The Data Stream Model: Sketches and Probability Tools

Ricard Gavaldà Universitat Politècnica de Catalunya, Barcelona

ECML PKDD 2015 Summer School:

Data Sciences for Big Data - Resource Aware Data Mining
Porto, September 2nd, 2015

http://www.cs.upc.edu/~gavalda

Contents

- Streams, Approximation, Randomization
- 2 Approximation. Large Deviation Bounds
- Counting Distinct Elements
- Finding Frequent Elements
- Counting in Sliding Windows
- Distributed Sketching
- Wrapping up
- 8 References and Resources

1. Streams, Approximation, Randomization

Massive data requires new kind of algorithmics

Often, approximate answers are OK. That helps!

Focus of this talk:

- (Mostly) Streaming data
- Sketches
- Counting problems

Data streams everywhere

- Telcos phone calls
- Satellite, radar, sensor data
- Computer systems and network monitoring
- Search logs, access logs
- RSS feeds, social network activity
- Websites, clickstreams, query streams
- E-commerce

4/98

Data streams: Concept

- Data arrives as sequence of items
- At high speed
- Forever
- Can't store them all
- Can't go back; or too slow
- Evolving, non-stationary reality

The Data stream axioms

Five Data Stream Axioms:

- Only one pass; t-th item available at time t only
- Small processing time per item
- Small memory, certainly sublinear in stream length; sketches or summaries
- Able to provide answers at any time
- The stream evolves over time

Assumptions & Requirements

- Worst-case, adversarial, input distribution
- Difference with probabilistic assumption:
 - Items are generated probabilistically (often independently), following a probability distribution that may evolve over time
 - Implicit in Data Stream Mining and Machine Learning: Generalization!
- Randomness is in the algorithm
 - Different runs may give different answers
 - But in most runs answer is approximately correct

Counting

The Item Counting Problem

How many items have we read so far in the data stream?

To count up to *t* elements *exactly*, log *t* bits are *necessary*

Approximate solution using loglog t bits

Approximate counting: Saving 1 bit

Approximate counting, v1

Init: $c \leftarrow 0$

Update:

draw a random number $x \in [0,1]$

if $(x \le 1/2) c \leftarrow c + 1$

Query: return 2c

$$\mathsf{E}[2c] = t, \qquad \sigma \simeq \sqrt{t/2}$$

Space $\log(t/2) = \log t - 1 \rightarrow$ we saved 1 bit!

Approximate counting: Saving k bits

Approximate counting, v2

Init: $c \leftarrow 0$

Update:

draw a random number $x \in [0,1]$

if $(x \le 2^{-k}) c \leftarrow c + 1$

Query: return 2^k c

$$\mathsf{E}[c] = t/2^k, \qquad \sigma \simeq \sqrt{t/2^k}$$

Memory $\log t - k \rightarrow \text{we saved } k \text{ bits!}$

 $x \le 2^{-k}$: AND of k random bits, $\log k$ memory

Approximate counting: Morris' counter

Morris' counter [Morris77]

Init: $c \leftarrow 0$

Update:

draw a random number $x \in [0,1]$

if $(x \le 2^{-c}) c \leftarrow c + 1$

Query: return 2^c – 2

$$E[c] \simeq \log t$$
, $E[2^c - 2] = t$, $\sigma \simeq t/\sqrt{2}$

Memory = bits used to hold $c = \log c = \log \log t$ bits

Morris' approximate counter

- Can count up to 1 billion with $\log \log 10^9 = 5$ bits
- Problem: large variance, $\sigma \simeq 0.7 \, t$

Reducing the variance, method I

Use basis b < 2 instead of basis 2:

- Places t in the series $1, b, b^2, ..., b^i, ...$ ("resolution" b)
- $E[b^c] \simeq t$, $\sigma \simeq \sqrt{(b-1)/2} \cdot t$
- Space $\log \log t \log \log b$ (> $\log \log t$, because b < 2)
- For b = 1.08, 3 extra bits, $\sigma \simeq 0.2 t$

Reducing the variance, method II

- Run r parallel, independent copies of the algorithm
- On Query, average their estimates
- $E[Query] \simeq t$, $\sigma \simeq t/\sqrt{2r}$ (why?)
- Space r log log t
- Time per item multiplied by r

Worse performance, but more generic technique

Morris' counter: A non-streaming application

In [VanDurme+09]

- Counting k-grams in a large text corpus
- Number of k-grams grows exponentially with k
- Highly diverse frequencies
- Should fit in RAM
- Use Morris' counters (5 bits) instead of standard counters

2. Approximation. Large Deviation Bounds

Reducing the variance, general method

- Variance: $Var(X) = E[(X E[X])^2] = E[X^2] E[X]^2$
- $Var(\alpha \cdot X + \beta) = \alpha^2 \cdot Var(X)$
- If X and Y independent, Var(X + Y) = Var(X) + Var(Y)
- In general, if X_i are all independent and $Var(X_i) = \sigma^2$,

$$\operatorname{Var}(\frac{1}{n}\sum_{i=1}^{n}X_{i}) = \frac{1}{n^{2}}(n\sigma^{2}) = \frac{\sigma^{2}}{n}$$

Equivalently,

$$\sigma(\frac{1}{n}\sum_{i=1}^n X_i) = \frac{\sigma}{\sqrt{n}}.$$

Deviation Bounds

Random variables often described by expectation + variance Suppose

E[algorithm output] = desired result, $Var(algorithm output) = \sigma^2$

We usually want instead

| algorithm output – desired result | \leq something

(ε, δ) -approximation

A randomized algorithm $A(\varepsilon, \delta)$ -approximates a function $f: X \to R$ iff for every $x \in X$, with probability $\geq 1 - \delta$

