
lowing us to separate correctly NAT/firewalled users. The additional code
also logs the exact page action the user executed, which might be ambiguous
from a regular URL in an access log which we call the request type.

The data was later preprocessed to clean to remove noise from the log. We
found that there were a couple of more than 50 transactions sessions, which
were identified manually as being produced by automated bots and crawlers.
One-click sessions were also cleaned as they would not account for more load,
which is the focus of this study. One-click sessions were mainly users that
entered the site from a banner of a search page, this could be verified as
most request types were made to landing pages, specially prepared for this
purpose.

¿From the data we were able to distinguish 42 different tags or different
“pages” accessed by users during their navigation in the site. This corre-
sponded to 21,200 sessions, where 4783 is the number of users who returned;
the number of returned users would probably been higher if the analyzed
period was for more days. In the website users were not required to login
to purchase and the login feature is located after selecting a product, so the
login number was very low. Our result does not depend on login information,
as we treat all users as being anonymous; login data is used as a complement
as is readily available but not guaranteed.

An important feature of the data is that only about 2% of the sessions
end in purchase. This percentage is in contrast with some other studies [9]
where the fraction of purchases is much higher, but verified to be the norm
for most current web companies. For most machine learning algorithms this
is a problem: when one of the two classes is so under represented, most
algorithms will simply output a model that always says “non-buyer” (with

11



a 98% accuracy). To force the learning algorithm to pay attention to this
minority of buyers, once the log was preprocessed, we filtered out most of
the nonbuying sessions and prepared a smaller dataset with about 14,500
transactions of which about 50% led to purchase. This dataset was only
used for the initial training phase. A second dataset was prepared containing
transactions with the original proportion of 98% of non-buyers, which was
used for testing the learned models.

As indicated in Figure 1, two Markov models for buyer and non-buyer
sessions were produced, and their predictions were added to the static in-
formation, providing the final dataset on which several algorithms from the
WEKA package were applied.

4.2 Description of experiments and results

The general goal of the experiments was to test the hypothesis that there is
enough information in the processed logfile to make useful predictions about
whether a session will end up buying. It is convenient to present our results
using confusion matrices, which detail how many instances of each class are
classified in that and other classes. In our case, our two classes are buy and
non-buy so WEKA’s confusion matrices look like

buy | non-buy | <-- classified as

-----------------------

X | Y | buy

Z | T | non-buy

Here, X+T is the number of correctly classified instances and Y+Z is the
number of incorrectly classified ones. In particular,

• Y is the number of false positives (hits that are classified as buyers but
are not eventually followed by a purchase) and

• Z is the number of false negatives (hits that are classified as non-buyers
but whose session ends in purchase).

Recall however that our ultimate goal is to use these predictions for priori-
tizing sessions, and deny the ones with lower priorities when server is under
heavy load condition. The meaning of a false positive and a false negative in
this context is very different. Rejecting a false negative (Z) session implies a

12



substantial loss (in revenue), so it is preferable to accept it even at the cost
of keeping many false positives (Y) at in the system. Therefore, these two
figures should be looked at separately and carefully.

Even more than the % of correctly classified instances, the quantities of
interest are the well-known recall and precision measures, and one specific
to our setting: the fraction of transactions predicted that lead to purchase,
which we call we call “%admitted” since potentially these would be the ses-
sions admitted in the server. More precisely,

• %admitted is (X+Z) / (X+Y+Z+T). This is the quantity that may be
limited by the available infrastructure.

• the recall is fraction of real buyers that are admitted, X / (X+Y). A
too small recall will make many potential buyers frustrated, so this
quantity should be kept minimal.

• the precision is the fraction of predicted buyers that end up buying, X
/ (X+Z).

At this preliminary stage of research, we decided to use simple but easy-to-
use learning methods. More sophisticated methods will be used in the future,
once we have developed a better understanding of what kind of results we
can expect and where the useful information is.

In all experiments, the 50%buyers-50%non-buyers dataset was used for
the training phase, and in a first set of experiments, we used WEKA with
static information only. That is, we configured WEKA not to use the vari-
ables coming from the Markov models. We tried the following learners:

• Logistic, a logistic linear regression.

• j48, WEKA’s version of the C4.5 decision tree inducer.

• NaiveBayes, the well-known Näıve Bayes classifier.

