
The Data Stream Model:
Sketches and Probability Tools

Ricard Gavaldà
Universitat Politècnica de Catalunya, Barcelona

ECML PKDD 2015 Summer School:
Data Sciences for Big Data - Resource Aware Data Mining

Porto, September 2nd, 2015
http://www.cs.upc.edu/˜gavalda

1 / 98

http://www.cs.upc.edu/~gavalda

Contents

1 Streams, Approximation, Randomization

2 Approximation. Large Deviation Bounds

3 Counting Distinct Elements

4 Finding Frequent Elements

5 Counting in Sliding Windows

6 Distributed Sketching

7 Wrapping up

8 References and Resources

2 / 98

1. Streams, Approximation, Randomization

Massive data requires new kind of algorithmics

Often, approximate answers are OK. That helps!

Focus of this talk:
(Mostly) Streaming data
Sketches
Counting problems

3 / 98

Data streams everywhere

Telcos - phone calls
Satellite, radar, sensor data
Computer systems and network
monitoring
Search logs, access logs
RSS feeds, social network activity
Websites, clickstreams, query streams
E-commerce
. . .

4 / 98

Data streams: Concept

Data arrives as sequence of items
At high speed
Forever
Can’t store them all
Can’t go back; or too slow
Evolving, non-stationary reality

5 / 98

The Data stream axioms

Five Data Stream Axioms:

1 Only one pass; t-th item available at time t only

2 Small processing time per item

3 Small memory, certainly sublinear in stream length;
sketches or summaries

4 Able to provide answers at any time

5 The stream evolves over time

6 / 98

Assumptions & Requirements

Worst-case, adversarial, input distribution
Difference with probabilistic assumption:

Items are generated probabilistically (often independently),
following a probability distribution that may evolve over time
Implicit in Data Stream Mining and Machine Learning:
Generalization!

Randomness is in the algorithm
Different runs may give different answers
But in most runs answer is approximately correct

7 / 98

Counting

The Item Counting Problem
How many items have we read so far in the data stream?

To count up to t elements exactly, log t bits are necessary

Approximate solution using log log t bits

8 / 98

Approximate counting: Saving 1 bit

Approximate counting, v1
Init: c ← 0

Update:
draw a random number x ∈ [0,1]
if (x ≤ 1/2) c ← c + 1

Query: return 2c

E[2c] = t , σ '
√

t/2

Space log(t/2) = log t−1→ we saved 1 bit!

9 / 98

Approximate counting: Saving k bits

Approximate counting, v2
Init: c ← 0

Update:
draw a random number x ∈ [0,1]
if (x ≤ 2−k) c ← c + 1

Query: return 2k c

E[c] = t/2k , σ '
√

t/2k

Memory log t−k → we saved k bits!

x ≤ 2−k : AND of k random bits, logk memory

10 / 98

Approximate counting: Morris’ counter

Morris’ counter [Morris77]

Init: c ← 0

Update:
draw a random number x ∈ [0,1]
if (x ≤ 2−c) c ← c + 1

Query: return 2c−2

E [c]' log t , E[2c−2] = t , σ ' t/
√

2

Memory = bits used to hold c = logc = log log t bits

11 / 98

Morris’ approximate counter

Can count up to 1 billion with log log109 = 5 bits

Problem: large variance, σ ' 0.7 t

12 / 98

Reducing the variance, method I

Use basis b < 2 instead of basis 2:

Places t in the series 1,b,b2, . . . ,bi , . . . (“resolution” b)

E [bc]' t , σ '
√

(b−1)/2 · t

Space log log t− log logb (> log log t , because b < 2)

For b = 1.08, 3 extra bits, σ ' 0.2 t

13 / 98

Reducing the variance, method II

Run r parallel, independent copies of the algorithm

On Query, average their estimates

E [Query]' t , σ ' t/
√

2r (why?)

Space r log log t

Time per item multiplied by r

Worse performance, but more generic technique

14 / 98

Morris’ counter: A non-streaming application

In [VanDurme+09]

Counting k -grams in a large text corpus

Number of k -grams grows exponentially with k

Highly diverse frequencies

Should fit in RAM

Use Morris’ counters (5 bits) instead of standard counters

15 / 98

2. Approximation. Large Deviation Bounds

16 / 98

Reducing the variance, general method

Variance: Var(X) = E[(X −E[X])2] = E[X 2]−E[X]2

Var(α ·X + β) = α2 ·Var(X)

If X and Y independent, Var(X + Y) = Var(X) + Var(Y)

In general, if Xi are all independent and Var(Xi) = σ2,

Var(
1
n

n

∑
i=1

Xi) =
1
n2 (nσ

2) =
σ2

n

Equivalently,

σ(
1
n

n

∑
i=1

Xi) =
σ√
n
.

17 / 98

Deviation Bounds

Random variables often described by expectation + variance

Suppose

E[algorithm output] = desired result, Var(algorithm output) = σ
2

We usually want instead

|algorithm output−desired result | ≤ something

18 / 98

(ε,δ)-approximation

A randomized algorithm A (ε,δ)-approximates a function
f : X → R iff for every x ∈ X , with probability ≥ 1−δ

(absolute approximation) |A(x)− f (x)|< ε

(relative approximation) |A(x)− f (x)|< ε f (x)

ε = accuracy; δ = confidence
Often ε, δ given as extra inputs to A

19 / 98

Deviation Bounds

Markov’s inequality
For a non-negative random variable X and every k

Pr[X ≥ k E[X]]≤ 1/k

Proof:

E[X] = ∑
x

Pr[X = x] ·x ≥ ∑
x≥k

Pr[X = x] ·x

≥ ∑
x≥k

Pr[X = x] ·k = k Pr[X ≥ k]