- (absolute approximation) $|A(x) f(x)| < \varepsilon$
- (relative approximation) $|A(x) f(x)| < \varepsilon f(x)$

 ε = accuracy; δ = confidence Often ε , δ given as extra inputs to A

Deviation Bounds

Markov's inequality

For a non-negative random variable X and every k

$$\Pr[X \ge k \, \mathsf{E}[X]] \le 1/k$$

Proof:

$$E[X] = \sum_{x} \Pr[X = x] \cdot x \ge \sum_{x \ge k} \Pr[X = x] \cdot x$$

$$\ge \sum_{x \ge k} \Pr[X = x] \cdot k = k \Pr[X \ge k]$$

Deviation Bounds

Chebyshev's inequality

For every X and every k

$$\Pr[|X - \mathsf{E}[X]| \ge k] \le \mathsf{Var}(X)/k^2$$

Equivalently,

$$\Pr[|X - \mathsf{E}[X]| \ge k \, \sigma(X)] \le 1/k^2$$

Proof:

$$\Pr[|X - E[X]| > k] = \Pr[(X - E[X])^2 > k^2] \le (Markov)$$

 $\le E[(X - E[X])^2]/k^2 = Var(X)/k^2$

Chebyshev gives (ε, δ) -approximations

Let algorithm A be such that E[A(x)] = f(x), $Var(A(x)) \le \sigma^2$ Algorithm B(x) averages b independent copies of A(x)We have E[B(x)] = f(x), $Var(B(x)) \le \sigma^2/b$

$$\Pr[|B(x) - f(x)| > \varepsilon] \le \frac{\operatorname{Var}(B(x))}{\varepsilon^2} \le \frac{\sigma^2}{b\varepsilon^2} \le \delta$$

if we choose $b = \sigma^2 \frac{1}{\varepsilon^2} \frac{1}{\delta}$

Chebyshev gives (ε, δ) -approximations

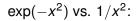
$$\Pr[|X - E[X]| > k\sigma]$$

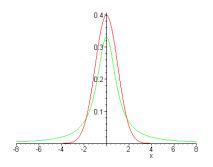
k = 1	k = 2	k = 3	k = 4
≤ 1	≤ 0.25	≤ 0.11	≤ 0.07

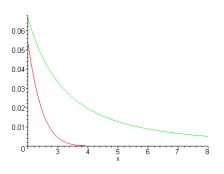
But if *X* is normally distributed,

k = 1	k = 2	k = 3	k = 4
≤ 0.32	≤ 0.05	≤ 0.003	\leq 3 · 10 ⁻⁵

Sums of Independent Variables







Sums of Independent Variables

- Suppose $X = \sum_{i=1}^{n} X_i$, $E[X_i] = p$, $Var(X_i) = \sigma^2$, all X_i independent and bounded
- By the Central Limit Theorem, $Z_n = (X np)/\sqrt{n\sigma^2}$ tends to normal N(0,1) as $n \to \infty$,
- And approximating by the normal gives

$$\Pr[Z_n \ge \alpha] \approx \exp(-\alpha^2/2)$$

Chebyshev only gives

$$\Pr[Z_n \geq \alpha] \leq \frac{1}{\alpha^2}$$

Chernoff-Hoeffding bounds

- $X_1, X_2, ... X_n$ be independent random variables,
- $X_i \in [0,1], E[X_i] = p$,
- $X = \sum_{i=1}^{n} X_i$, so E[X] = pn

Hoeffding bound (absolute deviation)

$$\Pr[X - pn > \varepsilon n] < \exp(-2\varepsilon^2 n)$$

 $\Pr[X - pn < -\varepsilon n] < \exp(-2\varepsilon^2 n)$

Chernoff bound (relative deviation)

For
$$\varepsilon \in [0,1]$$
,

$$\Pr[X - pn > \varepsilon pn] < \exp(-\varepsilon^2 pn/3)$$

 $\Pr[X - pn < -\varepsilon pn] < \exp(-\varepsilon^2 pn/2)$

Note: Bernstein's inequality is more general and (in essence) subsumes both

Example: Approximating the Mean

Input: ε , δ , random variable $X \in [0,1]$ (Important: bounded) Output: (ε, δ) -approximation of E[X]

Algorithm $A(\varepsilon, \delta)$

- Draw $n = \frac{1}{2\varepsilon^2} \ln \frac{2}{\delta}$ copies of X
- Output their average Y

Example: Approximating the Mean

- Let X_i be ith copy of X
- Then $Y = \frac{1}{n} \sum_{i=1}^{n} X_i$, and E[Y] = E[X]
- By Hoeffding,

$$\Pr[|Y - E[X]| > \varepsilon] = \Pr[\sum_{i=1}^{n} X_i - E[\sum_{i=1}^{n} X_i] > \varepsilon n]$$

$$< 2\exp(-2\varepsilon^2 n) = 2\exp(-\ln(2/\delta)) = \delta$$

• A different, sequential, algorithm gets (ε, δ) relative approximation using

$$O\left(\frac{1}{\varepsilon^2 \mathsf{E}[X]} \ln \frac{1}{\delta}\right)$$

samples of *X* [Dagum-Karp-Luby-Ross 95, Lipton-Naughton 95]

