The Data Stream Model:

Sketches and Probability Tools

Ricard Gavalda
Universitat Politecnica de Catalunya, Barcelona

ECML PKDD 2015 Summer School:

Data Sciences for Big Data - Resource Aware Data Mining
Porto, September 2nd, 2015
http://www.cs.upc.edu/~gavalda

1/98

http://www.cs.upc.edu/~gavalda

0 Streams, Approximation, Randomization
9 Approximation. Large Deviation Bounds
@ Counting Distinct Elements

e Finding Frequent Elements

e Counting in Sliding Windows

@ Distributed Sketching

e Wrapping up

e References and Resources

2/98

1. Streams, Approximation, Randomization

Massive data requires new kind of algorithmics
Often, approximate answers are OK. That helps!

Focus of this talk:
@ (Mostly) Streaming data
@ Sketches
@ Counting problems

3/98

Data streams everywhere
7

@ Telcos - phone calls
@ Satellite, radar, sensor data

@ Computer systems and network
monitoring

@ Search logs, access logs

@ RSS feeds, social network activity

@ Websites, clickstreams, query streams
@ E-commerce

° ...

4/98

Data streams: Concept

@ Data arrives as sequence of items
@ At high speed

@ Forever

@ Can't store them all

@ Can’t go back; or too slow

@ Evolving, non-stationary reality

5/98

The Data stream axioms

Five Data Stream Axioms:

@ Only one pass; t-th item available at time t only
© Small processing time per item

© Small memory, certainly sublinear in stream length;
sketches or summaries

© Able to provide answers at any time

© The stream evolves over time

6/98

Assumptions & Requirements

@ Worst-case, adversarial, input distribution
@ Difference with probabilistic assumption:

e Items are generated probabilistically (often independently),
following a probability distribution that may evolve over time

e Implicit in Data Stream Mining and Machine Learning:
Generalization!

@ Randomness is in the algorithm

e Different runs may give different answers
e But in most runs answer is approximately correct

7/98

The ltem Counting Problem
How many items have we read so far in the data stream? J

To count up to t elements exactly, logt bits are necessary
Approximate solution using loglog t bits

8/98

Approximate counting: Saving 1 bit

Approximate counting, v1
Init: ¢+ 0
Update:

draw a random number x € [0,1]
if (x<1/2) ¢+ c+1

Query: return 2¢

E[2c] =1t, o~ /t/2
Space log(t/2) =logt—1 — we saved 1 bit!

9/98

Approximate counting: Saving k bits

Approximate counting, v2
Init: ¢+ 0
Update:

draw a random number x € [0,1]
if (x<2K) cc+1

Query: return 2K ¢

E[c] = t/2k, o~ \/t/2k
Memory logt— k — we saved k bits!

x <27k AND of k random bits, log k memory

10/98

Approximate counting: Morris’ counter

Morris’ counter [Morris77]

Init: c < 0

Update:
draw a random number x € [0,1]
if(x<27°c+ c+1

Query: return 26 —2

E[c] ~logt, E[2¢ 2] =1, o~t/\V2

Memory = bits used to hold ¢ = log ¢ = loglog f bits

11/98

Morris’ approximate counter

@ Can count up to 1 billion with loglog 10° = 5 bits

@ Problem: large variance, 6 ~ 0.7t

12/98

Reducing the variance, method |

Use basis b < 2 instead of basis 2:
@ Places tin the series 1,b,b2,...,b',... (“resolution” b)
@ E[b°|~t,o~/(b—-1)/2-t
@ Space loglogt—loglogb (> loglogt, because b < 2)
@ For b=1.08, 3 extra bits, c ~0.2¢

13/98

Reducing the variance, method Il

@ Run r parallel, independent copies of the algorithm
@ On Query, average their estimates

e E[Query]~t, o~t/v2r (why?)

@ Space rloglogt

@ Time per item multiplied by r

Worse performance, but more generic technique

14/98

Morris’ counter: A non-streaming application

In [VanDurme+09]
@ Counting k-grams in a large text corpus
@ Number of k-grams grows exponentially with k
@ Highly diverse frequencies
@ Should fit in RAM

@ Use Morris’ counters (5 bits) instead of standard counters

15/98

2. Approximation. Large Deviation Bounds

16/98

Reducing the variance, general method

@ Variance: Var(X) = E[(X — E[X])?] = E[X?] — E[X]?

@ Var(o- X+ B) = a?- Var(X)

e If X and Y independent, Var(X + Y) = Var(X) + Var(Y)
@ In general, if X; are all independent and Var(X;) = 62,
2

2 (o}
—(no®) = —
n2() n

S=
ngb

Var(~ Y X)) =

1

Equivalently,
oLy x)= <
n&="""n

17/98

Deviation Bounds

Random variables often described by expectation + variance

Suppose

E[algorithm output] = desired result, Var(algorithm output) = 62

We usually want instead

|algorithm output — desired result| < something

18/98

(g,6)-approximation

A randomized algorithm A (&, §)-approximates a function
f: X — Riff for every x € X, with probability > 1— 6

@ (absolute approximation) |A(x)—f(x)| <&

@ (relative approximation) |A(x)—f(x)| < ef(x)

€ = accuracy; 6 = confidence
Often €, 6 given as extra inputs to A

19/98

Deviation Bounds

Markov’s inequality
For a non-negative random variable X and every k

Pr[X > kE[X]] < 1/k

Proof:

E[X] = Y PriX=x]-x> Y PrX=x] x
< x>k

x>k

v

20/98

Deviation Bounds

Chebyshev’s inequality
For every X and every k

Pr[|X —E[X]| > k] < Var(X)/k?
Equivalently,

Pr{|IX —E[X]| > ko(X)] < 1/k?