20 / 98

Deviation Bounds

Chebyshev’s inequality
For every X and every k

Pr[|X −E[X]| ≥ k]≤ Var(X)/k2

Equivalently,

Pr[|X −E[X]| ≥ k σ(X)]≤ 1/k2

Proof:

Pr[|X −E[X]|> k] = Pr[(X −E[X])2 > k2]≤ (Markov)
≤ E[(X −E[X])2]/k2 = Var(X)/k2

21 / 98

Chebyshev gives (ε,δ)-approximations

Let algorithm A be such that E[A(x)] = f (x), Var(A(x))≤ σ2

Algorithm B(x) averages b independent copies of A(x)

We have E[B(x)] = f (x), Var(B(x))≤ σ2/b

Pr[|B(x)− f (x)|> ε]≤ Var(B(x))

ε2 ≤ σ2

bε2 ≤ δ

if we choose b = σ
2 1

ε2
1
δ

22 / 98

Chebyshev gives (ε,δ)-approximations

Pr[|X −E [X]|> kσ]

k = 1 k = 2 k = 3 k = 4
≤ 1 ≤ 0.25 ≤ 0.11 ≤ 0.07

But if X is normally distributed,

k = 1 k = 2 k = 3 k = 4
≤ 0.32 ≤ 0.05 ≤ 0.003 ≤ 3 ·10−5

23 / 98

Sums of Independent Variables

exp(−x2) vs. 1/x2:

24 / 98

Sums of Independent Variables

Suppose X = ∑
n
i=1 Xi , E[Xi] = p, Var(Xi) = σ2, all Xi

independent and bounded
By the Central Limit Theorem, Zn = (X −np)/

√
nσ2 tends

to normal N(0,1) as n→ ∞,
And approximating by the normal gives

Pr[Zn ≥ α]≈ exp(−α
2/2)

Chebyshev only gives

Pr[Zn ≥ α]≤ 1
α2

25 / 98

Chernoff-Hoeffding bounds

X1, X2, . . . Xn be independent random variables,
Xi ∈ [0,1], E[Xi] = p,
X = ∑

n
i=1 Xi , so E[X] = pn

Hoeffding bound (absolute deviation)

Pr[X −pn > εn] < exp(−2ε2n)
Pr[X −pn <−εn] < exp(−2ε2n)

Chernoff bound (relative deviation)
For ε ∈ [0,1],

Pr[X −pn > εpn] < exp(−ε2pn/3)
Pr[X −pn <−εpn] < exp(−ε2pn/2)

Note: Bernstein’s inequality is more general and (in essence) subsumes both

26 / 98

Example: Approximating the Mean

Input: ε, δ , random variable X ∈ [0,1] (Important: bounded)

Output: (ε,δ)-approximation of E[X]

Algorithm A(ε,δ)

Draw n =
1

2ε2 ln
2
δ

copies of X

Output their average Y

27 / 98

Example: Approximating the Mean

Let Xi be i th copy of X
Then Y = 1

n ∑
n
i=1 Xi , and E[Y] = E[X]

By Hoeffding,

Pr[|Y −E[X]|> ε] = Pr[
n

∑
i=1

Xi −E[
n

∑
i=1

Xi] > εn]

< 2exp(−2ε
2 n) = 2exp(− ln(2/δ)) = δ

A different, sequential, algorithm gets (ε,δ) relative
approximation using

O
(

1
ε2E[X]

ln
1
δ

)
samples of X
[Dagum-Karp-Luby-Ross 95, Lipton-Naughton 95]

28 / 98

Example: Approximating the Median

Input: ε, δ , set S of real numbers (Note: no bound assumed)

Output: some s ∈ S whose rank in S is (1/2± ε)|S|

Algorithm A(ε,δ)

Draw n =
1

2ε2 ln
2
δ

random elements from S

Output the median of these n elements

29 / 98

Example: Approximating the Median

Let Xi be 1 if i th sample has rank ≤ (1/2− ε)|S|, 0
otherwise
E[Xi] = 1/2− ε

By Hoeffding,

Pr[≥ n/2 draws give elements with rank ≤ (1/2− ε)|S|]

≤ Pr[
n

∑
i=1

Xi ≥ n/2] = Pr[
n

∑
i=1

Xi ≥ E[
n

∑
i=1

Xi] + εn]

≤ exp(−2ε
2n) = δ/2

Therefore, with probability < δ/2 we draw ≥ n/2 elements
of rank ≤ (1/2− ε)|S|. Implies median of sample
> (1/2− ε)|S|
Similarly the other side

30 / 98

Example use in Data Streams: Sampling rate

Suppose items arrive at so high speed that we have to skip
some
Sample randomly:

Choose to process each element with probability α

Ignore each element with prob. 1−α

At any time t , if queried for the median, return the median
of the elements chosen so far

Exercise.
Given α, δ , determine the probability εt such that at time t the
output of the algorithm above is an (εt ,δ)-approximation of the
median on the first t elements of the stream

31 / 98

Improved (ε,δ)-approximation: 1/δ to ln(1/δ)

Let algorithm A be such that E[A(x)] = f (x), Var(A(x))≤ σ2

(Note: no bound assumed)

B: Run b independent copies of A and average results
With b = 6σ2/ε2 we have

Pr[|B(x)− f (x)| ≥ ε] < 1/6

C: Run c independent copies of B and take median

With c =
1

2(1/2−1/6)2 ln
2
δ

we have (Exercise: check!)

Pr[|C(x)− f (x)|> ε]≤ δ

Memory and runtime blowup is b ·c = 27σ
2 1

ε2 ln
2
δ

A better analysis reduces constant 27 to about 4

32 / 98

3. Counting distinct elements

The Distinct Element
Counting Problem

How many distinct elements
have we seen so far in the data
stream?

33 / 98

Motivation

Item spaces and # distinct elements can be large

I’m a web searcher. How many different queries did I get?