Example: Approximating the Median

Input: ε , δ , set S of real numbers (Note: no bound assumed)

Output: some $s \in S$ whose rank in S is $(1/2 \pm \varepsilon)|S|$

Algorithm $A(\varepsilon, \delta)$

- Draw $n = \frac{1}{2\varepsilon^2} \ln \frac{2}{\delta}$ random elements from S
- Output the median of these *n* elements

Example: Approximating the Median

- Let X_i be 1 if ith sample has rank $\leq (1/2 \varepsilon)|S|$, 0 otherwise
- $E[X_i] = 1/2 \varepsilon$
- By Hoeffding,

$$\Pr[\geq n/2 \text{ draws give elements with rank} \leq (1/2 - \varepsilon)|S|]$$

$$\leq \Pr[\sum_{i=1}^{n} X_i \geq n/2] = \Pr[\sum_{i=1}^{n} X_i \geq \mathsf{E}[\sum_{i=1}^{n} X_i] + \varepsilon n]$$

$$\leq \exp(-2\varepsilon^2 n) = \delta/2$$

- Therefore, with probability $<\delta/2$ we draw $\geq n/2$ elements of rank $\leq (1/2-\varepsilon)|S|$. Implies median of sample $> (1/2-\varepsilon)|S|$
- Similarly the other side

Example use in Data Streams: Sampling rate

- Suppose items arrive at so high speed that we have to skip some
- Sample randomly:
 - Choose to process each element with probability α
 - Ignore each element with prob. $1-\alpha$
- At any time t, if queried for the median, return the median of the elements chosen so far

Exercise.

Given α , δ , determine the probability ε_t such that at time t the output of the algorithm above is an (ε_t, δ) -approximation of the median on the first t elements of the stream

Improved (ε, δ) -approximation: $1/\delta$ to $\ln(1/\delta)$

Let algorithm A be such that E[A(x)] = f(x), $Var(A(x)) \le \sigma^2$ (Note: no bound assumed)

B: Run *b* independent copies of *A* and average results With $b = 6\sigma^2/\varepsilon^2$ we have

$$\Pr[|B(x) - f(x)| \ge \varepsilon] < 1/6$$

C: Run c independent copies of B and take median With $c = \frac{1}{2(1/2 - 1/6)^2} \ln \frac{2}{\delta}$ we have (Exercise: check!)

$$\Pr[|C(x)-f(x)|>\varepsilon]\leq \delta$$

Memory and runtime blowup is $b \cdot c = 27\sigma^2 \frac{1}{\varepsilon^2} \ln \frac{2}{\delta}$

A better analysis reduces constant 27 to about 4

3. Counting distinct elements

The Distinct Element Counting Problem

How many *distinct* elements have we seen so far in the data stream?

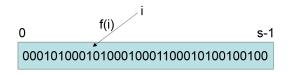
Motivation

Item spaces and # distinct elements can be large

- I'm a web searcher. How many different queries did I get?
- I'm a router. How many pairs (sourcelP,destinationIP) have I seen?
 - itemspace: potentially 2128 in IPv6
- I'm a text message service. How many distinct messages have I seen?
 - itemspace: essentially infinite
- I'm an streaming classifier builder. How many distinct values have I seen for this attribute x?

Counting distinct elements

- Item space I, cardinality n, identified with range [n]
- $f_{i,t}$ = # occurrences of $i \in I$ among first t stream elements
- d_t = number of i's for which $f_{i,t} > 0$
- Often omit subindex t
- Solving exactly requires O(d) memory
- Approximate solutions using O(d), O(log d) and O(log log d) bits



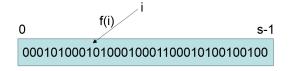
Init(d_{max}, ρ):

- upper bound $d_{\max} \ge d$
- ρ < 1, load factor
- build a bit vector *B* of size $s = \rho d_{\text{max}}$
- choose a hash function $f:[n] \rightarrow s$

Update(
$$x$$
): $B[f(x)] \leftarrow 1$

Query:

- w =the fraction of 0's in B
- return $s \cdot \ln(1/w)$



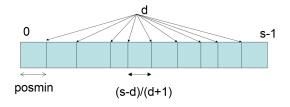
$$w = \Pr[\text{bucket } i \text{ after } d \text{ distinct elements}] = (1 - 1/s)^d \simeq \exp(-d/s)$$

$$E[Query] \simeq d$$
, $\sigma(Query) = small!$

Issue: What is a "good" hash function?

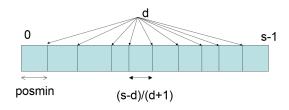
- f(i) uniformly distributed, even given all other values of f
- "Reproducibly random"
- How to get one: Later!

Cohen's algorithm [Cohen97]



E[gap between two 1's in B] = $(s-d)/(d+1) \simeq s/d$ Query: return s / (size of first gap in B)

Cohen's algorithm [Cohen97]



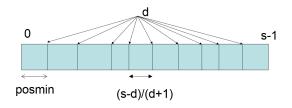
Trick: Don't store B, remember smallest key inserted in B

Init: posmin = s; choose hash function $f : [n] \rightarrow s$

Update(x): if (f(x) < posmin) posmin $\leftarrow f(x)$

Query: return s/posmin

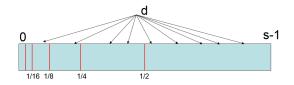
Cohen's algorithm [Cohen97]



$$E[posmin] \simeq s/d \qquad \sigma(posmin) \simeq s/d$$

Memory = (bits to store
$$posmin$$
) = $log(posmin) \le log s = O(log d_{max})$

Probabilistic Counting [Flajolet-Martin 85]