Proof:

Pr[|X —E[X]| > K] Pr[(X —E[X])? > k?] < (Markov)

< E[(X— E[X]?)/K = Var(X)/K®

21/98

Chebyshev gives (&, 6)-approximations

Let algorithm A be such that E[A(x)] = f(x), Var(A(x)) < ¢2
Algorithm B(x) averages b independent copies of A(x)
We have E[B(x)] = f(x), Var(B(x)) < 62/b

- Var(B(x)) _ o

< <S8
2 ~ be2 —

Pr[|B(x) — f(x)| > €]

11

if h =0°— <
if we choose b 0825

22/98

Chebyshev gives (&, 6)-approximations

Pr{|X — E[X]| > ko]

=1 k=2 k=3 k=4
1 <0.25 <0.11 <0.07

IN|

But if X is normally distributed,

k=2 k=3 k
< 3

0.05 | <0.003 | <

23/98

Sums of Independent Variables

exp(—x?) vs. 1/x2:

0.4

0.081

0.05-

0.044

0.03

0.024

0.014

24/98

Sums of Independent Variables

@ Suppose X =Y, X;, E[X]] = p, Var(X;) = 62, all X;
independent and bounded

@ By the Central Limit Theorem, Z, = (X — np)/v no? tends
to normal N(0,1) as n — eo,

@ And approximating by the normal gives
Pr[Z, > o] ~ exp(—0a?/2)

@ Chebyshev only gives

1
Pr[ana]gﬁ

25/98

Chernoff-Hoeffding bounds

@ X, Xo, ... X, be independent random variables,
e X;€[0,1], E[X]]=p,
@ X=Y7,X,soE[X]=pn

Hoeffding bound (absolute deviation)

Pr[X — pn> en] < exp(—2€2n)
Pr[X —pn < —en] < exp(—2¢2n)

Chernoff bound (relative deviation)
For e €[0,1],

Pr[X — pn > epn] < exp(—&2pn/3)
Pr[X — pn < —epn] < exp(—&2pn/2)

v

Note: Bernstein’s inequality is more general and (in essence) subsumes both

26/98

Example: Approximating the Mean

Input: €, 6, random variable X € [0,1] (Important: bounded)

Output: (g, 0)-approximation of E[X]

Algorithm A(e, 8)

1 2 .
@ Drawn= g2 In 5 copies of X

@ Output their average Y

27/98

Example: Approximating the Mean

@ Let X; be ith copy of X
@ Then Y=1¥7 X, and E[Y]=E[X]
@ By Hoeffding,

Pr[|Y —E[X]| >¢] = Pr[iX,-—E[iX,-]>sn]
i=1 i=1

< 2exp(—2e®n)=2exp(-In(2/8)) =48

@ A different, sequential, algorithm gets (&,) relative
approximation using

1 1
(25
samples of X

[Dagum-Karp-Luby-Ross 95, Lipton-Naughton 95]

28/98

Example: Approximating the Median

Input: €, 8, set S of real numbers (Note: no bound assumed)

Output: some s € Swhose rank in Sis (1/2+¢)|S]

Algorithm A(e, 8)

@ Draw n= i In E random elements from S
2¢e2 S8

@ Output the median of these n elements

29/98

Example: Approximating the Median

@ Let X; be 1 if ith sample has rank < (1/2—¢€)|S|, 0
otherwise

@ E[X|=1/2—¢
@ By Hoeffding,

Pr[> n/2 draws give elements with rank < (1/2 —¢€)|S]|]

< PHY X > n/2] = P Y. X > E[Y. X +enl

i=1 i=1 i=1

< exp(—2e2n)=5/2

@ Therefore, with probability < §/2 we draw > n/2 elements
of rank < (1/2—¢)|S|. Implies median of sample
>(1/2-¢)|S]

@ Similarly the other side

30/98

Example use in Data Streams: Sampling rate

@ Suppose items arrive at so high speed that we have to skip
some
@ Sample randomly:
e Choose to process each element with probability o
e Ignore each element with prob. 1 —«
@ At any time ¢, if queried for the median, return the median
of the elements chosen so far

Exercise.

Given a, 0, determine the probability & such that at time t the
output of the algorithm above is an (&;, 6)-approximation of the
median on the first t elements of the stream

31/98

Improved (&g, d)-approximation: 1/6 to In(1/9)

Let algorithm A be such that E[A(x)] = f(x), Var(A(x)) < o?
(Note: no bound assumed)

B: Run b independent copies of A and average results
With b= 6062 /&2 we have

Pr|B(x) — f(x)| > €] < 1/6

C: Run c independent copies of B and take median

1 2
Withc= —— we have (Exercise: check!)
2(1/2—1/6
Pr[|C(x)—f(x)| > €] <o
, , 1.2
Memory and runtime blowup is b-¢c=27c =2 In 5

A better analysis reduces constant 27 to about 4

32/98

3. Counting distinct elements

The Distinct Element
Counting Problem

How many distinct elements
have we seen so far in the data
stream?

33/98

Item spaces and # distinct elements can be large

@ I'm a web searcher. How many different queries did | get?

@ I'm a router. How many pairs (sourcelP,destinationIP) have
| seen?
e itemspace: potentially 2128 in IPv6

@ I'm a text message service. How many distinct messages
have | seen?
e itemspace: essentially infinite

@ I'm an streaming classifier builder. How many distinct
values have | seen for this attribute x?

34/98

Counting distinct elements

@ Item space /, cardinality n, identified with range [n]

@ f;+ = # occurrences of / € | among first t stream elements
@ d; = number of i's for which f;; >0

@ Often omit subindex t

@ Solving exactly requires O(d) memory

@ Approximate solutions using O(d), O(logd) and
O(loglog d) bits

35/98

Linear counting [Whang+90] ~ Bloom filters

0 f()

00010100010100010001100010100100100

s-1

Init(dinax,pP):
@ upper bound di.x > d
@ p < 1, load factor
@ build a bit vector B of size s = p Oiax
@ choose a hash function f: [n] — s

Update(x): B[f(x)] + 1
Query:

@ w =the fraction of 0's in B
@ return s-In(1/w)

36/98

Linear counting [Whang+90] ~ Bloom filters

0 (i)

00010100010100010001100010100100100

s-1

w = Pr[bucket i after d distinct elements] = (1 —1/s)? ~exp(—d/s)

E[Query] ~d, o(Query) = small!

