
The Query Complexity of Learning DFA

�

Jos�e L. Balc�azar Josep D��az Ricard Gavald�a

Dept. Llenguatges i Sistemes Inform�atics

Universitat Polit�ecnica Catalunya

Pau Gargallo 5, 08028 Barcelona, Spain

Osamu Watanabe

Department of Computer Science

Tokyo Institute of Technology

Meguro-ku, Tokyo 152, Japan

Abstract. It is known that the class of deterministic �nite automata is polyno-

mial time learnable by using membership and equivalence queries. We investigate

the query complexity of learning deterministic �nite automata, i.e., the number

of membership and equivalence queries made during the process of learning. We

extend a known lower bound on membership queries to the case of randomized

learning algorithms, and prove lower bounds on the number of alternations be-

tween membership and equivalence queries. We also show that a trade-o� exists,

allowing us to reduce the number of equivalence queries at the price of increasing

the number of membership queries.

1. Introduction

Query learning was introduced by Angluin [1] and is currently one of the most important

models in computational learning theory. It di�ers from other models, such as inductive

inference [5] or certain PAC-learning algorithms [10], in that the learning process, the

�

This research was partially supported by the ESPRIT II Basic Research Actions Program of the EC

under contract No. 3075 (project ALCOM). While this research was done, the third author was visiting

the University of California at Santa Barbara, supported in part by the National Science Foundation under

grant CCR89-13584. The fourth author was supported in part by Takayanagi Foundation of Electron-

ics and Science Technology. E-mail addresses: balqui@lsi.upc.es, diaz@siva.upc.es, gavalda@lsi.upc.es,

watanabe@cs.titech.ac.jp

1

learner, obtains information about the concept to learn by making queries to some teacher,

instead of passively receiving examples.

Variants of the formalization of learning via queries have been proposed in [11, 12].

We are interested here in the notion of \bounded learning" described there. In bounded

learning, the learning algorithm is given a number as an input parameter. The goal of

the algorithm is to output some hypothesis that only needs to be correct up to the length

indicated by the input parameter. This learning notion is somewhat di�erent from the

original notion studied in Angluin's papers, but it allows us to avoid tedious and minor

problems in the original notion. (See [12] for the justi�cation of the bounded learning

notion.)

It must be mentioned that all the concept classes used in this paper are �nite and

have a �xed length, so that the negative results also hold under Angluin's learning notion.

Additionally, our learning algorithms for positive results also achieve exact learning.

The formalization of the concept of learning is particularly useful since a substantial

gain of understanding comes from the possibility of relating it to various concepts from

Computational Complexity. In particular, there are negative results for learning that rely

on widely believed complexity-theoretic hypothesis, such as R 6= NP or the existence of

cryptographic one-way functions [7, 4]. Additionally, the idea of considering queries as

a resource allows one to prove absolute negative results, whose proofs are independent

of the learner's computational power: they are based instead on bounding the number

of queries asked, and do not rely on any assumption. This contrasts with the negative

results that depend on additional hypothesis. All our results here are absolute in this

sense.

One of the successful �elds in query learning is the problem of constructing a de-

terministic �nite automaton (henceforth dfa) from information about the set it accepts.

This is the problem we study in this paper. Pitt [8] surveys the status of this important

problem in several learning models. For the case of query learning, Angluin proved an

important positive result:

Proposition 1.1. [1] There exists a polynomial time algorithm that constructs a dfa

using membership and equivalence queries.

Algorithms using these two kinds of queries will be called here (Mem,Equ)-learners.

When only membership or only equivalence queries are allowed to be asked by the algo-

rithm, we will call it a (Mem)-learner, respectively (Equ)-learner. Angluin showed that

2

neither membership queries alone nor equivalence queries alone are good enough to learn

dfa in polynomial time.

Proposition 1.2.

(1) [2] No polynomial time (Mem)-learner exists for dfa.

(2) [3] No polynomial time (Equ)-learner exists for dfa.

Actually, it is easy to see that Angluin's dfa learning algorithm (witnessing Propo-

sition 1.1) needs at most n equivalence queries for learning n state dfa. In this paper

we investigate the query complexity of learning algorithms for dfa, i.e. the number of

membership and equivalence queries used or needed to learn a �xed dfa.