Bloom filter. But: Observe values of hash function f(i), in binary Idea: To see $f(i) = 0^{k-1}1...$, about 2^k distinct values inserted And we don't need to store B, just the smallest k

Flajolet-Martin probabilistic counter

Init: $p \leftarrow 0$

Update(x):

- let b be the position of the leftmost 1 bit of f(x)
- if $(b > p) p \leftarrow b$

Query: return 2^p

 $E[2^p] = d/\varphi$, for a constant $\varphi = 0.77...$ Memory = (bits to store p) = $\log p = \log \log d_{\max}$ bits

Flajolet-Martin: reducing the variance

Solution 1: Use c independent copies, average

- Problem 1: runtime multiplied by c
- Problem 2: independent runs = generate independent hash functions
- And we don't know how to generate several independent hash functions

Flajolet-Martin: reducing the variance

Solution 2:

- Divide stream into $c = O(\varepsilon^{-2})$ substreams
- Use first bits of f(x) to decide substream for x
- Track p separately for each substream
- Same f can be used for all copies
- One sketch update per item

Memory = $O(c \log \log d_{\max}) = O(\varepsilon^{-2} \log \log d_{\max})$

Improving the leading constants

- Original [Flajolet-Martin 85]: Geometric average of estimations
- SuperLogLog [Durand+03]: Remove top 30%, then geometric average
- HyperLogLog [Flajolet+07]: Harmonic average

Standard deviation is $\simeq 1.03/\sqrt{c}$ for HyperLogLog

HyperLogLog: "cardinalities up to 10⁹ can be approximated within say 2% with 1.5 Kbytes of memory"

Implementation aspects: [Heule+13]

Linear or logarithmic?

[Metwaly+08]

- "Why go logarithmic when we can go linear"
- Describe an application where extreme accuracy needed
- e.g., 10⁻⁴
- For this range, linear counting uses less memory
- My take: I have ML/DM in mind; low accuracy is ok, and we will need to maintain many counts

4. Finding Frequent Elements

Heavy Hitters, Elephants, Hotlist analysis, Iceberg queries

Finding Frequent Elements

The Heavy Hitter Problem

Given a sequence S of t elements, threshold θ , find all elements with frequency $> \theta t$ - the heavy hitters

Interesting for skewed distributions

There are at most $\lfloor 1/\theta \rfloor$ heavy hitters

Good sources: [Berinde+09], [Cormode+08]

Approaches

- 1. Sampling: Output the heavy hitters computed in a sample
 - Uniform sample can be kept with reservoir sampling technique
 - Doable with sample size $O(1/\theta^2)$ (Hoeffding)

Solutions with memory $O(1/\theta)$:

- 2. Count based. We cover SpaceSaving Sketch
- 3. Hash based: Count-Min Sketch

The SpaceSaving sketch [Metwally+05]

- One of many counter-based methods:
 Karp-Shenker-Papadimitriou, Lossy Counter, Frequent,
 Sticky Sampling, GroupTest, . . .
- Memory $O(1/\theta)$. Best possible
- Good update time
- Guarantee on count error
- No false negatives; but has false positives

The SpaceSaving sketch

```
Init(\theta): Create
     k \leftarrow \lceil 1/\theta \rceil
     set of keys K \leftarrow \emptyset
     vector count, indexed by K
Update(x):
          if x is in K then count[x] + +
          else, if |K| < k, add x to K and set count[x] = 1
          else, replace an item with lowest count with x
                and increase its count by 1
Query:
     return the set K
```

Why Does This Work?

Claims:

Let min_t be the minimum value of a counter at time t > 0. Then

- \bigcirc min_t $\leq t/k$
- 2 If $f_{x,t} > min_t$, then $x \in K$ at time t
- **③** For every $x \in K$, $f_{x,t} ≤ count_t[x] ≤ f_{x,t} + min_t$

In particular, all items with frequency over t/k are in K

Proof: By joint induction on t. Exercise: prove it!

More on SpaceSaving

Efficient implementation: StreamSummary data structure

Exercise

Without looking into the paper, propose an efficient data structure for SpaceSaving. Aim for O(1) update time and $O(k) = O(1/\theta)$ items, counts, pointers, etc.

[Cormode-Muthukrishnan 04] Like SpaceSaving:

- Provides an approximation f'_x to f_x , for every x
- Can be used (less directly) to find θ -heavy hitters
- Uses memory $O(1/\theta)$

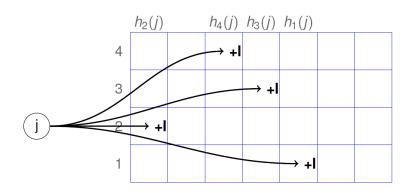
Unlike SpaceSaving:

- It is randomized hash functions instead of counters
- Supports additions and deletions
- Supports (not trivially) Heavy Hitters
- Can be used as basis for several other queries