I’m a router. How many pairs (sourceIP,destinationIP) have
I seen?

itemspace: potentially 2128 in IPv6

I’m a text message service. How many distinct messages
have I seen?

itemspace: essentially infinite

I’m an streaming classifier builder. How many distinct
values have I seen for this attribute x?

34 / 98

Counting distinct elements

Item space I, cardinality n, identified with range [n]

fi ,t = # occurrences of i ∈ I among first t stream elements
dt = number of i ’s for which fi ,t > 0
Often omit subindex t

Solving exactly requires O(d) memory

Approximate solutions using O(d), O(logd) and
O(log logd) bits

35 / 98

Linear counting [Whang+90] ' Bloom filters

Init(dmax,ρ):
upper bound dmax ≥ d
ρ < 1, load factor
build a bit vector B of size s = ρ dmax

choose a hash function f : [n]→ s

Update(x): B[f (x)]← 1

Query:
w = the fraction of 0’s in B
return s · ln(1/w)

36 / 98

Linear counting [Whang+90] ' Bloom filters

w = Pr[bucket i after d distinct elements] = (1−1/s)d 'exp(−d/s)

E [Query]' d , σ(Query) = small!

Issue: What is a “good” hash function?
f (i) uniformly distributed, even given all other values of f
“Reproducibly random”
How to get one: Later!

37 / 98

Cohen’s algorithm [Cohen97]

E[gap between two 1’s in B] = (s−d)/(d + 1)' s/d

Query: return s / (size of first gap in B)

38 / 98

Cohen’s algorithm [Cohen97]

Trick: Don’t store B, remember smallest key inserted in B

Init: posmin = s; choose hash function f : [n]→ s

Update(x): if (f (x) < posmin) posmin← f (x)

Query: return s/posmin

39 / 98

Cohen’s algorithm [Cohen97]

E [posmin]' s/d σ(posmin)' s/d

Memory = (bits to store posmin) =
log(posmin)≤ logs = O(logdmax)

40 / 98

Probabilistic Counting [Flajolet-Martin 85]

Bloom filter. But: Observe values of hash function f (i), in binary

Idea: To see f (i) = 0k−11 . . . , about 2k distinct values inserted

And we don’t need to store B, just the smallest k

41 / 98

Flajolet-Martin probabilistic counter

Init: p ← 0
Update(x):

let b be the position of the leftmost 1 bit of f (x)

if (b > p) p← b
Query: return 2p

E [2p] = d/ϕ, for a constant ϕ = 0.77 . . .
Memory = (bits to store p) = logp = log logdmax bits

42 / 98

Flajolet-Martin: reducing the variance

Solution 1: Use c independent copies, average

Problem 1: runtime multiplied by c
Problem 2: independent runs = generate independent
hash functions
And we don’t know how to generate several independent
hash functions

43 / 98

Flajolet-Martin: reducing the variance

Solution 2:

Divide stream into c = O(ε−2) substreams
Use first bits of f (x) to decide substream for x
Track p separately for each substream
Same f can be used for all copies
One sketch update per item

Memory = O(c log logdmax) = O(ε−2 log logdmax)

44 / 98

Improving the leading constants

Original [Flajolet-Martin 85]: Geometric average of
estimations
SuperLogLog [Durand+03]: Remove top 30%, then
geometric average
HyperLogLog [Flajolet+07]: Harmonic average

Standard deviation is ' 1.03/
√

c for HyperLogLog

HyperLogLog: “cardinalities up to 109 can be approximated
within say 2% with 1.5 Kbytes of memory”

Implementation aspects: [Heule+13]

45 / 98

Linear or logarithmic?

[Metwaly+08]

“Why go logarithmic when we can go linear”
Describe an application where extreme accuracy needed
e.g., 10−4

For this range, linear counting uses less memory
My take: I have ML/DM in mind; low accuracy is ok, and
we will need to maintain many counts

46 / 98

4. Finding Frequent Elements

Heavy Hitters, Elephants, Hotlist analysis, Iceberg queries

47 / 98

Finding Frequent Elements

The Heavy Hitter Problem
Given a sequence S of t elements, threshold θ , find all
elements with frequency > θ t - the heavy hitters

Interesting for skewed distributions

There are at most b1/θc heavy hitters

Good sources: [Berinde+09], [Cormode+08]

48 / 98

Approaches

1. Sampling: Output the heavy hitters computed in a sample

Uniform sample can be kept with reservoir sampling
technique
Doable with sample size O(1/θ 2) (Hoeffding)

Solutions with memory O(1/θ):

2. Count based. We cover SpaceSaving Sketch

3. Hash based: Count-Min Sketch

49 / 98

The SpaceSaving sketch [Metwally+05]

One of many counter-based methods:
Karp-Shenker-Papadimitriou, Lossy Counter, Frequent,
Sticky Sampling, GroupTest, . . .
Memory O(1/θ). Best possible
Good update time
Guarantee on count error
No false negatives; but has false positives

50 / 98

The SpaceSaving sketch

Init(θ): Create
k ← d1/θe
set of keys K ← /0

vector count , indexed by K

Update(x):
if x is in K then count [x] + +

else, if |K |< k , add x to K and set count [x] = 1
else, replace an item with lowest count with x

and increase its count by 1

Query:
return the set K

51 / 98

Why Does This Work?

Claims:
Let mint be the minimum value of a counter at time t > 0. Then

1 mint ≤ t/k
2 If fx ,t > mint , then x ∈ K at time t
3 For every x ∈ K , fx ,t ≤ countt [x]≤ fx ,t + mint

In particular, all items with frequency over t/k are in K

Proof: By joint induction on t . Exercise: prove it!

52 / 98

More on SpaceSaving

Efficient implementation: StreamSummary data structure

Exercise
Without looking into the paper, propose an efficient data
structure for SpaceSaving. Aim for O(1) update time and
O(k) = O(1/θ) items, counts, pointers, etc.

