Machine Learning Assists the Classification of Reports by Citizens on Disease-Carrying Mosquitoes

Antonio Rodriguez¹ Frederic Bartumeus^{2,3,4} Ricard Gavaldà¹

Universitat Politècnica de Catalunya, Barcelona (Spain)

Centre for Advanced Studies of Blanes (CEAB-CSIC), 17300 Girona (Spain)

CREAF, Cerdanyola del Vallès, 08193 Barcelona (Spain)

ICREA, Pg Lluís Companys 23, 08010 Barcelona (Spain)

Workshop on Data Science for Social Good, SoGood September 2016

Overview

- Introduction
- 2 Methodology
- Project development
 - Exploratory data analysis
 - Data cleaning and pre-processing
 - Classifier training, evaluation and selection
 - Real-time classification system design
- 4 Discussion
- 5 Future work

Introduction - Mosquito Alert

- Citizen Science Platform
- Mobile application
- Growing fast
 - Various mosquito species
 - Worldwide localizations

Introduction - Mobile App

- Send breeding site
- Send specimen report
- Small questionnaire
- Geolocated!

Introduction - Mosquito Alert System

Introduction - Classification system

Methodology

- Exploratory data analysis
- ② Data cleaning and pre-processing
- Classifiers
 - training
 - evaluation
 - selection
- Real-time classification system design

Exploratory data analysis - Raw files

users 16967 observations of 10 variables

- userID
- userRegistTimeOriginal
- userRegistDatetime
- userRegistDate
- userRegistMonthNum
- userRegistMonthString
- userRegistWeekdayString
- userRegistWeekdayNum
- userSyst
- userDaysSystRelease

Exploratory data analysis - Raw files

reports 10618 observations of 23+1 variables

- reportVersionID
- reportVersionNum
- userID
- reportID
- reportType
- reportNote
- os
- hide
- reportCreationDatetime
- reportCreationDate
- reportVersionDatetime
- reportVersionDate

- reportCreationMonthNum
- reportCreationMonthString
- reportCreationWeekdayString
- reportCreationWeekdayNum
- reportLong
- reportLat
- missionNum
- missionName
- tiger_q1_response
- tiger_q2_response
- tiger_q3_response
- class

Questionnaire variables

Questions

- Is small, black and has white stripes?
- Has a white stripe in both head and thorax?
- Has white stripes in both abdomen and legs?

Response values

- -1 No
 - 0 Not sure
 - 1 Yes

The **class** variable

- -2 The report is definitely not a valid specimen.
- -1 The report doesn't seem to be a valid specimen. But it is not sure.
- 0 There isn't enough information to classify the report.
- 1 The report seems to be a valid specimen. But it is not sure.
- 2 The report is definitely a valid specimen.

Instance variables

Added

- reportNote
- reportTimeOfDay.
- newUser
- userNumReports
- userAccuracy
- userTimeForFirstReport
- userTimeSinceLastReport
- userMeanTimeBetweenReports
- userNumActionAreas
- userMobilityIndex
- reports1kmLast* (4)
- validReports1kmLast* (4)

Preserved

- os
- reportMonth
- reportQ*Answ (3)
- class

Generated instances

• 2094 instances from usable reports

$$Class$$
 2 1 -1 -2 $Frequency$ 47% 46% 2% 5%

 Class-imbalanced problem: positive instances over 7 times as frequent as negative ones.

Studied classifiers

- Naive Bayes
- k-nearest neighbors
- Decision trees
- Random Forests

Classifiers - Considerations

- Most classifiers have trouble dealing with imbalanced classes
- Merged "unsure" (-1,1) classes into "sure" ones (-2,2)
- Replication of minority class performed
- ... but testing still on original proportion

Classifiers - Selected classifier

	Positive	Negative
Accuracy	0,380	
Precision	0,983	0,086
Recall	0,344	0,912
F-measure (F1)	0,51	0,157

Table: Evaluation metrics, Naive Bayes

- Naive Bayes
- Training conditions:
 - Aggregated instances
 - Replicated (x10)
 negatives in training
- High positive Precision
- High negative Recall
- can detect approximately
 1 third of the valid
 reports with a precision
 near 98%

ROC curve and variable importance

Variable name	Importance
reportQ2Answ	0.7424
reportQ3Answ	0.7038
reports1kmLastMonth	0.6623
reportQ1Answ	0.6615
userNumReports	0.6405
userNumActionAreas	0.6348
validReports1kmLastMonth	0.6216
userTimeForFirstReport	0.6197
reports1kmLastWeek	0.6158
userAccuracy	0.6085

Table: Variable importance in the NB classifier. Numbers are the values of the model coefficients after standarization.

Real-time classification system design

- Two subsystems:
 - Instance generation system
 - Instance creation script
 - Environment
 - Classification system
 - Training script
 - Classifier
 - Classification script

Future work

Scalability

- Code modifications
- GIS enabled database
- Approximately the same computational resources

Improvements

- Classifier tuning
- Priority system
- Another classifier: Random Forest

Machine Learning Assists the Classification of Reports by Citizens on Disease-Carrying Mosquitoes

Antonio Rodriguez¹ Frederic Bartumeus^{2,3,4} Ricard Gavaldà¹

Universitat Politècnica de Catalunya, Barcelona (Spain)

Centre for Advanced Studies of Blanes (CEAB-CSIC), 17300 Girona (Spain)

CREAF, Cerdanyola del Vallès, 08193 Barcelona (Spain)

ICREA, Pg Lluís Companys 23, 08010 Barcelona (Spain)

Workshop on Data Science for Social Good, SoGood September 2016