- Vector F[n]. Assumes $F[i] \ge 0$ for all i, at all times
- Provides estimations F' of F such that
 - $F[i] \leq F'[i]$ for all i
 - ② For every $i \in I$, $F'[i] \le F[i] + \varepsilon |F|_1$ with probability $\ge 1 \delta$

where $|F|_1 = \sum_i F[i]$

- Note: $|F|_1$ may be \ll stream length, if subtractions allowed
- Uses $O(\frac{1}{\varepsilon} \ln \frac{1}{\delta})$ memory words, $O(\ln \frac{1}{\delta})$ update time



source: A. Bifet,

http://albertbifet.com/comp423523a-2012-stream-data-mining/

- *d* independent hash functions $h_1 \dots h_d$: $[1..n] \rightarrow [1..w]$
- one "memory cell" for each $h_j(i)$
- On instruction "F[i] += v", do $h_j(i) += v$ for all $j \in 1 \dots d$
- Estimation:

$$F'[i] = \min\{h_j(i) \mid j = 1..d\}$$

$$F'[i] = \min\{h_i(i) \mid j = 1..d\}$$

- $F'[i] \ge F[i]$ For each instruction involving i, we update all counts $h_j(i)$ $F[i] \ge 0$ at all times for all i
- F'[i] = F[i]? No: cell $h_j(i)$ is also incremented by $k \neq i$ if $h_j(k) = h_j(i)$
- But it is unlikely that this occurs very often
- \bullet min instead of average \to Markov instead of Chebyshev or Hoeffding

The Count-Min Sketch: Proof of main bound

- Fix j. Def random var $I_{ijk} = 1$ if $h_i(i) = h_i(k)$, 0 otherwise
- If h good hash function

$$E[I_{ijk}] \leq 1/\text{range}(h_j) = 1/w$$

• Def $X_{ij} = \sum_{k} I_{ijk} F[k]$. Then

$$E[X_{ij}] = \sum_{k} E[I_{ijk}]F[k] \le |F|_1/w$$

The Count-Min Sketch: Proof of main bound (2)

Then by Markov's inequality and pairwise independence:

$$\Pr[X_{ij} \ge \varepsilon |F|_1] \le E[X_{ij}]/(\varepsilon |F|_1) \le (|F|_1/w)/(\varepsilon |F|_1) \le 1/2$$

if $w = 2/\varepsilon$. Then:

$$\Pr[F'[i] \ge F[i] + \varepsilon |F|_1]$$

$$= \Pr[\forall j : F[i] + X_{ij} \ge F[i] + \varepsilon |F|_1]$$

$$= \Pr[\forall j : X_{ij} \ge \varepsilon |F|_1]$$

$$\le (1/2)^d = \delta \quad \text{if } d = \log(1/\delta)$$

for one fixed i. To have good estimates for all i simultaneously, use $d = \log(n/\delta)$ and use union bound

The Count-Min Sketch: Summary

- Memory is $\frac{2}{\varepsilon} \log \frac{1}{\delta}$ words
- Update time $O(\log \frac{1}{\delta})$
- Replace $\log(1/\delta)$ with $\log(n/\delta)$ if the bound needs to hold for all i simultaneously

"Pr[for all i,...] $\leq \delta$ " instead of "for all i, Pr[...] $\leq \delta$ "

• Error for F[i] is ε relative to $|F|_1$, not to F[i]

Back to Heavy Hitters

- i is a θ -heavy hitter if $F[i] \ge \theta t$
- The CM-sketch with width θ guarantees

$$F[i] \leq F'[i] \leq F[i] + \theta t$$

• So: If we output all i s.t. $F'[i] \ge \theta t$, we output all heavy hitters; no false negatives

But we can't cycle through all *n* candidates one by one!

Range-Sum queries

Range-sum query

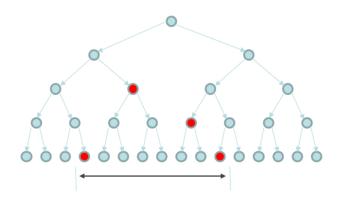
Given a, b, return $\sum_{i=a}^{b} F[i]$

Example: how many packets received came from the IP range 172.16.xxx.xxx?

We show:

- A variant of CM-sketch supports range-sum queries efficiently
- Answering range-sum queries efficiently finding heavy hitters efficiently

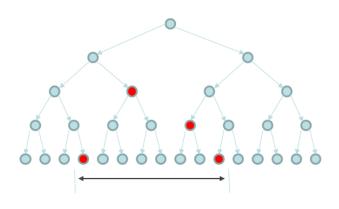
Fom CM-sketch to range-sum queries



For $p = 0 \dots \log n$, for each $j = \dots$, keep the value of $sum(j2^p \dots (j+1)2^p - 1)$

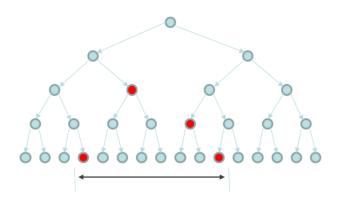
Any interval [a, b] is the sum of $O(\log n)$ such values. Check it

From CM-sketch to range-sum queries



Keep one CM-sketch for each 2^p to store $sum(j2^p...(j+1)2^p-1)$ for each j

From CM-sketch to range-sum queries



When receiving i, update the counts for ranges where i lies = ancestors of i in the tree

When queried sum(a..b), decompose [a..b] as sum of such intervals, retrieve and add their sums

From Range-sum queries to heavy hitters

- Adaptively search for heavy hitters in the tree
- if a node has count < θt, do not explore its children: no heavy hitters below
- if a node has count $\geq \theta t$, explore both children
- when reaching a leaf, we know whether it's a heavy hitter
- the sum of counts at any one level of the tree is t
- no more than $1/\theta$ of them may have frequency $\geq \theta t$
- Efficiency: no more than $1/\theta$ nodes of each level are expanded

From Range-sum queries to heavy hitters

Exercise

Formalize the algorithms above:

- For computing range-sum queries given CM-sketch
- Form finding all heavy hitters using range-sum queries

and tell their memory usage and update time

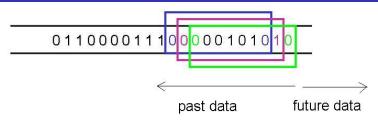
Other uses of CM-Sketch - Range-Sum queries

• Quantile computation: Given i, θ , find for all k the q(k) such that

$$\sum_{i=1}^{q(k)} F[i] = k\theta \sum_{i=1}^{n} F[i]$$

- Reverse, histogram computation: Given f, how many i's have frequence f?"
- Inner product of two streams
- ...