Issue: What is a “good” hash function?
@ f(i) uniformly distributed, even given all other values of f
@ “Reproducibly random”
@ How to get one: Later!

37/98

Cohen’s algorithm [Cohen97]

< >

posmin (s-d)/(d+1)

E[gap between two 1’sin B] = (s—d)/(d+1) ~s/d

Query: return s/ (size of first gap in B)

38/98

Cohen’s algorithm [Cohen97]

s-1

<> >

posmin (s-d)/(d+1)

Trick: Don’t store B, remember smallest key inserted in B

Init: posmin = s; choose hash function f: [n] — s
Update(x): if (f(x) < posmin) posmin « f(x)
Query: return s/posmin

39/98

Cohen’s algorithm [Cohen97]

R >

posmin (s-d)/(d+1)

E[posmin| ~s/d o(posmin)~s/d

Memory = (bits to store posmin) =
log(posmin) < logs = O(log dax)

40/98

Probabilistic Counting [Flajolet-Martin 85]

OMN s-1

116 1/8 1/4 12

Bloom filter. But: Observe values of hash function f(i), in binary
ldea: To see f(i) = 0K—"1..., about 2% distinct values inserted

And we don’t need to store B, just the smallest k

41/98

Flajolet-Martin probabilistic counter

Init: p«+ 0

Update(x):
@ let b be the position of the leftmost 1 bit of f(x)
eif(b>p)p« b

Query: return 2P

E[2P] =d/ ¢, for a constant ¢ =0.77...
Memory = (bits to store p) = logp = loglog dinax bits

42/98

Flajolet-Martin: reducing the variance

Solution 1: Use c independent copies, average

@ Problem 1: runtime multiplied by ¢

@ Problem 2: independent runs = generate independent
hash functions

@ And we don’t know how to generate several independent
hash functions

43/98

Flajolet-Martin: reducing the variance

Solution 2:

@ Divide stream into ¢ = O(¢~2) substreams

@ Use first bits of f(x) to decide substream for x
@ Track p separately for each substream

@ Same f can be used for all copies

@ One sketch update per item

Memory = O(cloglog thax) = O(e 2109109 Ohnax)

44/98

Improving the leading constants

@ Original [Flajolet-Martin 85]: Geometric average of
estimations

@ SuperLoglLog [Durand+03]: Remove top 30%, then
geometric average

@ HyperLoglLog [Flajolet+07]: Harmonic average

Standard deviation is ~ 1.03/+/c for HyperLogLog

HyperLoglLog: “cardinalities up to 10° can be approximated
within say 2% with 1.5 Kbytes of memory”

Implementation aspects: [Heule+13]

45/98

Linear or logarithmic?

[Metwaly+08]

@ “Why go logarithmic when we can go linear”

@ Describe an application where extreme accuracy needed
@ eg., 1074

@ For this range, linear counting uses less memory

@ My take: | have ML/DM in mind; low accuracy is ok, and
we will need to maintain many counts

46/98

4. Finding Frequent Elements

Heavy Hitters, Elephants, Hotlist analysis, Iceberg queries

47/98

Finding Frequent Elements

The Heavy Hitter Problem

Given a sequence S of t elements, threshold 0, find all
elements with frequency > 6t - the heavy hitters

Interesting for skewed distributions
There are at most [1/6 | heavy hitters

Good sources: [Berinde+09], [Cormode+08]

48/98

Approaches

1. Sampling: Output the heavy hitters computed in a sample

@ Uniform sample can be kept with reservoir sampling
technique

@ Doable with sample size O(1/62) (Hoeffding)
Solutions with memory O(1/6):

2. Count based. We cover SpaceSaving Sketch

3. Hash based: Count-Min Sketch

49/98

The SpaceSaving sketch [Metwally+05]

@ One of many counter-based methods:
Karp-Shenker-Papadimitriou, Lossy Counter, Frequent,
Sticky Sampling, GroupTest, ...

@ Memory O(1/6). Best possible

@ Good update time

@ Guarantee on count error

@ No false negatives; but has false positives

50/98

The SpaceSaving sketch

Init(0): Create
k<« [1/0]
set of keys K «+ 0
vector count, indexed by K

Update(x):
if x is in K then count[x]+ +
else, if |K| < k, add x to K and set count[x] =1
else, replace an item with lowest count with x
and increase its count by 1

Query:
return the set K

51/98

Why Does This Work?

Claims:

Let min; be the minimum value of a counter at time ¢t > 0. Then
Q@ min; <t/k
Q If x> min, then x € K attime t
© Forevery x € K, fxt < counti[x] < fy ¢ + min;

In particular, all items with frequency over t/k are in K

Proof: By joint induction on t. Exercise: prove it!

52/98

More on SpaceSaving

Efficient implementation: StreamSummary data structure

Exercise

Without looking into the paper, propose an efficient data
structure for SpaceSaving. Aim for O(1) update time and
O(k) = O(1/6) items, counts, pointers, etc.