We used WEKA’s default parameters, with the exception of j48 which was
forced to place at least 20 examples in each tree leaf (parameter -M 20) to
reduce the size of the tree. The results are given in Figure 2. One can
see that there are noticeable, but not drastic, differences in %admitted and
recall. But we believe that the really significant figure is that of precision.
Precision is practically the same in all three models, around 15% - 17%. In an

13



j48 classifier NB classifier Logistic
%accuracy 76.5 78.1 72.7
%admitted 25.7 22.9 29.8

%recall 66.9 57.5 68.9
%precision 17.2 16.6 15.3

Figure 2: Models built by different classifiers with static information only

j48 classifier NB classifier Logistic
%accuracy 75.8 77.8 74.2
%admitted 27.0 23.4 28.2

%recall 70.8 58.6 68.1
%precision 17.4 16.6 15.9

Figure 3: Models built by different classifiers with both static and dynamic
information

overload situation, if this information about sessions is used, the number of
admitted buyers compared to a session without admission control mechanism
(or where admitted sessions are chosen at random) would be about 16% to
2% an 8x increase in the proportion of buyers.

In a second set of experiments we wanted to see whether the dynamic
information is useful. We performed the same experiments as before but
this time letting WEKA use the two variables coming from the two Markov
models. The results are given in Figure 3. The results are only marginally
better than those obtained with static information only. This has two possible
explanations: either dynamic information does not add anything interesting
over static one, or we have not yet captured it correctly with our simple
Markovian models. At this moment, we are still inclined to believe that
there has to be a way of making use of dynamic information. We plan to
investigate more refined models in the near future.

In a third set of experiments we wanted to simulate the effect of varying
resources on recall and precision. More precisely, we performed the experi-
ments above but forcing the three models to admit a fixed number of users
N . Since the number of users admitted in Figures 2 and 3 was in the range
N = 25, 000 . . . 30, 000, we tried situations where less users can be admitted
(N = 10, 000 and N=5, 000) and more users can be admitted (N = 30, 000

14



N=5,000 N=10,000 N=30,000 N=50,000
%accuracy 91.5 89.2 75.8 60.7
%admitted 4.8 10.0 27.0 43.7

%recall 21.5 44.2 70.8 82.9
%precision 29.8 29.2 17.4 12.6

Figure 4: Models built by the j48 classifier forcing %admitted to different
values.

and N = 50, 000). The number of admitted users was varied, for the time
being, by assigning different weights to false positives and false negatives
using WEKA’s CostSensitiveLearning method. We present the results for
the j48 method only. One can observe that as admission is made harder
(N decreases), both recall and precision strictly grow. In other words, as
competition gets stronger, our system tends to let in only the most promis-
ing sessions. This is an important conclusion for our ultimate goal: that of
designing a load balancer that makes use of our predictions to adapt itself to
the current workload conditions.

5 Conclusions and Future Work

Websites might become overloaded by certain events such as news events or
promotions, as they can potentially reach millions of users. When a peak sit-
uation occurs most infrastructures become stalled and throughput is reduced
even though there are more users. To prevent this, load admission control
mechanisms are used to allow only a certain number of sessions, however cur-
rent session based admission systems don’t differentiate between users and
might be denying access to users with the intention to purchase. As a proof
of concept, we have taken a dataset from high traffic online travel agency to
perform experiments to approximate users purchasing intentions from their
navigational patterns.

¿From our experiments, we are able to show that by training a model from
previously recorded navigational information on a website, when a peak load
situation occurs, by obtaining a sessions purchase information we are able to
increase the number of sales per unit of time. In our preliminary experiments,
we have increased the precision (or proportion of admitted users that buy)

15



from 2% to 16%, a factor of 8. The maximum number of allowed users
to the site should be flexible, according to the infrastructure’s capacity; by
assigning different weights to false positives and false negatives, the model
can adapt itself dynamically maintaining a reasonable precision. We have
also tried to incorporate as input to the learner the predictions generated by
two Markov chains modelling users and non-users. The increment, however,
was not significant enough to draw final conclusions.

We can conclude that admission control, and resource management in
general, is a promising application field for automatically learned user models.
Using models of user navigation we have been able to show that in overload
situations we can restrict the access to a web application to only a proportion
of all the demanding customers while only reducing the revenue that they
generate by a factor significantly lower.