5. Counting in Sliding Windows

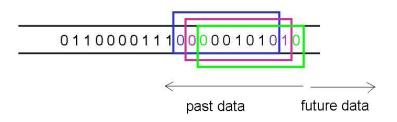


- Only last n items matter
- Clear way to bound memory
- Natural in applications: emphasizes most recent data
- Data that is too old does not affect our decisions

Examples:

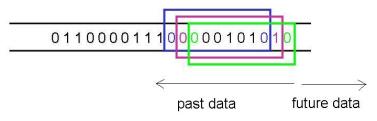
- Study network packets in the last day
- Detect top-10 queries in search engine in last month
- Analyze phone calls in last hours

Statistics on Sliding Windows



- Want to maintain mean, variance, histograms, frequency moments, hash tables, . . .
- SQL on streams. Extension of relational algebra
- Want quick answers to queries at all times

Basic Problem: Counting 1's



Obvious algorithm, memory *n*:

- Keep window explicitly
- At each time t, add new bit b to head, remove oldest bit b' from tail,
- Add b and subtract b' from count

Fact:

 $\Omega(n)$ memory bits are necessary to solve this problem exactly

Counting 1's

[Datar, Gionis, Indyk, Motwani, 2002]

Theorem:

Estimating number of 1's in a window of length n with multiplicative error ε is possible with $O(\frac{1}{\varepsilon}\log n)$ counters

$$=O(\frac{1}{\varepsilon}(\log n)^2)$$
 bits of memory

Example:

• $n = 10^6$; $\varepsilon = 0.1 \rightarrow 200$ counters, 4000 bits

Idea: Exponential Histograms

- Each bit has a timestamp time at which it arrived
- At time t, bits with timestamp $\leq t n$ are expired
- We have up to k buckets of capacity 1, 2, 4, 8 . . .
- Each bucket contains the number of 1s in a subwindow, up to its capacity
- Errors: expired bits in the last bucket
- 1's in last bucket \leq (1's in previous buckets) / k

Exponential Histograms

Init: Create empty set of buckets

Query: Return total number of bits in buckets - last bucket / 2

Exponential Histograms

Insert rule(bit b):

- If b is a 0, ignore it. Otherwise, if it's a 1:
- Add a bucket with 1 bit and current timestamp t to the front
- for i = 0, 1, ...
 - If more than k buckets of capacity 2^i , merge two oldest as newest bucket of capacity 2^{i+1} , with timestamp of the older one
- if oldest bucket timestamp < t n, drop it (all expired)

Memory Estimate

- Largest bucket needed: $k \sum_{i=0}^{C} 2^{i} \simeq n \rightarrow C \simeq \log(n/k)$
- Total number of buckets: $k \cdot (C+1) \simeq k \log(n/k)$
- Each bucket contains a timestamp only (perhaps its capacity, dep. on implementation)
- timestamps are in $t n \dots t$: recycle timestamps mod n
- Memory is $O(k \log(n/k) \log n)$ bits; take $k = 1/2\varepsilon$

Generalizations

Applies also to other natural aggregates:

- Variance
- Distinct elements (using Flajolet-Martin)
- Max, min
- Histograms
- Hash tables
- Frequency moments

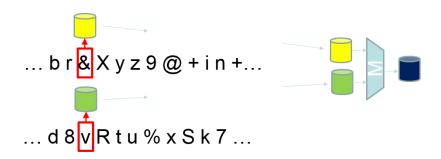
and can be combined with CM-sketch

6. Distributed Sketching

Setting:

- Many sources generating streams concurrently
- No synchrony assumption
- Want to compute global statistics
- Streams can send short summaries to central

Merging sketches



Send the sketches, not the whole stream

Merging sketches

Mergeability

A sketch algorithm is mergeable if

- given two sketches S1 and S2 generated by the algorithm on two data streams D1 and D2,
- one can compute a sketch S that answers queries correctly with respect to the concatenation of D1 and D2

Note: For frequency problems, "for the concatenation" = "for all interleavings"

Merging sketches

All sketches we've seen are mergeable efficiently

- Bloom filters, Cohen, Flajolet-Martin, HyperLogLog
- SpaceSaving
- CM-sketch
- Exponential Histograms (though order dependent problem)

May require sites to use common random bits or hash functions

7. Wrapping up. Hash functions

- Perfect hash function: f(i) cannot be guessed at all even from all other values of f
- Storing $f: A \rightarrow B$ unfeasible for large A

Wrapping up. Hash functions (2)