53/98

The Count-Min Sketch

[Cormode-Muthukrishnan 04]

Like SpaceSaving:
@ Provides an approximation f; to fy, for every x
@ Can be used (less directly) to find 6-heavy hitters
@ Uses memory O(1/6)

Unlike SpaceSaving:

@ It is randomized - hash functions instead of counters
@ Supports additions and deletions

@ Supports (not trivially) Heavy Hitters

@ Can be used as basis for several other queries

54/98

The Count-Min Sketch

@ Vector F[n]. Assumes F[i] > 0 for all /, at all times
@ Provides estimations F’ of F such that
@ Fli<Fi]foralli
© Foreveryicl, F'[i] < F[i]+ €|F|; with probability > 1 —§
where |F|1 =Y Fli]

@ Note: |F|1 may be < stream length, if subtractions allowed

@ Uses O(1In}) memory words, O(In}) update time

55/98

The Count-Min Sketch

ha(/) ha(j) hs(j) hi(j)

4 1/"—> +|
—]

@4% +
~—

1 > +l

source: A. Bifet,
http://albertbifet.com/comp423523a-2012-stream-data-mining/

56/98

http://albertbifet.com/comp423523a-2012-stream-data-mining/

The Count-Min Sketch

@ d independent hash functions hy... hg: [1..n] = [1..w]
@ one “memory cell” for each h;(/)
@ On instruction “F[i] += v”,do k(i) += v forallje1...d

@ Estimation:
F'[i] = min{ hi(i)|j=1..d}

57/98

The Count-Min Sketch

F/li] =min{h(i) | j=1..d}

F'li = Fi]
For each instruction involving /, we update all counts h;(/)
F[i] > 0 at all times for all /

F'[i] = F[i]?
No: cell h;(i) is also incremented by k # i if hj(k) = h;(i)
But it is unlikely that this occurs very often

min instead of average — Markov instead of Chebyshev or
Hoeffding

58/98

The Count-Min Sketch: Proof of main bound

@ Fix j. Def random var ljx = 1 if h;(i) = h;(k), 0 otherwise
@ If h good hash function

Elljx] <1/range(h;)) =1/w

o Def X; = Y lxF[k]. Then

E[Xj] Z;E[/ijk]/:[k] <|Fl1/w

59/98

The Count-Min Sketch: Proof of main bound (2)

Then by Markov’s inequality and pairwise independence:
PriX > e|Fl1] < E[Xj]/(elFl1) < (IF|1/w)/(elFl1) <1/2
if w=2/e. Then:

PriF'[i] > F[i]+ €| F|1]

Privj : F[i]+ Xj > F[i] + €| Fl4]
Privj © Xj > €|Fl4]

(1/2)4 =6 ifd=1log(1/5)

IN

for one fixed i. To have good estimates for all i simultaneously,
use d = log(n/é8) and use union bound

60/98

The Count-Min Sketch: Summary

@ Memory is % Iog% words
@ Update time O(log 3)

@ Replace log(1/8) with log(n/d) if the bound needs to hold
for all i simultaneously

“Prlfor all /,...] < &” instead of “for all /, Pr[...] <&~
@ Error for F[i] is € relative to |F|1, not to Fi]

61/98

Back to Heavy Hitters

@ jis a 6-heavy hitter if F[i] > 0t
@ The CM-sketch with width 6 guarantees

Fli] < F'[i] < F[i] + 6t

@ So: If we output all i s.t. F'[i] > 6t, we output all heavy
hitters; no false negatives

But we can’t cycle through all n candidates one by one!

62/98

Range-Sum queries

Range-sum query

Given a, b, return Y2 F[i]
Example: how many packets received came from the IP range
172.16.XXX.XXX?

We show:
@ A variant of CM-sketch supports range-sum queries
efficiently

@ Answering range-sum queries efficiently — finding heavy
hitters efficiently

63/98

Fom CM-sketch to range-sum queries

O L O (@
© 0 0 0 e O O ©

0000000000000 0O0O0

For p=0...logn, for each j = ..., keep the value of
sum(jeP...(j+1)2P —1)

Any interval [a, b] is the sum of O(log n) such values. Check it

64/98

From CM-sketch to range-sum queries

O00000000D0®WO0O00O0O0

Keep one CM-sketch for each 2P to store
sum(j2P...(j+1)2P —1) for each j

65/98

From CM-sketch to range-sum queries

000000000000 O000O0

When receiving i, update the counts for ranges where i lies =
ancestors of / in the tree

When queried sum(a..b), decompose [a..b] as sum of such
intervals, retrieve and add their sums

66/98

From Range-sum queries to heavy hitters

Adaptively search for heavy hitters in the tree

@ if a node has count < 6t, do not explore its children: no
heavy hitters below

@ if a node has count > 6t, explore both children
@ when reaching a leaf, we know whether it's a heavy hitter

@ the sum of counts at any one level of the tree is t
@ no more than 1/6 of them may have frequency > 6t

@ Efficiency: no more than 1/6 nodes of each level are
expanded

67/98

From Range-sum queries to heavy hitters

Exercise
Formalize the algorithms above:
@ For computing range-sum queries given CM-sketch
@ Form finding all heavy hitters using range-sum queries

and tell their memory usage and update time

68/98

Other uses of CM-Sketch - Range-Sum queries

@ Quantile computation: Given i, 6, find for all k the q(k)
such that
q(k) n
Flil=ke)_ FIi]
i=1 i=1
@ Reverse, histogram computation: Given f, how many i’s
have frequence f?”
@ Inner product of two streams

69/98

5. Counting in Sliding Windows

01100001 11000001010

="
[«]

past data future data

@ Only last nitems matter

@ Clear way to bound memory

@ Natural in applications: emphasizes most recent data
@ Data that is too old does not affect our decisions

Examples:

@ Study network packets in the last day
@ Detect top-10 queries in search engine in last month
@ Analyze phone calls in last hours

70/98

Statistics on Sliding Windows

01100001 11000001010

-
[«]

past data future data

@ Want to maintain mean, variance, histograms, frequency
moments, hash tables, ...