First, we extend the negative result on (Mem)-learners to the case in which the learn-

ing algorithm has access to a source of random bits and is required to operate within a

certain error probability bound. We study the number of membership queries necessary

for such randomized learners to learn dfa by using only membership queries. We show

that randomized computation, the ability to \toss coins" during the computation, cannot

improve over the deterministic lower bound.

Second, we study the number of times that a learner must alternate between member-

ship and equivalence queries. We impose limitations on this \alternations" resource, as a

natural generalization of the learners that only use one of the two sorts of queries |which

alternate 0 times|, and show that this restriction implies an increase of the total number

of queries. For instance, as a consequence of this result, we show that in order to learn

an n-state dfa in polynomial time, membership and equivalence queries must alternate at

least
(n= log

2

n) times.

Finally, we study whether it is possible to reduce the number of one type of queries,

maybe at the expense of the other. The learning formalism does not take into account

how the queries are answered; but it is intuitively clear that, for many representation

classes, answering a membership query can be substantially easier than answering an

equivalence query. For instance, in the dfa case, evaluating a dfa on a word is one of

the simplest problems in complexity theory, while deciding the equivalence of two dfa

is complete for nondeterministic logspace. We prove that the number of such expensive

queries can be reduced to some extent. More precisely, when only a bound on the total

number of membership and equivalence is given, a certain type of \trade-o�" between

the number of membership and equivalence queries occurs. We show that it is possible

to reduce the number of equivalence of queries, say, to n=f(n) while increasing that of

membership queries by a factor of 2

f(n)

. On the other hand, we also prove that in order

3

to reduce equivalence queries to n=f(n) one has to increase the number of membership

queries by a factor of 2

(f(n))

. Thus, the above 2

f(n)

increase is essential. For example, we

can construct a polynomial time dfa learning algorithm that asks n=c log n equivalence

queries, but it is impossible to reduce equivalence queries more than a factor of O(log n)

without using a superpolynomial number of membership queries.

2. Preliminaries

In this paper we follow standard de�nitions and notations in formal language theory and

computational complexity theory; in particular, those for �nite automata are used without

de�nition. The reader will �nd them in standard textbooks such as [6].

Let � denote f0; 1g, and throughout this paper, we use � as our alphabet. For any

set A of strings, let A to denote the complement of A, i.e., �

�

�A. For any sets A and

B of strings, let A4B denote the set (A � B) [(B � A). The length of a string x is

denoted by jxj. The cardinality of a �nite set A is written as kAk. Symbols A

�m

and

A

=m

are used to denote the sets fx 2 A : jxj � mg and fx 2 A : jxj = mg respectively.

Notions and Notations for Query Learning

We briey explain the notions and notations for discussing query learning formally.

We basically follow the style established in [11, 12].

A learning problem is speci�ed as a \representation class" [9]. A representation class

is a triple (R;�; �), where R � �

�

is a representation language, � : R ! 2

�

�

is a

semantic function or concept mapping, and � : R ! N is a size function. For example, a

representation class for dfa

1

is formally de�ned as follows: DFA = (R

dfa

;�

dfa

; �

dfa

), where

R

dfa

is the set of dfa that are encoded in �

�

, and for any r 2 R

dfa

, �

dfa

(r) and �

dfa

(r) are

respectively the regular language accepted by the dfa (represented by) r and the number

of states in the dfa (represented by) r. Following common convention, we write �

dfa

(r)

as L(r) and �

dfa

(r) as jrj.

The encoding R

dfa

is assumed to be honest, i.e. not much longer than necessary; in

particular, we assume that the encoding of a dfa is polynomially long in the number of

states.

Our computation model for learning is the \learning system". A learning system

hS; T i is formed by a learner S and a teacher T that are organized as in Figure 1.

1

By \deterministic �nite automaton" we mean a \complete" deterministic �nite automaton over �

�

.

That is, we assume that the transition function is total.