53 / 98

The Count-Min Sketch

[Cormode-Muthukrishnan 04]
Like SpaceSaving:

Provides an approximation f ′x to fx , for every x
Can be used (less directly) to find θ -heavy hitters
Uses memory O(1/θ)

Unlike SpaceSaving:

It is randomized - hash functions instead of counters
Supports additions and deletions
Supports (not trivially) Heavy Hitters
Can be used as basis for several other queries

54 / 98

The Count-Min Sketch

Vector F [n]. Assumes F [i]≥ 0 for all i , at all times

Provides estimations F ′ of F such that
1 F [i]≤ F ′[i] for all i
2 For every i ∈ I, F ′[i]≤ F [i] + ε|F |1 with probability ≥ 1−δ

where |F |1 = ∑i F [i]

Note: |F |1 may be� stream length, if subtractions allowed

Uses O(1
ε

ln 1
δ

) memory words, O(ln 1
δ

) update time

55 / 98

The Count-Min Sketch

source: A. Bifet,

http://albertbifet.com/comp423523a-2012-stream-data-mining/

56 / 98

http://albertbifet.com/comp423523a-2012-stream-data-mining/

The Count-Min Sketch

d independent hash functions h1. . . hd : [1..n]→ [1..w]

one “memory cell” for each hj(i)
On instruction “F [i] += v ”, do hj(i) += v for all j ∈ 1 . . .d
Estimation:

F ′[i] = min{hj(i) | j = 1..d }

57 / 98

The Count-Min Sketch

F ′[i] = min{hj(i) | j = 1..d }

F ′[i]≥ F [i]
For each instruction involving i , we update all counts hj(i)
F [i]≥ 0 at all times for all i

F ′[i] = F [i]?
No: cell hj(i) is also incremented by k 6= i if hj(k) = hj(i)
But it is unlikely that this occurs very often
min instead of average→ Markov instead of Chebyshev or
Hoeffding

58 / 98

The Count-Min Sketch: Proof of main bound

Fix j . Def random var Iijk = 1 if hj(i) = hj(k), 0 otherwise
If h good hash function

E [Iijk]≤ 1/range(hj) = 1/w

Def Xij = ∑k IijkF [k]. Then

E [Xij] = ∑
k

E [Iijk]F [k]≤ |F |1/w

59 / 98

The Count-Min Sketch: Proof of main bound (2)

Then by Markov’s inequality and pairwise independence:

Pr[Xij ≥ ε|F |1]≤ E [Xij]/(ε|F |1)≤ (|F |1/w)/(ε|F |1)≤ 1/2

if w = 2/ε. Then:

Pr[F ′[i]≥ F [i] + ε|F |1]

= Pr[∀j : F [i] + Xij ≥ F [i] + ε|F |1]

= Pr[∀j : Xij ≥ ε|F |1]

≤ (1/2)d = δ if d = log(1/δ)

for one fixed i . To have good estimates for all i simultaneously,
use d = log(n/δ) and use union bound

60 / 98

The Count-Min Sketch: Summary

Memory is 2
ε

log 1
δ

words

Update time O(log 1
δ

)

Replace log(1/δ) with log(n/δ) if the bound needs to hold
for all i simultaneously

“Pr[for all i , . . .]≤ δ ” instead of “for all i , Pr[. . .]≤ δ ”
Error for F [i] is ε relative to |F |1, not to F [i]

61 / 98

Back to Heavy Hitters

i is a θ -heavy hitter if F [i]≥ θ t
The CM-sketch with width θ guarantees

F [i]≤ F ′[i]≤ F [i] + θ t

So: If we output all i s.t. F ′[i]≥ θ t , we output all heavy
hitters; no false negatives

But we can’t cycle through all n candidates one by one!

62 / 98

Range-Sum queries

Range-sum query

Given a,b, return ∑
b
i=a F [i]

Example: how many packets received came from the IP range
172.16.xxx.xxx?

We show:

A variant of CM-sketch supports range-sum queries
efficiently
Answering range-sum queries efficiently −→ finding heavy
hitters efficiently

63 / 98

Fom CM-sketch to range-sum queries

For p = 0 . . . logn, for each j = ..., keep the value of
sum(j2p . . .(j + 1)2p−1)

Any interval [a,b] is the sum of O(logn) such values. Check it

64 / 98

From CM-sketch to range-sum queries

Keep one CM-sketch for each 2p to store
sum(j2p . . .(j + 1)2p−1) for each j

65 / 98

From CM-sketch to range-sum queries

When receiving i , update the counts for ranges where i lies =
ancestors of i in the tree

When queried sum(a..b), decompose [a..b] as sum of such
intervals, retrieve and add their sums

66 / 98

From Range-sum queries to heavy hitters

Adaptively search for heavy hitters in the tree
if a node has count < θ t , do not explore its children: no
heavy hitters below
if a node has count ≥ θ t , explore both children
when reaching a leaf, we know whether it’s a heavy hitter

the sum of counts at any one level of the tree is t
no more than 1/θ of them may have frequency ≥ θ t
Efficiency: no more than 1/θ nodes of each level are
expanded

67 / 98

From Range-sum queries to heavy hitters

Exercise
Formalize the algorithms above:

For computing range-sum queries given CM-sketch
Form finding all heavy hitters using range-sum queries

and tell their memory usage and update time

68 / 98

Other uses of CM-Sketch - Range-Sum queries

Quantile computation: Given i , θ , find for all k the q(k)
such that

q(k)

∑
i=1

F [i] = kθ

n

∑
i=1

F [i]

Reverse, histogram computation: Given f , how many i ’s
have frequence f?”
Inner product of two streams
. . .