@ SQL on streams. Extension of relational algebra
@ Want quick answers to queries at all times

71/98

Basic Problem: Counting 1’s

0110000111000001010

"
[«]

—
past data future data

Obvious algorithm, memory n:

@ Keep window explicitly

@ At each time ¢, add new bit b to head, remove oldest bit b’
from tail,

@ Add b and subtract b’ from count

Fact:
Q(n) memory bits are necessary to solve this problem exactly J

72/98

Counting 1’s

[Datar, Gionis, Indyk, Motwani, 2002]

Theorem:
Estimating number of 1’s in a window of length n with

S . . . 1
multiplicative error € is possible with O(E log n) counters

= O(%(Iog n)?) bits of memory

Example:
@ n=10%; £ =0.1 — 200 counters, 4000 bits

73/98

Idea: Exponential Histograms

42 27 20 1 8 20
...101110010111000ﬁoo1110h01010010ﬁ10booo10h0ﬁ
I !

now-30 now

@ Each bit has a timestamp - time at which it arrived
@ Attime t, bits with timestamp <t — n are expired
@ We have up to k buckets of capacity 1,2, 4,8 ...

@ Each bucket contains the number of 1s in a subwindow, up
to its capacity

@ Errors: expired bits in the last bucket
@ 1’sin last bucket < (1’s in previous buckets) / k

74/98

Exponential Histograms

42 27 20 11 8 20
...10111oo10111oooﬁoo111oh0101001oﬁ10booo10h0ﬁ
! !

now-30 now

Init: Create empty set of buckets

Query: Return total number of bits in buckets - last bucket / 2

75/98

Exponential Histograms

42 27 20 1 8 20
...101110010111000ﬁoo1110h01010010ﬁ10h00010h0ﬁ
I !

now-30 now

Insert rule(bit b):

o If bis a0, ignore it. Otherwise, if it's a 1:
@ Add a bucket with 1 bit and current timestamp ¢ to the front
@ fori=0,1,...
If more than k buckets of capacity 2/,
merge two oldest as newest bucket of capacity 2/*1,
with timestamp of the older one
@ if oldest bucket timestamp < t—n, drop it (all expired)

76/98

Memory Estimate

e Largest bucket needed: kY% ,2/ ~n — C ~log(n/k)
@ Total number of buckets: k- (C+1) ~ klog(n/k)

@ Each bucket contains a timestamp only (perhaps its
capacity, dep. on implementation)

@ timestamps are in t—n...t: recycle timestamps mod n

@ Memory is O(klog(n/k)logn) bits; take k = 1/2¢

77/98

Generalizations

Applies also to other natural aggregates:

@ Variance

@ Distinct elements (using Flajolet-Martin)
@ Max, min

@ Histograms

@ Hash tables

@ Frequency moments

and can be combined with CM-sketch

78/98

6. Distributed Sketching

Setting:
@ Many sources generating streams concurrently
@ No synchrony assumption
@ Want to compute global statistics

@ Streams can send short summaries to central

79/98

Merging sketches

__brEXyzg@+in+... %D.

..déERtu%xSk?...

Send the sketches, not the whole stream

80/98

Merging sketches

Mergeability
A sketch algorithm is mergeable if

@ given two sketches S1 and S2 generated by the algorithm
on two data streams D1 and D2,

@ one can compute a sketch S that answers queries
correctly with respect to the concatenation of D1 and D2

v

Note: For frequency problems,
“for the concatenation” = “for all interleavings”

81/98

Merging sketches

All sketches we’ve seen are mergeable efficiently

@ Bloom filters, Cohen, Flajolet-Martin, HyperLogLog

@ SpaceSaving

@ CM-sketch

@ Exponential Histograms (though order dependent problem)

May require sites to use common random bits or hash functions

82/98

7. Wrapping up. Hash functions

@ Perfect hash function: f(i) cannot be guessed at all even
from all other values of f

@ Storing f: A— B unfeasible for large A

83/98

Wrapping up. Hash functions (2)

@ Cryptographic hash functions (MD5, SHA1, SHA256, or
MurmurHash) should work well, but are costly.

@ Even simpler functions like linear congruential may work
well in practice if not in theory — but don'’t use 32 bit
integers if you plan to count billions!

@ O(logn) bits to store such a function for |A|=|B|=n

@ But we can’t “generate many of them”, e.g., to reduce
variance

@ Sometimes, analysis reveals that weaker notions of “good
hash function” suffices

@ E.g., pairwise independence suffices for CM-sketch: (/)
independent of any other single f(j)

@ (In general, will work if you use only Chebyshev or Markov)

@ We can generate mutually independent, pairwise
independent functions

@ One can be stored with O(log n) bits

84/98

Wrapping up. Some stuff | left out

@ Detecting duplicate documents

@ Detecting near duplicates (LSH), minwise hashing, ...

@ Sketches for geometric problems. Clustering

@ Graph sketches. Counting subgraphs

@ Using HyperLoglLog to estimate neighborhood functions of
graphs

@ Sketches that are linear projections. Metric embeddings.
Dimensionality reduction

@ Linear algebra. PCA. Singular Value Decomposition

85/98

Wrapping up. Last words

Approximation helps
Randomness helps

Some more tools in your toolbox

http://www.cs.upc.edu/~gavalda

86/98

http://www.cs.upc.edu/~gavalda

8. References and resources

With apologies to all missing papers
General Surveys on Stream Algorithmics:

@ Survey by Liberty and Nelson: http://www.cs.yale.edu/homes/
el327/papers/streaming_data_mining.pdf

@ J. Ullman and A. Rajaraman, Mining of Massive Datasets, Chapter 3 -
available at
http://infolab.stanford.edu/~ullman/mmds/ch4.pdf

@ A very general bibliography by K. Tufte: http:
//web.cecs.pdx.edu/~tufte/410-510DS/readings.htm

@ Lecture notes by A. Chakrabarti: http://www.cs.dartmouth.edu/
~ac/Teach/CS85-Fall09/Notes/lecnotes.pdf

@ Survey by Lin and Zhang: http:
//www.cse.unsw.edu.au/~yingz/papers/apweb_2008.pdf

@ Book by G. Cormode, M. Garofalakis, P. Haas, and C. Jermain:
http://dimacs.rutgers.edu/~graham/pubs/html/
CormodeGarofalakisHaasJermainel2.html