4

Figure 1: Learning System

The tapes except the communication tape and the target tape are used in a ordinary

way. The communication tape is a read-write tape and used for the communication

between S and T . That is, the queries from S and the answers from T are written on

it. The target tape is a read-only tape, and its role is to let the teacher T know a target

concept, a set to be learned. That is, a representation r of a target concept is written

on the target tape; this situation intuitively means that T knows the concept that is

represented by r. A teacher T who knows r (or, more precisely, T with r on the target

tape) is written as \T (r)". Prior to the execution, the input ! and a target representation

r are given respectively on the input tape and the target tape. Then the computation

of hS; T i (which is written as hS; T (r)i(!)) starts from S, executes S and T in turn, and

�nally halts at S. If S outputs y on its output tape and halts normally, then we say that

hS; T (r)i(!) outputs y (and write hS; T (r)i(!) = y).

In our framework, T is regarded as a function while S is regarded as some algorithm,

or a Turing machine. That is, we omit considering T 's computation and assume that T

can somehow answer to queries. Note that S could be a randomized algorithm; but unless

it is explicitly stated, S is considered as a deterministic algorithm.

For query types, we consider membership query (Mem) and equivalence query (Equ).

When learning dfa, a membership query is to ask whether a queried string is accepted by

the target machine, and an equivalence query is to ask whether a queried dfa is equivalent

to the target machine. Thus, for each membership query, some string w is queried to the

teacher, and the teacher is supposed to answer \yes" if w 2 L(r), and \no" otherwise. For

each equivalence query, some dfa r

0

is queried to the teacher, and the teacher is supposed

to answer \yes" if L(r

0

) = L(r); on the other hand, in the case L(r

0

) 6= L(r), the teacher

must provide a counterexample, some string in the di�erence L(r

0

) 4 L(r), to the query.

A learner is called, e.g., (Mem,Equ)-learner if it asks membership and equivalence queries,

and a teacher is called, e.g., (Equ)-teacher if it answers only to equivalence queries. A

5

tuple such as (Mem,Equ) is called a query-answer type

2

.

Now we are ready to de�ne our \learnability" notion. To simplify our discussion, we

explain and de�ne notions by using (Mem,Equ) for a typical query-answer type. However,

these notions are de�ned similarly for other query-answer types.

In this paper, we consider only \bounded learning", which has been introduced in

[11, 12] as one reasonable query learning notion. Intuitively, in the bounded learning,

for a given parameter m � 0, the goal of a learner is to obtain a representation that

denotes a target set up to length m. The parameter m is called a length bound. On the

other hand, though we assume that teachers provide correct answers up to a given length

bound, answers may not be correct if they are out of the length bound. By considering

length bounds, we can avoid many tedious di�culties that come with the original and

more general learning notion. Furthermore, bounded learning is well-motivated, and it

is not just an arti�cial notion. Thus we use this learning notion throughout this paper.

(Hence \bounded" is often omitted.) It should be noted, however, that every proof in

this paper works even in the original query learning notion.

Let us de�ne \bounded learning" more precisely. For any target representation r and,

for a given equivalence query r

0

, we say that T (r) answers r

0

correctly up to length m if

T gives a counterexample if it exists in �

�m

and answers \yes" otherwise. A teacher T is

called a (consistent) bounded (Mem,Equ)-teacher for DFA if for given target representation

r and length bound m, T (r) answers each membership query correctly w.r.t. r, and T (r)

answers each equivalence query correctly up to length m. By considering a bounded

teacher, we can avoid the case where a learner is given unnecessarily long counterexamples

and the case where a learner abuses the teacher's power of searching through an in�nite

number of strings.

The value of m will be provided to the learning system as a part of the common input.

Another part of the common input will be a value n, which is understood as a bound on

the size of the output description to be written by the learner. This convention allows us

to measure the time bound in terms of the input, as is customary in complexity theory.

De�nition 2.1. [12] A (Mem,Equ)-learner S learns C = (R;�; �) (or C is learned by

S) in the bounded learning sense if for every bounded (Mem,Equ)-teacher T for C, every

r 2 R, every n � �(r), and every m � 0,

2

The notation for query-answer types used in [11, 12] is more complicated in order to denote a �ner

query-answer type classi�cation, including other query types. However, such classi�cation is not necessary

here; thus, we use this simpler notation.

6

hS; T (r)i(n;m) = r

0

such that �(r

0

)

�m

= �(r)

�m

:

Remark.

(1) Notice that the de�nition does not include the case where n < �(r) is given as input

for learning r. In other words, a learner can output anything in such a case. Thus,

for specifying a learning algorithm, it is enough to consider the case that n � �(r).