69 / 98

5. Counting in Sliding Windows

Only last n items matter
Clear way to bound memory
Natural in applications: emphasizes most recent data
Data that is too old does not affect our decisions

Examples:

Study network packets in the last day
Detect top-10 queries in search engine in last month
Analyze phone calls in last hours

70 / 98

Statistics on Sliding Windows

Want to maintain mean, variance, histograms, frequency
moments, hash tables, . . .
SQL on streams. Extension of relational algebra
Want quick answers to queries at all times

71 / 98

Basic Problem: Counting 1’s

Obvious algorithm, memory n:

Keep window explicitly
At each time t , add new bit b to head, remove oldest bit b′

from tail,
Add b and subtract b′ from count

Fact:
Ω(n) memory bits are necessary to solve this problem exactly

72 / 98

Counting 1’s

[Datar, Gionis, Indyk, Motwani, 2002]

Theorem:
Estimating number of 1’s in a window of length n with

multiplicative error ε is possible with O(
1
ε

logn) counters

= O(
1
ε

(logn)2) bits of memory

Example:

n = 106; ε = 0.1→ 200 counters, 4000 bits

73 / 98

Idea: Exponential Histograms

Each bit has a timestamp - time at which it arrived
At time t , bits with timestamp ≤ t−n are expired
We have up to k buckets of capacity 1, 2, 4, 8 . . .
Each bucket contains the number of 1s in a subwindow, up
to its capacity
Errors: expired bits in the last bucket
1’s in last bucket ≤ (1’s in previous buckets) / k

74 / 98

Exponential Histograms

Init: Create empty set of buckets

Query: Return total number of bits in buckets - last bucket / 2

75 / 98

Exponential Histograms

Insert rule(bit b):

If b is a 0, ignore it. Otherwise, if it’s a 1:
Add a bucket with 1 bit and current timestamp t to the front
for i = 0, 1, . . .

If more than k buckets of capacity 2i ,
merge two oldest as newest bucket of capacity 2i+1,
with timestamp of the older one

if oldest bucket timestamp < t−n, drop it (all expired)
76 / 98

Memory Estimate

Largest bucket needed: k ∑
C
i=0 2i ' n→ C ' log(n/k)

Total number of buckets: k · (C + 1)' k log(n/k)

Each bucket contains a timestamp only (perhaps its
capacity, dep. on implementation)

timestamps are in t−n . . . t : recycle timestamps mod n

Memory is O(k log(n/k) logn) bits; take k = 1/2ε

77 / 98

Generalizations

Applies also to other natural aggregates:

Variance
Distinct elements (using Flajolet-Martin)
Max, min
Histograms
Hash tables
Frequency moments

and can be combined with CM-sketch

78 / 98

6. Distributed Sketching

Setting:

Many sources generating streams concurrently

No synchrony assumption

Want to compute global statistics

Streams can send short summaries to central

79 / 98

Merging sketches

Send the sketches, not the whole stream

80 / 98

Merging sketches

Mergeability
A sketch algorithm is mergeable if

given two sketches S1 and S2 generated by the algorithm
on two data streams D1 and D2,
one can compute a sketch S that answers queries
correctly with respect to the concatenation of D1 and D2

Note: For frequency problems,
“for the concatenation” = “for all interleavings”

81 / 98

Merging sketches

All sketches we’ve seen are mergeable efficiently

Bloom filters, Cohen, Flajolet-Martin, HyperLogLog
SpaceSaving
CM-sketch
Exponential Histograms (though order dependent problem)

May require sites to use common random bits or hash functions

82 / 98

7. Wrapping up. Hash functions

Perfect hash function: f (i) cannot be guessed at all even
from all other values of f
Storing f : A→ B unfeasible for large A

83 / 98

Wrapping up. Hash functions (2)

Cryptographic hash functions (MD5, SHA1, SHA256, or
MurmurHash) should work well, but are costly.
Even simpler functions like linear congruential may work
well in practice if not in theory — but don’t use 32 bit
integers if you plan to count billions!
O(logn) bits to store such a function for |A|= |B|= n
But we can’t “generate many of them”, e.g., to reduce
variance

Sometimes, analysis reveals that weaker notions of “good
hash function” suffices
E.g., pairwise independence suffices for CM-sketch: f (i)
independent of any other single f (j)
(In general, will work if you use only Chebyshev or Markov)
We can generate mutually independent, pairwise
independent functions
One can be stored with O(logn) bits

84 / 98

Wrapping up. Some stuff I left out

Detecting duplicate documents
Detecting near duplicates (LSH), minwise hashing, . . .
Sketches for geometric problems. Clustering
Graph sketches. Counting subgraphs
Using HyperLogLog to estimate neighborhood functions of
graphs
Sketches that are linear projections. Metric embeddings.
Dimensionality reduction
Linear algebra. PCA. Singular Value Decomposition

85 / 98

Wrapping up. Last words

Approximation helps

Randomness helps

Some more tools in your toolbox

http://www.cs.upc.edu/˜gavalda

86 / 98

http://www.cs.upc.edu/~gavalda

8. References and resources

With apologies to all missing papers
General Surveys on Stream Algorithmics:

Survey by Liberty and Nelson: http://www.cs.yale.edu/homes/
el327/papers/streaming_data_mining.pdf

J. Ullman and A. Rajaraman, Mining of Massive Datasets, Chapter 3 -
available at
http://infolab.stanford.edu/˜ullman/mmds/ch4.pdf

A very general bibliography by K. Tufte: http:
//web.cecs.pdx.edu/˜tufte/410-510DS/readings.htm

Lecture notes by A. Chakrabarti: http://www.cs.dartmouth.edu/
˜ac/Teach/CS85-Fall09/Notes/lecnotes.pdf

Survey by Lin and Zhang: http:
//www.cse.unsw.edu.au/˜yingz/papers/apweb_2008.pdf

Book by G. Cormode, M. Garofalakis, P. Haas, and C. Jermain:
http://dimacs.rutgers.edu/˜graham/pubs/html/
CormodeGarofalakisHaasJermaine12.html