@ Survey by G. Cormode:
http://dimacs.rutgers.edu/~graham/pubs/papers/sk.pdf

87/98

http://www.cs.yale.edu/homes/el327/papers/streaming_data_mining.pdf
http://www.cs.yale.edu/homes/el327/papers/streaming_data_mining.pdf
http://infolab.stanford.edu/~ullman/mmds/ch4.pdf
http://web.cecs.pdx.edu/~tufte/410-510DS/readings.htm
http://web.cecs.pdx.edu/~tufte/410-510DS/readings.htm
http://www.cs.dartmouth.edu/~ac/Teach/CS85-Fall09/Notes/lecnotes.pdf
http://www.cs.dartmouth.edu/~ac/Teach/CS85-Fall09/Notes/lecnotes.pdf
http://www.cse.unsw.edu.au/~yingz/papers/apweb_2008.pdf
http://www.cse.unsw.edu.au/~yingz/papers/apweb_2008.pdf
http://dimacs.rutgers.edu/~graham/pubs/html/CormodeGarofalakisHaasJermaine12.html
http://dimacs.rutgers.edu/~graham/pubs/html/CormodeGarofalakisHaasJermaine12.html
http://dimacs.rutgers.edu/~graham/pubs/papers/sk.pdf

8. References and resources

Approximate counting

@ The original Morris77 paper:
http://dl.acm.org/citation.cfm?id=359627 also
available here: http://www.inf.ed.ac.uk/teaching/
courses/exc/reading/morris.pdf

@ An analysis of Morris’ counter (math intensive): http://algo.
inria.fr/flajolet/Publications/Flajolet85c.pdf

@ The application of Morris’ counters to counting n-grams, by Van
Durme and Lall: http://www.cs. jhu.edu/~vandurme/
papers/VanDurmeLal1IJCAIO9.pdf

88/98

http://dl.acm.org/citation.cfm?id=359627
http://www.inf.ed.ac.uk/teaching/courses/exc/reading/morris.pdf
http://www.inf.ed.ac.uk/teaching/courses/exc/reading/morris.pdf
http://algo.inria.fr/flajolet/Publications/Flajolet85c.pdf
http://algo.inria.fr/flajolet/Publications/Flajolet85c.pdf
http://www.cs.jhu.edu/~vandurme/papers/VanDurmeLallIJCAI09.pdf
http://www.cs.jhu.edu/~vandurme/papers/VanDurmeLallIJCAI09.pdf

8. References and resources

Large deviation bounds

@ G. Lugosi: http://www.econ.upf.edu/~lugosi/anu.pdf

@ A. Sinclair: http:
//www.cs.berkeley.edu/~sinclair/cs271/nl13.pdf

@ C. Shalizi list of references (much beyond the scope of this
course): http:

//bactra.org/notebooks/large-deviations.html

89/98

http://www.econ.upf.edu/~lugosi/anu.pdf
http://www.cs.berkeley.edu/~sinclair/cs271/n13.pdf
http://www.cs.berkeley.edu/~sinclair/cs271/n13.pdf
http://bactra.org/notebooks/large-deviations.html
http://bactra.org/notebooks/large-deviations.html

8. References and resources

Counting distinct elements

@ Good general survey of distinct element counting up to 2008: Ahmed
Metwally, Divyakant Agrawal, Amr El Abbadi: Why go logarithmic if we
can go linear?: Towards effective distinct counting of search traffic.
EDBT 2008: 618-629.

@ Also general discussion on distinct element counting:
http://highscalability.com/blog/2012/4/5/
big-data-counting-how-to-count—-a-billion-distinct-objects
html

@ Presentation including some sketches | didn’t mention: http://www.
cs.upc.edu/~conrado/research/talks/aofa2012.pdf

@ Bloom filter. K.Y. Whang, B. Vander-Zanden, H.M. Taylor, A Linear-time

Probabilistic Counting Algorithm for Database Applications. ACM Trans.
Database Syst., 15:2, 1990.

@ Cohen’s log(n) solution: Edith Cohen, Size-Estimation Framework with
Applications to Transitive Closure and Reachability . FOCS 1994 and
JCSS 1997.

90/98

http://highscalability.com/blog/2012/4/5/big-data-counting-how-to-count-a-billion-distinct-objects-us.html
http://highscalability.com/blog/2012/4/5/big-data-counting-how-to-count-a-billion-distinct-objects-us.html
http://highscalability.com/blog/2012/4/5/big-data-counting-how-to-count-a-billion-distinct-objects-us.html
http://www.cs.upc.edu/~conrado/research/talks/aofa2012.pdf
http://www.cs.upc.edu/~conrado/research/talks/aofa2012.pdf

8. References and resources

HyperLoglLog and related for distinct element counting

@ The Flajolet-Martin probabilistic counter. Philippe Flajolet, G. Nigel
Martin: Probabilistic Counting Algorithms for Data Base Applications. J.
Comput. Syst. Sci. 31(2): 182-209 (1985). See also http:
//en.wikipedia.org/wiki/Flajolet—-Martin_algorithm

@ SuperLoglog counter (and insight on FM probabilistic counter) Durand,
M.; Flajolet, P. (2003). "Loglog Counting of Large Cardinalities”.
Algorithms - ESA 2003. Lecture Notes in Computer Science 2832. p.
605.

@ The HyperLoglog paper: Flajolet, P.; Fusy, E.; Gandouet, O.; Meunier,
F. (2007). "HyperLogLog: the analysis of a near-optimal cardinality
estimation algorithm”. AOFA 07: Proceedings of the 2007 International
Conference on the Analysis of Algorithms.