(2) In the later discussion, we assume that some additional parameter is given as an

input. In such a case, the above and following de�nitions are extended naturally.

In this paper we consider sometimes randomized learners. These are algorithms that

have access to a source of random bits. Each possible sequence of outcomes of the random

bits may lead to a di�erent computation path of the algorithm, and therefore we de�ne

the result of the algorithm in terms of the probability that the random bits lead to a

successful computation path. For randomized learners we use the following de�nition.

De�nition 2.2. A randomized (Mem,Equ)-learner S learns C = (R;�; �) with success

probability � � if for every bounded (Mem,Equ)-teacher T for C, every r 2 R, every

n � �(r), and every m � 0,

Prf hS; T (r)i(n;m) = r

0

such that �(r

0

)

�m

= �(r)

�m

g � �:

Now de�ne the polynomial time learnability in the bounded learning sense. A learner is

polynomial time if for some polynomial p and for all inputs hn;mi, it halts within p(n+m)

steps. A representation class C is polynomial time (Mem,Equ)-learnable in the bounded

learning sense if C is learnable by some polynomial time (Mem,Equ)-learner.

Finally, we de�ne \query complexity". Intuitively, the \query complexity" is the

number of queries asked by S in the worst case. More precisely, for any learner S for

DFA, the query complexity #query

S

is de�ned as follows: Let T be the family of bounded

teachers for DFA of S's query-answer type. For any T 2 T , any r 2 R

dfa

, and any

n;m � 0, let #query

hS;T (r)i

(n;m) be the number of queries asked during the computation

hS; T (r)i(n;m). Now for any n;m � 0,

#query

S

(n;m) = maxf #query

hS;T (r)i

(n;m) : T 2 T ; r 2 R

dfa

g:

For a randomized learner S, a teacher T , and a representation r, #query

hS;T (r)i

(n;m) is

de�ned as the average number of queries taken over all possible randomized computations

7

of hS; T (r)i(n;m). Then #query

S

(n;m) is de�ned exactly as above. Membership query

complexity#mem-query

S

and equivalence query complexity#equ-query

S

are de�ned sim-

ilarly.

We are also interested in the alternation complexity of a (Mem,Equ)-learner S. Let

T be the family of bounded (Mem,Equ)-teachers. For any T 2 T , any r 2 R

dfa

, and any

n;m � 0, let #alt

hS;T (r)i

(n;m) be the number of times that S changes from membership

to equivalence queries or vice-versa during the computation hS; T (r)i(n;m). Now for any

n;m � 0,

#alt

S

(n;m) = maxf #alt

hS;T (r)i

(n;m) : T 2 T ; r 2 R

dfa

g:

3. Randomized Learners

We investigate the number of membership queries necessary by a randomized (Mem)-

learner for DFA.

Theorem 3.1. For any �, 0 < � � 1, let S be any randomized (Mem)-learner S that

learns DFA with success probability � �. Then for any k > 0, we have the following

bound:

#mem-query

S

(k + 2; k) � �2

k

� 1:

Remark. Proposition 1.2 (1) is a special case, i.e., � = 1, of this theorem.

Proof. Consider any �, 0 < � � 1. We show that any learner with query complexity

better than the above lower bound cannot learn DFA with success probability � �.

Let T

0

be a (Mem)-teacher for DFA. Let S be any (Mem)-learner, and suppose that

for some k > 0, #mem-query

S

(k + 2; k) < �2

k

� 1. We consider the problem of learning

the empty set or singleton sets fwg, where jwj = k. Note that there is some dfa with

k + 2 states for the empty set. Also for every w 2 �

k

, there is some dfa with k + 2

states that accepts fwg. (Recall that we are considering complete dfa; thus an \error

state" is necessary.) The representation of a dfa for the empty set is denoted as r

;

, and

the one for fwg is denoted as r

w

. We show that for some w 2 �

k

, the probability that

hS; T

0

(r

w

)i(k+2; k) outputs a correct answer (i.e., some dfa representation of fwg) is less

than �.

Now consider the execution hS; T

0

(r

;

)i on input (k+2; k). For any string w 2 �

k

, we

say that w is �-well treated if

8

Pr

8

<

:

(�)

either hS; T

0

(r

;

)i(k + 2; k) queries w,

or hS; T

0

(r

;

)i(k + 2; k) outputs some r s.t. L(r) = fwg

9

=

;

� �:

Where the probability is taken over the learner's randomized computation. That is, the

probability is the proportion of randomized computations of S on which (�) holds. We

say that a randomized computation of S treats w if (�) holds for w on the computation.