As future work we plan to further investigate other models, including hid-
den Markov models, Bayesian Networks, and k-means clustering, to improve
predictions. We are also going to explore other classifications i.e. mag-
nitude of the transaction, type of product and profit margins; and their
combinations to increase productive efficiency. Before trying our method in
production websites for real-time load admission control, we are evaluating
the performance of these algorithms in a manager to prioritize user sessions.

6 Acknowledgements

This work is supported by the Ministry of Science and Technology of Spain
and the European Union under contract TIN2004-07739-C02-01.

R. Gavaldà is partially supported by the 6th Framework Program of EU
through the integrated project DELIS (#001907), by the EU PASCAL Net-
work of Excellence, IST-2002-506778, and by the DGICYT MOISES-BAR
project, TIN2005-08832-C03-03

For additional information about the authors, visit the Barcelona eDragon
Research Group web site [16].

References

[1] D. Bonino, F. Corno, G. Squillero. A real-time evolutionary algorithm for
Web prediction. Proceedings of the IEEE/WIC International Conference

16



on Web Intelligence (WI’03), pp 139-145, October 2003.

[2] L. Cherkasova, P. Phaal. Session-Based Admission Control: A Mecha-
nism for Peak Load Management of Commercial Web Sites. IEEE Trans-
actions on Computers, vol. 51, n. 6, pp. 669-685, June 2002.

[3] M. Deshpande, G. Karypis. Selective Markov models for predicting Web
page accesses. ACM Transactions on Internet Technology (TOIT), v.4 n.2,
pp.163-184, May 2004.

[4] J. Guitart, V. Beltran, D. Carrera, J. Torres, E. Ayguadé. Characterizing
secure dynamic web applications scalability. 19th International Parallel and
Distributed Processing Symposium, Denver, Colorado, USA, pp. 166-176,
April 4-8 2005.

[5] J. Guitart, D. Carrera, V. Beltran, J. Torres, E. Ayguadé. Session-Based
Adaptive Overload Control for Secure Dynamic Web Applications. 34th
International Conference on Parallel Processing (ICPP’05). Oslo, Norway,
June 14-17, 2005, pp. 341-349.

[6] J. Kephart. Research Challenges of Autonomic Computing. Proceedings
of the 27th International Conference on Software Engineering, St. Louis,
Missouri, pp 15-22, May 15-21, 2005.

[7] J. Kephart, D. Chess. The Vision of Autonomic Computing. IEEE Com-
puter, January 2003.

[8] B. Lan, S. Bressan, B. C. Ooi, K. Tan. Rule-Assisted Prefetching in Web-
Server Caching. Proceedings ACM Int. Conference on Information and
Knowledge Management (CIKM’00), pp. 504-511, November 2000.

[9] D. A. Menascé , V. A. F. Almeida, R. Fonseca, M. A. Mendes. A method-
ology for workload characterization of E-commerce sites. Proceedings of
the 1st ACM conference on Electronic commerce, pp. 119-128, 1999.

[10] A. Nanopoulos, D. Katsaros, Y. Manolopoulos. Effective Prediction of
Web-user Accesses: a Data Mining Approach. Proceedings WEBKDD
Workshop, 2001.

[11] M. Rabinovich, O. Spatschek. Web caching and replication. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, 2002.

17



[12] R. R. Sarukkai. Link prediction and path analysis using Markov chains.
Computer Networks: The International Journal of Computer and Telecom-
munications Networking, Volume 33 , Issue 1-6, pp. 366-386, 2000.

[13] Y. Wei, C. Lin, F. Ren, E. Dutkiewicz, R. Raad. Session Based Differen-
tiated Quality of Service Admission Control for Web Servers. International
Conference on Computer Networks and Mobile Computing (ICCNMC’03),
2003, pp. 112-116.

[14] I. H. Witten, E. Frank. Data Mining: Practical Machine Learning Tools
and Techniques (Second Edition). Morgan Kaufmann, 2005. Software avail-
able from http://www.cs.waikato.ac.nz/~ml/weka.

[15] Q. Yang, H. H. Zhang , T. Li. Mining web logs for prediction models in
WWW caching and prefetching. Proceedings of the seventh ACM SIGKDD
international conference on Knowledge discovery and data mining, pp. 473-
478, 2001.

[16] WebPage. Barcelona eDragon Research Group. Technical University of
Catalonia. http://research.ac.upc.edu/eDragon, 2006.

18