@ Flajolet’s contributions explained beautifully by J. Lumbroso:
http://www.stat.purdue.edu/~mdw/
ChapterIntroductions/ApproxCountingLumbroso.pdf

91/98

http://en.wikipedia.org/wiki/Flajolet-Martin_algorithm
http://en.wikipedia.org/wiki/Flajolet-Martin_algorithm
http://www.stat.purdue.edu/~mdw/ChapterIntroductions/ApproxCountingLumbroso.pdf
http://www.stat.purdue.edu/~mdw/ChapterIntroductions/ApproxCountingLumbroso.pdf

8. References and resources

HyperLoglLog and related for distinct element counting (2)

@ http://en.wikipedia.org/wiki/HyperLogLog

@ http://research.neustar.biz/2012/10/25/
sketch-of-the-day-hyperloglog-cornerstone-of-a-big-data-i

@ A live demo of hyperloglog at the web above:
http://content.research.neustar.biz/blog/hll.html

@ http://www.slideshare.net/sunnyujjawal/
hyperloglog-in-practice—algorithmic-engineering-of-a-state

@ http://stackoverflow.com/questions/12327004/
how-does—-the-hyperloglog-algorithm-work

@ Important optimizations that I'd like to try:
http://druid.io/blog/2014/02/18/
hyperloglog-optimizations—-for-real-world-systems.
html. Also here:
http://research.google.com/pubs/pub40671.html

92/98

http://en.wikipedia.org/wiki/HyperLogLog
http://research.neustar.biz/2012/10/25/sketch-of-the-day-hyperloglog-cornerstone-of-a-big-data-infrastructure/
http://research.neustar.biz/2012/10/25/sketch-of-the-day-hyperloglog-cornerstone-of-a-big-data-infrastructure/
http://content.research.neustar.biz/blog/hll.html
http://www.slideshare.net/sunnyujjawal/hyperloglog-in-practice-algorithmic-engineering-of-a-state-of-the-art-cardinality-estimation-algorithm
http://www.slideshare.net/sunnyujjawal/hyperloglog-in-practice-algorithmic-engineering-of-a-state-of-the-art-cardinality-estimation-algorithm
http://stackoverflow.com/questions/12327004/how-does-the-hyperloglog-algorithm-work
http://stackoverflow.com/questions/12327004/how-does-the-hyperloglog-algorithm-work
http://druid.io/blog/2014/02/18/hyperloglog-optimizations-for-real-world-systems.html
http://druid.io/blog/2014/02/18/hyperloglog-optimizations-for-real-world-systems.html
http://druid.io/blog/2014/02/18/hyperloglog-optimizations-for-real-world-systems.html
http://research.google.com/pubs/pub40671.html

8. References and resources

Heavy hitters - count-based approaches

@ J. Vitter. Random Sampling with a reservoir. ACM Trans. on
Mathematical Software, 1985.

@ Good survey of heavy hitter algorithms. Radu Berinde, Graham
Cormode, Piotr Indyk, Martin J. Strauss. Space-optimal Heavy Hitters
with Strong Error Bounds

@ Also very good survey: Graham Cormode, Marios Hadjieleftheriou.
Finding Frequent ltems in Data Streams. Proc. VLDB Endowment,
2008

@ Richard M. Karp, Scott Shenker, Christos H. Papadimitriou. A Simple
Algorithm for Finding Frequent Elements in Streams and Bags. ACM
Transactions on Database Systems (TODS), Volume 28, 2003.

@ The Space-Saving sketch paper. Ahmed Metwally, Divyakant Agrawal,
Amr El Abbadi. Efficient Computation of Frequent and Top-k Elements
in Data Streams. Intl. Conf. on Database Technology (ICDT) 2005.

@ M. Charikar, K. Chen and M. Farach-Colton. "Finding Frequent ltems in
Data Streams.” ICALP 2002 (conf. version) and Theoretical Computer
Science 2004 (journal version)

93/98

8. References and resources

Count-Min sketch and related

@ The CM-Sketch paper. Graham Cormode and S.
Muthukrishnan: An improved data stream summary: The
Count-min sketch and its applications. J. Algorithms 55: 2938

@ On Frugal Streaming, a neat sketch for estimating quantiles
which | did not cover in the course:
http://research.neustar.biz/2013/09/16/
sketch-of-the-day-frugal-streaming/

@ http://en.wikipedia.org/wiki/Count-min_sketch
@ https://sites.google.com/site/countminsketch/

@ https://tech.shareaholic.com/2012/12/03/
the-count-min-sketch-how-to-count-over-large-keyspac

94/98

http://research.neustar.biz/2013/09/16/sketch-of-the-day-frugal-streaming/
http://research.neustar.biz/2013/09/16/sketch-of-the-day-frugal-streaming/
http://en.wikipedia.org/wiki/Count-min_sketch
https://sites.google.com/site/countminsketch/
https://tech.shareaholic.com/2012/12/03/the-count-min-sketch-how-to-count-over-large-keyspaces-when-about-right-is-good-enough/
https://tech.shareaholic.com/2012/12/03/the-count-min-sketch-how-to-count-over-large-keyspaces-when-about-right-is-good-enough/

8. References and resources

Counting in Sliding Windows

@ Mayur Datar, Aristides Gionis, Piotr Indyk, Rajeev Motwani: Maintaining
Stream Statistics over Sliding Windows. SIAM J. Comput. 31(6):
1794-1813 (2002). Conf. version in SODA 2002.

@ Mayur Datar, Rajeev Motwani: The Sliding-Window Computation Model
and Results. Data Streams - Models and Algorithms 2007: 149-167.
http://link.springer.com/chapter/10.1007%
2F978-0-387-47534-9_8

Mergeability

@ Discussions on mergeability are a bit all over. This is sort of an
overview: http://research.microsoft.com/en-us/events/
bda2013/mergeable-long.pptx

95/98

http://link.springer.com/chapter/10.1007%2F978-0-387-47534-9_8
http://link.springer.com/chapter/10.1007%2F978-0-387-47534-9_8
http://research.microsoft.com/en-us/events/bda2013/mergeable-long.pptx
http://research.microsoft.com/en-us/events/bda2013/mergeable-long.pptx

8. References and resources

Others (personal 1-slide selection)

@ Noga Alon, Yossi Matias, Mario Szegedy: The space complexity of
approximating frequency moments. J. Computer and System Sciences 58(1):
137-147 (1999). Conference version (STOC) 1996

@ Paolo Boldi, Marco Rosa, and Sebastiano Vigna. HyperANF: Approximating the
neighbourhood function of very large graphs on a budget. WWW, 2011.