Let w be any string that is not �-well treated. That is, more than 1�� of randomized

computations of S do not treat w. Notice that on such a computation, S cannot distin-

guish which of r

;

and r

w

is given as a target because w is not queried; furthermore, S

yields some description r such that L(r) 6= L(r

w

). That is, hS; T

0

(r

w

)i(k + 2; k) outputs

a wrong answer on the computation. Hence, Prf hS; T

0

(r

w

)i(k + 2; k) outputs a correct

answer g < �. On the other hand, the following claim states that the number of �-well

treated strings is not large enough.

Claim. The number of �-well treated strings is at most

#mem-query

S

(k + 2; k) + 1

�

.

Proof. Let N be the number of possible random computation paths of hS; T

0

(r

;

)i on

input (k + 2; k). Recall that #mem-query

S

(k + 2; k) is the average number of queries

of S on input hk + 2; ki, taken over all randomized computations; this implies that the

total number of queries among all computations is at most #mem-query

S

(k + 2; k)�N .

Also, each randomized computation can treat at most the number of queries it asks

plus 1. Hence, the total number of strings treated on all computation paths is at most

(#mem-query

S

(k + 2; k) + 1) � N . On the other hand, a �-well treated string must be

treated by at least ��N paths. Therefore, the number of �-well treated strings is at most

(#mem-query

S

(k + 2; k) + 1)=�. tu Claim

Now from the assumption #mem-query

S

(k + 2; k) < �2

k

� 1, it is clear that some

w 2 �

k

is not �-well treated. Therefore, we have some w such that S cannot learn r

w

with success probability � �. tu

From this theorem, we immediately have the following negative result.

Corollary 3.2. For any �, 0 < � � 1, no polynomial time randomized (Mem)-learner S

exists that learns DFA with success probability � �.

4. Query Alternations

Here we consider the case where the number of alternations between membership and

equivalence queries is limited.

9

Theorem 4.1. Let n

a;k

and m

a;k

denote (3k

2

+2)(a+1) and 2k

2

(a+1) respectively. For

every constant c > 1 there is some constant c

0

> 0 such that for every (Mem,Equ)-learner

S for DFA, every a, and every su�ciently large k,

� either S on input hn

a;k

;m

a;k

i asks some equivalence query with a dfa of size greater

than 2

c

0

k

,

� or #alt

S

(n

a;k

;m

a;k

) � a+ 1,

� or #equ-query

S

(n

a;k

;m

a;k

) � c

k

,

� or #mem-query

S

(n

a;k

;m

a;k

) � 2

k

� 1:

Remark. Proposition 1.2 (2) is proved as a special case of this theorem.

It is shown that if we cannot use both membership and equivalence queries, and only

one type of queries are allowed, then exponential number of queries are necessary to learn

dfa. (The case where membership queries are allowed is discussed in [2], and the case where

equivalence queries are allowed is discussed in [3].) Our theorem shows a similar lower

bound when the number of alternations between membership and equivalence queries are

bounded by constant, and thus an extension of these previous results. In fact, we will

prove the theorem by merging two proofs in [2, 3].

First we recall some de�nitions and facts from [3]. For any k > 0, and any i, 1 � i � n,

de�ne L(i; k) to be the set of strings of length 2k whose ith bit is equal to the (k + i)th

bit. Consider any set L(i

1

; k)L(i

2

; k) � � �L(i

k

; k), where 1 � i

1

; :::; i

k

� k. The words in

this set have length m

0;k

= 2k

2

. It is easy to show that the set is accepted by some

dfa with n

0;k

= 3k

2

+ 2 states. Let R

k

denote the set of dfa representations r such that

jrj = n

0;k

and L(r) = L(i

1

; k)L(i

2

; k) � � �L(i

k

; k) for some 1 � i

1

; :::; i

k

� k. From the

above discussion, any set of the form L(i

1

; k)L(i

2

; k) � � �L(i

k

; k) has a dfa representation

in R

k

; thus, kR

k

k = k

k

.