- Cryptographic hash functions (MD5, SHA1, SHA256, or MurmurHash) should work well, but are costly.
- Even simpler functions like linear congruential may work well in practice if not in theory — but don't use 32 bit integers if you plan to count billions!
- $O(\log n)$ bits to store such a function for |A| = |B| = n
- But we can't "generate many of them", e.g., to reduce variance
- Sometimes, analysis reveals that weaker notions of "good hash function" suffices
- E.g., pairwise independence suffices for CM-sketch: f(i) independent of any other single f(j)
- (In general, will work if you use only Chebyshev or Markov)
- We can generate mutually independent, pairwise independent functions
- One can be stored with $O(\log n)$ bits

Wrapping up. Some stuff I left out

- Detecting duplicate documents
- Detecting near duplicates (LSH), minwise hashing, . . .
- Sketches for geometric problems. Clustering
- Graph sketches. Counting subgraphs
- Using HyperLogLog to estimate neighborhood functions of graphs
- Sketches that are linear projections. Metric embeddings.
 Dimensionality reduction
- Linear algebra. PCA. Singular Value Decomposition

Wrapping up. Last words

Approximation helps

Randomness helps

Some more tools in your toolbox

http://www.cs.upc.edu/~gavalda

With apologies to all missing papers General Surveys on Stream Algorithmics:

- Survey by Liberty and Nelson: http://www.cs.yale.edu/homes/el327/papers/streaming_data_mining.pdf
- J. Ullman and A. Rajaraman, Mining of Massive Datasets, Chapter 3 available at

```
http://infolab.stanford.edu/~ullman/mmds/ch4.pdf
```

- A very general bibliography by K. Tufte: http: //web.cecs.pdx.edu/~tufte/410-510DS/readings.htm
- Lecture notes by A. Chakrabarti: http://www.cs.dartmouth.edu/ ~ac/Teach/CS85-Fall09/Notes/lecnotes.pdf
- Survey by Lin and Zhang: http: //www.cse.unsw.edu.au/~yingz/papers/apweb_2008.pdf
- Book by G. Cormode, M. Garofalakis, P. Haas, and C. Jermain: http://dimacs.rutgers.edu/~graham/pubs/html/ CormodeGarofalakisHaasJermaine12.html
- Survey by G. Cormode: http://dimacs.rutgers.edu/~graham/pubs/papers/sk.pdf

Approximate counting

 The original Morris77 paper: http://dl.acm.org/citation.cfm?id=359627 also available here: http://www.inf.ed.ac.uk/teaching/

courses/exc/reading/morris.pdf

- An analysis of Morris' counter (math intensive): http://algo.inria.fr/flajolet/Publications/Flajolet85c.pdf
- The application of Morris' counters to counting n-grams, by Van Durme and Lall: http://www.cs.jhu.edu/~vandurme/ papers/VanDurmeLallIJCAI09.pdf

Large deviation bounds

- G. Lugosi: http://www.econ.upf.edu/~lugosi/anu.pdf
- A. Sinclair: http: //www.cs.berkeley.edu/~sinclair/cs271/n13.pdf
- C. Shalizi list of references (much beyond the scope of this course): http://bactra.org/notebooks/large-deviations.html

Counting distinct elements

- Good general survey of distinct element counting up to 2008: Ahmed Metwally, Divyakant Agrawal, Amr El Abbadi: Why go logarithmic if we can go linear?: Towards effective distinct counting of search traffic. EDBT 2008: 618-629.
- Also general discussion on distinct element counting:
 http://highscalability.com/blog/2012/4/5/
 big-data-counting-how-to-count-a-billion-distinct-objects
 html
- Presentation including some sketches I didn't mention: http://www.cs.upc.edu/~conrado/research/talks/aofa2012.pdf
- Bloom filter. K.Y. Whang, B. Vander-Zanden, H.M. Taylor, A Linear-time Probabilistic Counting Algorithm for Database Applications. ACM Trans. Database Syst., 15:2, 1990.
- Cohen's log(n) solution: Edith Cohen, Size-Estimation Framework with Applications to Transitive Closure and Reachability. FOCS 1994 and JCSS 1997.

HyperLogLog and related for distinct element counting

- The Flajolet-Martin probabilistic counter. Philippe Flajolet, G. Nigel Martin: Probabilistic Counting Algorithms for Data Base Applications. J. Comput. Syst. Sci. 31(2): 182-209 (1985). See also http: //en.wikipedia.org/wiki/Flajolet-Martin_algorithm
- SuperLogLog counter (and insight on FM probabilistic counter) Durand, M.; Flajolet, P. (2003). "Loglog Counting of Large Cardinalities".
 Algorithms - ESA 2003. Lecture Notes in Computer Science 2832. p. 605.
- The HyperLogLog paper: Flajolet, P.; Fusy, E.; Gandouet, O.; Meunier, F. (2007). "HyperLogLog: the analysis of a near-optimal cardinality estimation algorithm". AOFA 07: Proceedings of the 2007 International Conference on the Analysis of Algorithms.
- Flajolet's contributions explained beautifully by J. Lumbroso: http://www.stat.purdue.edu/~mdw/ ChapterIntroductions/ApproxCountingLumbroso.pdf

HyperLogLog and related for distinct element counting (2)