@ An application of the above to computing diameter of the Facebook graph: Lars
Backstrom, Paolo Boldi, Marco Rosa, Johan Ugander, Sebastiano Vigna. Four
Degrees of Separation. ACM Web Science 2012, 2012.

@ A survey on streaming graph algorithms: http:
//people.cs.umass.edu/~mcgregor/papers/13-graphsurvey.pdf

@ Computing SVD on streams, this will be important in streaming ML: Mina
Ghashami, Edo Liberty, Jeff M. Phillips, David P. Woodruff, Frequent Directions :
Simple and Deterministic Matrix Sketching.
http://arxiv.org/abs/1501.01711

@ This will also be important in streaming ML: Christos Boutsidis, Dan Garber,
Zohar Karnin, Edo Liberty: Online Principal Component Analysis, SODA 2015.
http://www.cs.yale.edu/homes/el327/papers/opca.pdf

96/98

http://people.cs.umass.edu/~mcgregor/papers/13-graphsurvey.pdf
http://people.cs.umass.edu/~mcgregor/papers/13-graphsurvey.pdf
http://arxiv.org/abs/1501.01711
http://www.cs.yale.edu/homes/el327/papers/opca.pdf

8. References and resources

Resources
@ The MassDAL Code Bank. http:

//www.cs.rutgers.edu/~muthu/massdal-code-index.html

@ StreamLib: https://github.com/addthis/stream-1ib. Check
this too: http://www.addthis.com/blog/2011/03/29/
new—-open-source-stream-summarizing-java-library/#.
VTzMcJP1l_VI

@ Hokusai: https://github.com/dgryski/hokusai. | have not
used it, but it looks very interesting from
http://arxiv.org/ftp/arxiv/papers/1210/1210.4891.pdf
and http://blog.aggregateknowledge.com/2013/09/16/
sketch-of-the-day-frugal-streaming/

@ Webgraph. Analysis of large graphs, contains the HyperANF and
related code used for the Four-degrees-of-separation paper:
http://webgraph.di.unimi.it/

97/98

http://www.cs.rutgers.edu/~muthu/massdal-code-index.html
http://www.cs.rutgers.edu/~muthu/massdal-code-index.html
https://github.com/addthis/stream-lib
http://www.addthis.com/blog/2011/03/29/new-open-source-stream-summarizing-java-library/#.VTzMcJPl_VI
http://www.addthis.com/blog/2011/03/29/new-open-source-stream-summarizing-java-library/#.VTzMcJPl_VI
http://www.addthis.com/blog/2011/03/29/new-open-source-stream-summarizing-java-library/#.VTzMcJPl_VI
https://github.com/dgryski/hokusai
http://arxiv.org/ftp/arxiv/papers/1210/1210.4891.pdf
http://blog.aggregateknowledge.com/2013/09/16/sketch-of-the-day-frugal-streaming/
http://blog.aggregateknowledge.com/2013/09/16/sketch-of-the-day-frugal-streaming/
http://webgraph.di.unimi.it/

8. References and resources

Resources
| have not used the following, so no guarantees of any kind
(including that they still exist)
@ Cc++: https://github.com/hideo55/cpp-HyperLoglLog/blob/
master/src/hyperloglog.hpp

@ Java: https://github.com/addthis/stream-1lib/tree/
master/src/main/java/com/clearspring/analytics/
stream/cardinality

@ Python: https://pypi.python.org/pypi/hyperloglog/0.0.8

Ruby: https://rubygems.org/gems/hyperloglog

@ Perl: http:
//search.cpan.org/~hideakio/Algorithm-HyperLogLog-0.
20/1ib/Algorithm/HyperLogLog.pm

@ JavaScript: http://cnpmjs.org/package/hyperloglog

node.js: https://www.npmjs.org/package/streamcount

@ https://github.com/eclesh/hyperloglog/blob/master/
hyperloglog.go

98/98

https://github.com/hideo55/cpp-HyperLogLog/blob/master/src/hyperloglog.hpp
https://github.com/hideo55/cpp-HyperLogLog/blob/master/src/hyperloglog.hpp
https://github.com/addthis/stream-lib/tree/master/src/main/java/com/clearspring/analytics/stream/cardinality
https://github.com/addthis/stream-lib/tree/master/src/main/java/com/clearspring/analytics/stream/cardinality
https://github.com/addthis/stream-lib/tree/master/src/main/java/com/clearspring/analytics/stream/cardinality
https://pypi.python.org/pypi/hyperloglog/0.0.8
https://rubygems.org/gems/hyperloglog
http://search.cpan.org/~hideakio/Algorithm-HyperLogLog-0.20/lib/Algorithm/HyperLogLog.pm
http://search.cpan.org/~hideakio/Algorithm-HyperLogLog-0.20/lib/Algorithm/HyperLogLog.pm
http://search.cpan.org/~hideakio/Algorithm-HyperLogLog-0.20/lib/Algorithm/HyperLogLog.pm
http://cnpmjs.org/package/hyperloglog
https://www.npmjs.org/package/streamcount
https://github.com/eclesh/hyperloglog/blob/master/hyperloglog.go
https://github.com/eclesh/hyperloglog/blob/master/hyperloglog.go

	Streams, Approximation, Randomization
	Approximation. Large Deviation Bounds
	Counting Distinct Elements
	Finding Frequent Elements
	Counting in Sliding Windows
	Distributed Sketching
	Wrapping up
	References and Resources