The following lemma, which states the lower bound of the number of equivalence

queries for learning r 2 R

k

, plays a key role for proving our theorem.

Lemma 4.2. For any constant c > 1 there is a constant c

0

> 0 with the following prop-

erty. Let S be any (Equ)-learner for DFA such that S on input hn

0;k

;m

0;k

i never asks a dfa

(as an equivalence query) with more than 2

c

0

k

states. Then #equ-query

S

(n

0;k

;m

0;k

) � c

k

,

for all su�ciently large k.

10

Proof. The proof is immediate from the argument in [3]. Here we review some important

facts and state the proof outline.

Let S be de�ned as in the lemma, and let c > 1 be any constant. For any k > 0,

de�ne the following sets:

A

k

= f x

1

x

1

x

2

x

2

� � � x

k

x

k

: 8i; 1 � i � k [x

i

2 �

k

] g;

B

c;k

= f x

1

y

1

x

2

y

2

� � �x

k

y

k

: 8i; 1 � i � k [x

i

; y

i

2 �

k

^ d(x

i

; y

i

) > (1 � 1=c)k] g;

where d(x; y) is the Hamming distance of x and y.

The following facts can be shown as in [3].

Fact 1.

(1) A

k

=

T

f L(r) : r 2 R

k

g.

(2) For any w 2 B

c;k

, kf r 2 R

k

: w 2 L(r) gk �

k

c

!

k

.

Fact 2. For every c there is some c

0

> 0 such that for any su�ciently large k, and for

any dfa M with at most 2

c

0

k

states, if M accepts all strings in A

k

, then it accepts some

string in B

c;k

.

We de�ne a teacher T

1

that answers an equivalence query r 2 R

dfa

in the following

way:

� So long as there are any \positive" counterexamples from A

k

(i.e., strings in A

k

�

L(r)), T

1

returns one of them as a counterexample.

� Else if there are any \negative" counterexamples fromB

c;k

(i.e., strings in L(r)�B

c;k

),

then T

1

returns one of them as a counterexample.

� Otherwise, T

1

returns some counterexample within the length bound, or returns \yes"

if no counterexample exists.

Let k be any su�ciently large integer for which Fact 2 holds. We show that S needs

to ask at least c

k

equivalence queries to learn some r

�

2 R

k

from T

1

, where r

�

will be

determined through our discussion. Now consider the execution of hS; T

1

(r

�

)i(n

0;k

;m

0;k

).

This process is regarded as identifying r

�

among the potential candidates. Clearly, at

the beginning, every r 2 R

k

is candidate, and for getting a correct answer for r

�

, it is

necessary to reduce the number of candidates to 1. We show that in order to achieve this

goal, the execution needs at least c

k

equivalence queries for some r

�

. (In the following

discussion, we assume that a candidate set is a subset of R

k

. A real candidate set may

contain other representations, but this only increases the number of queries.)

11

Let r

1

be S's �rst query in the execution. Suppose (the dfa represented by) r

1

does not

accept some strings in A

k

. Then T

1

returns one of them w as a positive counterexample.

(I.e., w witnesses L(r

�

)�L(r

1

) 6= ;.) But every r 2 R

k

accepts w, so we cannot reduce the

number of candidates by this counterexample. On the other hand, suppose that r

1

accepts

every string in A

k

. Then from Fact 2, it must accept some string u in B

c;k

. Here we can

assume that r

�

is chosen so that it does not accept u. (Because the number of r 2 R

k

that

accepts u is at most (k=c)

k

<< kR

k

k.) That is, (L(r

1

) � L(r

�

)) \ B

c;k

contains at least

one element, i.e., u. Then T

1

answers one of them w as a negative counterexample. (I.e.,

w witnesses L(r

1

)� L(r

�

) 6= ;.) But by this counterexample, we can reduce the number

of candidates by at most (k=c)

k

. For, w is a negative counterexample to at most (k=c)

k

representations in R

k

. By a similar argument, the second, third, : : : counterexamples kill

at most (k=c)

k

candidates each (if r

�

is chosen appropriately). Thus, after q queries, at

least k

k

� q(k=c)

k

candidates are left. Hence, in order to have k

k

� q(k=c)

k

� 1, q must

satisfy q � c

k

� (c=k)

k

> c

k

� 1. That is, q � c

k

. tu

Proof of Theorem 4.1. Assume for contradiction that there is an integer a such that

for some (Mem,Equ)-learner S and for in�nitely many k, we have

� S on input hn

a;k

;m

a;k

i never asks a dfa with more than 2

c

0

k

states,

� #alt

S

(n

a;k

;m

a;k

) < a+ 1,

� #equ-query

S

(n

a;k

;m

a;k

) < c

k

, and

� #mem-query

S

(n

a;k

;m

a;k

) < 2

k

� 1.