Survey by G. Cormode:
http://dimacs.rutgers.edu/˜graham/pubs/papers/sk.pdf

87 / 98

http://www.cs.yale.edu/homes/el327/papers/streaming_data_mining.pdf
http://www.cs.yale.edu/homes/el327/papers/streaming_data_mining.pdf
http://infolab.stanford.edu/~ullman/mmds/ch4.pdf
http://web.cecs.pdx.edu/~tufte/410-510DS/readings.htm
http://web.cecs.pdx.edu/~tufte/410-510DS/readings.htm
http://www.cs.dartmouth.edu/~ac/Teach/CS85-Fall09/Notes/lecnotes.pdf
http://www.cs.dartmouth.edu/~ac/Teach/CS85-Fall09/Notes/lecnotes.pdf
http://www.cse.unsw.edu.au/~yingz/papers/apweb_2008.pdf
http://www.cse.unsw.edu.au/~yingz/papers/apweb_2008.pdf
http://dimacs.rutgers.edu/~graham/pubs/html/CormodeGarofalakisHaasJermaine12.html
http://dimacs.rutgers.edu/~graham/pubs/html/CormodeGarofalakisHaasJermaine12.html
http://dimacs.rutgers.edu/~graham/pubs/papers/sk.pdf

8. References and resources

Approximate counting

The original Morris77 paper:
http://dl.acm.org/citation.cfm?id=359627 also
available here: http://www.inf.ed.ac.uk/teaching/
courses/exc/reading/morris.pdf

An analysis of Morris’ counter (math intensive): http://algo.
inria.fr/flajolet/Publications/Flajolet85c.pdf

The application of Morris’ counters to counting n-grams, by Van
Durme and Lall: http://www.cs.jhu.edu/˜vandurme/
papers/VanDurmeLallIJCAI09.pdf

88 / 98

http://dl.acm.org/citation.cfm?id=359627
http://www.inf.ed.ac.uk/teaching/courses/exc/reading/morris.pdf
http://www.inf.ed.ac.uk/teaching/courses/exc/reading/morris.pdf
http://algo.inria.fr/flajolet/Publications/Flajolet85c.pdf
http://algo.inria.fr/flajolet/Publications/Flajolet85c.pdf
http://www.cs.jhu.edu/~vandurme/papers/VanDurmeLallIJCAI09.pdf
http://www.cs.jhu.edu/~vandurme/papers/VanDurmeLallIJCAI09.pdf

8. References and resources

Large deviation bounds

G. Lugosi: http://www.econ.upf.edu/˜lugosi/anu.pdf

A. Sinclair: http:
//www.cs.berkeley.edu/˜sinclair/cs271/n13.pdf

C. Shalizi list of references (much beyond the scope of this
course): http:
//bactra.org/notebooks/large-deviations.html

89 / 98

http://www.econ.upf.edu/~lugosi/anu.pdf
http://www.cs.berkeley.edu/~sinclair/cs271/n13.pdf
http://www.cs.berkeley.edu/~sinclair/cs271/n13.pdf
http://bactra.org/notebooks/large-deviations.html
http://bactra.org/notebooks/large-deviations.html

8. References and resources

Counting distinct elements

Good general survey of distinct element counting up to 2008: Ahmed
Metwally, Divyakant Agrawal, Amr El Abbadi: Why go logarithmic if we
can go linear?: Towards effective distinct counting of search traffic.
EDBT 2008: 618-629.

Also general discussion on distinct element counting:
http://highscalability.com/blog/2012/4/5/
big-data-counting-how-to-count-a-billion-distinct-objects-us.
html

Presentation including some sketches I didn’t mention: http://www.
cs.upc.edu/˜conrado/research/talks/aofa2012.pdf

Bloom filter. K.Y. Whang, B. Vander-Zanden, H.M. Taylor, A Linear-time
Probabilistic Counting Algorithm for Database Applications. ACM Trans.
Database Syst., 15:2, 1990.

Cohen’s log(n) solution: Edith Cohen, Size-Estimation Framework with
Applications to Transitive Closure and Reachability . FOCS 1994 and
JCSS 1997.

90 / 98

http://highscalability.com/blog/2012/4/5/big-data-counting-how-to-count-a-billion-distinct-objects-us.html
http://highscalability.com/blog/2012/4/5/big-data-counting-how-to-count-a-billion-distinct-objects-us.html
http://highscalability.com/blog/2012/4/5/big-data-counting-how-to-count-a-billion-distinct-objects-us.html
http://www.cs.upc.edu/~conrado/research/talks/aofa2012.pdf
http://www.cs.upc.edu/~conrado/research/talks/aofa2012.pdf

8. References and resources

HyperLogLog and related for distinct element counting

The Flajolet-Martin probabilistic counter. Philippe Flajolet, G. Nigel
Martin: Probabilistic Counting Algorithms for Data Base Applications. J.
Comput. Syst. Sci. 31(2): 182-209 (1985). See also http:
//en.wikipedia.org/wiki/Flajolet-Martin_algorithm

SuperLogLog counter (and insight on FM probabilistic counter) Durand,
M.; Flajolet, P. (2003). ”Loglog Counting of Large Cardinalities”.
Algorithms - ESA 2003. Lecture Notes in Computer Science 2832. p.
605.

The HyperLogLog paper: Flajolet, P.; Fusy, E.; Gandouet, O.; Meunier,
F. (2007). ”HyperLogLog: the analysis of a near-optimal cardinality
estimation algorithm”. AOFA 07: Proceedings of the 2007 International
Conference on the Analysis of Algorithms.