- http://en.wikipedia.org/wiki/HyperLogLog
- http://research.neustar.biz/2012/10/25/ sketch-of-the-day-hyperloglog-cornerstone-of-a-big-data-i
- A live demo of hyperloglog at the web above: http://content.research.neustar.biz/blog/hll.html
- http://www.slideshare.net/sunnyujjawal/ hyperloglog-in-practice-algorithmic-engineering-of-a-state
- http://stackoverflow.com/questions/12327004/ how-does-the-hyperloglog-algorithm-work
- Important optimizations that I'd like to try:

http://druid.io/blog/2014/02/18/
hyperloglog-optimizations-for-real-world-systems.
html. Also here:

http://research.google.com/pubs/pub40671.html

Heavy hitters - count-based approaches

- J. Vitter. Random Sampling with a reservoir. ACM Trans. on Mathematical Software, 1985.
- Good survey of heavy hitter algorithms. Radu Berinde, Graham Cormode, Piotr Indyk, Martin J. Strauss. Space-optimal Heavy Hitters with Strong Error Bounds
- Also very good survey: Graham Cormode, Marios Hadjieleftheriou.
 Finding Frequent Items in Data Streams. Proc. VLDB Endowment,
 2008
- Richard M. Karp, Scott Shenker, Christos H. Papadimitriou. A Simple Algorithm for Finding Frequent Elements in Streams and Bags. ACM Transactions on Database Systems (TODS), Volume 28, 2003.
- The Space-Saving sketch paper. Ahmed Metwally, Divyakant Agrawal, Amr El Abbadi. Efficient Computation of Frequent and Top-k Elements in Data Streams. Intl. Conf. on Database Technology (ICDT) 2005.
- M. Charikar, K. Chen and M. Farach-Colton. "Finding Frequent Items in Data Streams." ICALP 2002 (conf. version) and Theoretical Computer Science 2004 (journal version)

Count-Min sketch and related

- The CM-Sketch paper. Graham Cormode and S.
 Muthukrishnan: An improved data stream summary: The Count-min sketch and its applications. J. Algorithms 55: 2938
- On Frugal Streaming, a neat sketch for estimating quantiles which I did not cover in the course:

```
http://research.neustar.biz/2013/09/16/sketch-of-the-day-frugal-streaming/
```

- http://en.wikipedia.org/wiki/Count-min_sketch
- https://sites.google.com/site/countminsketch/
- https://tech.shareaholic.com/2012/12/03/ the-count-min-sketch-how-to-count-over-large-keyspace

Counting in Sliding Windows

- Mayur Datar, Aristides Gionis, Piotr Indyk, Rajeev Motwani: Maintaining Stream Statistics over Sliding Windows. SIAM J. Comput. 31(6): 1794-1813 (2002). Conf. version in SODA 2002.
- Mayur Datar, Rajeev Motwani: The Sliding-Window Computation Model and Results. Data Streams - Models and Algorithms 2007: 149-167. http://link.springer.com/chapter/10.1007% 2F978-0-387-47534-9

Mergeability

 Discussions on mergeability are a bit all over. This is sort of an overview: http://research.microsoft.com/en-us/events/ bda2013/mergeable-long.pptx

Others (personal 1-slide selection)

- Noga Alon, Yossi Matias, Mario Szegedy: The space complexity of approximating frequency moments. J. Computer and System Sciences 58(1): 137-147 (1999). Conference version (STOC) 1996
- Paolo Boldi, Marco Rosa, and Sebastiano Vigna. HyperANF: Approximating the neighbourhood function of very large graphs on a budget. WWW, 2011.
- An application of the above to computing diameter of the Facebook graph: Lars Backstrom, Paolo Boldi, Marco Rosa, Johan Ugander, Sebastiano Vigna. Four Degrees of Separation. ACM Web Science 2012, 2012.
- A survey on streaming graph algorithms: http: //people.cs.umass.edu/~mcgregor/papers/13-graphsurvey.pdf
- Computing SVD on streams, this will be important in streaming ML: Mina Ghashami, Edo Liberty, Jeff M. Phillips, David P. Woodruff, Frequent Directions: Simple and Deterministic Matrix Sketching. http://arxiv.org/abs/1501.01711
- This will also be important in streaming ML: Christos Boutsidis, Dan Garber, Zohar Karnin, Edo Liberty: Online Principal Component Analysis, SODA 2015. http://www.cs.yale.edu/homes/el327/papers/opca.pdf

Resources

- The MassDAL Code Bank. http: //www.cs.rutgers.edu/~muthu/massdal-code-index.html
- StreamLib: https://github.com/addthis/stream-lib. Check this too: http://www.addthis.com/blog/2011/03/29/new-open-source-stream-summarizing-java-library/#. VTzMcJPl_VI
- Hokusai: https://github.com/dgryski/hokusai. I have not used it, but it looks very interesting from http://arxiv.org/ftp/arxiv/papers/1210/1210.4891.pdf and http://blog.aggregateknowledge.com/2013/09/16/sketch-of-the-day-frugal-streaming/
- Webgraph. Analysis of large graphs, contains the HyperANF and related code used for the Four-degrees-of-separation paper: http://webgraph.di.unimi.it/

Resources

I have not used the following, so no guarantees of any kind (including that they still exist)

- C++: https://github.com/hideo55/cpp-HyperLogLog/blob/ master/src/hyperloglog.hpp
- Java: https://github.com/addthis/stream-lib/tree/ master/src/main/java/com/clearspring/analytics/ stream/cardinality
- Python: https://pypi.python.org/pypi/hyperloglog/0.0.8
- Ruby: https://rubygems.org/gems/hyperloglog
- Perl: http:
 //search.cpan.org/~hideakio/Algorithm-HyperLogLog-0.
 20/lib/Algorithm/HyperLogLog.pm
- JavaScript: http://cnpmjs.org/package/hyperloglog
- node.js: https://www.npmjs.org/package/streamcount
- https://github.com/eclesh/hyperloglog/blob/master/ hyperloglog.go