Flajolet’s contributions explained beautifully by J. Lumbroso:
http://www.stat.purdue.edu/˜mdw/
ChapterIntroductions/ApproxCountingLumbroso.pdf

91 / 98

http://en.wikipedia.org/wiki/Flajolet-Martin_algorithm
http://en.wikipedia.org/wiki/Flajolet-Martin_algorithm
http://www.stat.purdue.edu/~mdw/ChapterIntroductions/ApproxCountingLumbroso.pdf
http://www.stat.purdue.edu/~mdw/ChapterIntroductions/ApproxCountingLumbroso.pdf

8. References and resources

HyperLogLog and related for distinct element counting (2)

http://en.wikipedia.org/wiki/HyperLogLog

http://research.neustar.biz/2012/10/25/
sketch-of-the-day-hyperloglog-cornerstone-of-a-big-data-infrastructure/

A live demo of hyperloglog at the web above:
http://content.research.neustar.biz/blog/hll.html

http://www.slideshare.net/sunnyujjawal/
hyperloglog-in-practice-algorithmic-engineering-of-a-state-of-the-art-cardinality-estimation-algorithm

http://stackoverflow.com/questions/12327004/
how-does-the-hyperloglog-algorithm-work

Important optimizations that I’d like to try:
http://druid.io/blog/2014/02/18/
hyperloglog-optimizations-for-real-world-systems.
html. Also here:
http://research.google.com/pubs/pub40671.html

92 / 98

http://en.wikipedia.org/wiki/HyperLogLog
http://research.neustar.biz/2012/10/25/sketch-of-the-day-hyperloglog-cornerstone-of-a-big-data-infrastructure/
http://research.neustar.biz/2012/10/25/sketch-of-the-day-hyperloglog-cornerstone-of-a-big-data-infrastructure/
http://content.research.neustar.biz/blog/hll.html
http://www.slideshare.net/sunnyujjawal/hyperloglog-in-practice-algorithmic-engineering-of-a-state-of-the-art-cardinality-estimation-algorithm
http://www.slideshare.net/sunnyujjawal/hyperloglog-in-practice-algorithmic-engineering-of-a-state-of-the-art-cardinality-estimation-algorithm
http://stackoverflow.com/questions/12327004/how-does-the-hyperloglog-algorithm-work
http://stackoverflow.com/questions/12327004/how-does-the-hyperloglog-algorithm-work
http://druid.io/blog/2014/02/18/hyperloglog-optimizations-for-real-world-systems.html
http://druid.io/blog/2014/02/18/hyperloglog-optimizations-for-real-world-systems.html
http://druid.io/blog/2014/02/18/hyperloglog-optimizations-for-real-world-systems.html
http://research.google.com/pubs/pub40671.html

8. References and resources

Heavy hitters - count-based approaches

J. Vitter. Random Sampling with a reservoir. ACM Trans. on
Mathematical Software, 1985.

Good survey of heavy hitter algorithms. Radu Berinde, Graham
Cormode, Piotr Indyk, Martin J. Strauss. Space-optimal Heavy Hitters
with Strong Error Bounds

Also very good survey: Graham Cormode, Marios Hadjieleftheriou.
Finding Frequent Items in Data Streams. Proc. VLDB Endowment,
2008

Richard M. Karp, Scott Shenker, Christos H. Papadimitriou. A Simple
Algorithm for Finding Frequent Elements in Streams and Bags. ACM
Transactions on Database Systems (TODS), Volume 28, 2003.

The Space-Saving sketch paper. Ahmed Metwally, Divyakant Agrawal,
Amr El Abbadi. Efficient Computation of Frequent and Top-k Elements
in Data Streams. Intl. Conf. on Database Technology (ICDT) 2005.

M. Charikar, K. Chen and M. Farach-Colton. ”Finding Frequent Items in
Data Streams.” ICALP 2002 (conf. version) and Theoretical Computer
Science 2004 (journal version)

93 / 98

8. References and resources

Count-Min sketch and related

The CM-Sketch paper. Graham Cormode and S.
Muthukrishnan: An improved data stream summary: The
Count-min sketch and its applications. J. Algorithms 55: 2938

On Frugal Streaming, a neat sketch for estimating quantiles
which I did not cover in the course:
http://research.neustar.biz/2013/09/16/
sketch-of-the-day-frugal-streaming/

http://en.wikipedia.org/wiki/Count-min_sketch

https://sites.google.com/site/countminsketch/

https://tech.shareaholic.com/2012/12/03/
the-count-min-sketch-how-to-count-over-large-keyspaces-when-about-right-is-good-enough/

94 / 98

http://research.neustar.biz/2013/09/16/sketch-of-the-day-frugal-streaming/
http://research.neustar.biz/2013/09/16/sketch-of-the-day-frugal-streaming/
http://en.wikipedia.org/wiki/Count-min_sketch
https://sites.google.com/site/countminsketch/
https://tech.shareaholic.com/2012/12/03/the-count-min-sketch-how-to-count-over-large-keyspaces-when-about-right-is-good-enough/
https://tech.shareaholic.com/2012/12/03/the-count-min-sketch-how-to-count-over-large-keyspaces-when-about-right-is-good-enough/

8. References and resources

Counting in Sliding Windows

Mayur Datar, Aristides Gionis, Piotr Indyk, Rajeev Motwani: Maintaining
Stream Statistics over Sliding Windows. SIAM J. Comput. 31(6):
1794-1813 (2002). Conf. version in SODA 2002.

Mayur Datar, Rajeev Motwani: The Sliding-Window Computation Model
and Results. Data Streams - Models and Algorithms 2007: 149-167.
http://link.springer.com/chapter/10.1007%
2F978-0-387-47534-9_8

Mergeability

Discussions on mergeability are a bit all over. This is sort of an
overview: http://research.microsoft.com/en-us/events/
bda2013/mergeable-long.pptx

95 / 98

http://link.springer.com/chapter/10.1007%2F978-0-387-47534-9_8
http://link.springer.com/chapter/10.1007%2F978-0-387-47534-9_8
http://research.microsoft.com/en-us/events/bda2013/mergeable-long.pptx
http://research.microsoft.com/en-us/events/bda2013/mergeable-long.pptx

8. References and resources

Others (personal 1-slide selection)
Noga Alon, Yossi Matias, Mario Szegedy: The space complexity of
approximating frequency moments. J. Computer and System Sciences 58(1):
137-147 (1999). Conference version (STOC) 1996

Paolo Boldi, Marco Rosa, and Sebastiano Vigna. HyperANF: Approximating the
neighbourhood function of very large graphs on a budget. WWW, 2011.

An application of the above to computing diameter of the Facebook graph: Lars
Backstrom, Paolo Boldi, Marco Rosa, Johan Ugander, Sebastiano Vigna. Four
Degrees of Separation. ACM Web Science 2012, 2012.

A survey on streaming graph algorithms: http:
//people.cs.umass.edu/˜mcgregor/papers/13-graphsurvey.pdf

Computing SVD on streams, this will be important in streaming ML: Mina
Ghashami, Edo Liberty, Jeff M. Phillips, David P. Woodruff, Frequent Directions :
Simple and Deterministic Matrix Sketching.
http://arxiv.org/abs/1501.01711

This will also be important in streaming ML: Christos Boutsidis, Dan Garber,
Zohar Karnin, Edo Liberty: Online Principal Component Analysis, SODA 2015.
http://www.cs.yale.edu/homes/el327/papers/opca.pdf

96 / 98

http://people.cs.umass.edu/~mcgregor/papers/13-graphsurvey.pdf
http://people.cs.umass.edu/~mcgregor/papers/13-graphsurvey.pdf
http://arxiv.org/abs/1501.01711
http://www.cs.yale.edu/homes/el327/papers/opca.pdf

8. References and resources

Resources

The MassDAL Code Bank. http:
//www.cs.rutgers.edu/˜muthu/massdal-code-index.html

StreamLib: https://github.com/addthis/stream-lib. Check
this too: http://www.addthis.com/blog/2011/03/29/
new-open-source-stream-summarizing-java-library/#.
VTzMcJPl_VI

Hokusai: https://github.com/dgryski/hokusai. I have not
used it, but it looks very interesting from
http://arxiv.org/ftp/arxiv/papers/1210/1210.4891.pdf
and http://blog.aggregateknowledge.com/2013/09/16/
sketch-of-the-day-frugal-streaming/

Webgraph. Analysis of large graphs, contains the HyperANF and
related code used for the Four-degrees-of-separation paper:
http://webgraph.di.unimi.it/

97 / 98

http://www.cs.rutgers.edu/~muthu/massdal-code-index.html
http://www.cs.rutgers.edu/~muthu/massdal-code-index.html
https://github.com/addthis/stream-lib
http://www.addthis.com/blog/2011/03/29/new-open-source-stream-summarizing-java-library/#.VTzMcJPl_VI
http://www.addthis.com/blog/2011/03/29/new-open-source-stream-summarizing-java-library/#.VTzMcJPl_VI
http://www.addthis.com/blog/2011/03/29/new-open-source-stream-summarizing-java-library/#.VTzMcJPl_VI
https://github.com/dgryski/hokusai
http://arxiv.org/ftp/arxiv/papers/1210/1210.4891.pdf
http://blog.aggregateknowledge.com/2013/09/16/sketch-of-the-day-frugal-streaming/
http://blog.aggregateknowledge.com/2013/09/16/sketch-of-the-day-frugal-streaming/
http://webgraph.di.unimi.it/

8. References and resources

Resources
I have not used the following, so no guarantees of any kind
(including that they still exist)

c++: https://github.com/hideo55/cpp-HyperLogLog/blob/
master/src/hyperloglog.hpp

Java: https://github.com/addthis/stream-lib/tree/
master/src/main/java/com/clearspring/analytics/
stream/cardinality

Python: https://pypi.python.org/pypi/hyperloglog/0.0.8

Ruby: https://rubygems.org/gems/hyperloglog

Perl: http:
//search.cpan.org/˜hideakio/Algorithm-HyperLogLog-0.
20/lib/Algorithm/HyperLogLog.pm

JavaScript: http://cnpmjs.org/package/hyperloglog

node.js: https://www.npmjs.org/package/streamcount

https://github.com/eclesh/hyperloglog/blob/master/
hyperloglog.go

98 / 98

https://github.com/hideo55/cpp-HyperLogLog/blob/master/src/hyperloglog.hpp
https://github.com/hideo55/cpp-HyperLogLog/blob/master/src/hyperloglog.hpp
https://github.com/addthis/stream-lib/tree/master/src/main/java/com/clearspring/analytics/stream/cardinality
https://github.com/addthis/stream-lib/tree/master/src/main/java/com/clearspring/analytics/stream/cardinality
https://github.com/addthis/stream-lib/tree/master/src/main/java/com/clearspring/analytics/stream/cardinality
https://pypi.python.org/pypi/hyperloglog/0.0.8
https://rubygems.org/gems/hyperloglog
http://search.cpan.org/~hideakio/Algorithm-HyperLogLog-0.20/lib/Algorithm/HyperLogLog.pm
http://search.cpan.org/~hideakio/Algorithm-HyperLogLog-0.20/lib/Algorithm/HyperLogLog.pm
http://search.cpan.org/~hideakio/Algorithm-HyperLogLog-0.20/lib/Algorithm/HyperLogLog.pm
http://cnpmjs.org/package/hyperloglog
https://www.npmjs.org/package/streamcount
https://github.com/eclesh/hyperloglog/blob/master/hyperloglog.go
https://github.com/eclesh/hyperloglog/blob/master/hyperloglog.go

	Streams, Approximation, Randomization
	Approximation. Large Deviation Bounds
	Counting Distinct Elements
	Finding Frequent Elements
	Counting in Sliding Windows
	Distributed Sketching
	Wrapping up
	References and Resources