Select such a to be the minimum with this property. We will contradict this minimality.

First observe that a is not 0. For a = 0, no alternation occurs. Thus, the learner is

either a (Mem)-learner, and the lower bound essentially follows from Theorem 3.1 (where

� = 1), or is an (Equ)-learner, and then the lower bound follows from Lemma 4.2. More

precisely, for (Mem)-learners, considering the class of dfa accepting a set of the form fwg

for some string w of length k+1, at least 2

k

�1 queries are necessary. On the other hand,

for (Equ)-learners, considering the class R

k

, at least c

k

queries are necessary. Notice that

these dfa have at most n

0;k

states and accept only strings of length m

0;k

. Thus, both

lower bound results hold for any input hn

0;k

;m

0;k

i if k is su�ciently large.

Now we have that a � 1. Let R

a;k

be the set of all dfa representations with at

most n

a;k

states accepting only strings of length at most m

a;k

. We distinguish two cases

depending on the type of the �rst query of S on input hn

a;k

;m

a;k

i.

12

Case 1: membership queries are asked �rst.

Consider sets of representations for languages of the form L = wL(r), where r 2 R

a�1;k

and jwj = k. These representations have size at most k+2+n

a�1;k

� n

a;k

, and the length

of the strings they accept is bounded by k +m

a�1;k

� m

a;k

. Hence, they are in R

a;k

.

Simulate the initial membership query phase of S answering always \no". The number

of queries is less than the total number of membership queries; hence, at the end of the

phase there is still some w

0

of length k that has never appeared as a pre�x of any query in

the phase. Now from our assumption, S can learn the representations for w

0

L(r) where

r 2 R

a�1;k

. Then we can modify S to a learner S

0

that learns R

a�1;k

with a � 1 query

alternations, which contradicts the minimality of a. (S

0

learns L(r) just like S learns

w

0

L(r). Notice that all membership queries of S before its �rst equivalence queries can

be answered \no"; thus, S

0

's �rst query corresponds to S's �rst equivalence query.)

Case 2: equivalence queries are asked �rst.

We now consider representations for sets of the form 0L(r)[1L(r

0

), where r 2 R

a�1;k

and r

0

is in R

k

, the class used in Lemma 4.2. The representations for 0L(r) [1L(r

0

) have

size

3

at most n

a�1;k

+(3k

2

+2) = n

a;k

, and the length of the strings they accept is bounded

by m

a�1;k

+ 1 � m

a;k

. Hence, they are in R

a;k

again.

For the �rst phase of equivalence queries of S, use a teacher that answers while possible

with counterexamples for the 1L(r

0

) part. By the bound on the number of equivalence

queries, we know that after this phase there remain at least two representations in R

k

that

S cannot distinguish. Moreover, during the process, S has obtained only counterexamples

beginning with 1. Now from our assumption again, S must be able to learn the part

0L(r) correctly after this phase. Thus a trivial modi�cation of S learns R

a�1;k

in a � 1

alternations, contradicting again the minimality of a. tu

The following negative result is easy to obtain from the theorem.

Theorem 4.3. There is no polynomial time (Mem,Equ)-learner for DFA that alternates

o(

n

log

2

n

) times between membership and equivalence queries.

Proof. Consider any in�nite sequence fn

i

g

i�0

of natural numbers such that for each n

i

there are a

i

and k

i

with the properties:

� n

i

= (3k

2

i

+ 1) � (a

i

+ 1),

3

It seems that we need 1 + n

a�1;k

+ (3k

2

+ 2) states. But we can merge the �nal states of r and r

0

,

thereby reducing one state.

13

� a

i

= o(n

i

= log

2

n

i

) (as a function of i).

Note that k

i

= !(log n

i

). We will show that no polynomial time (Mem,Equ)-learner for

DFA can alternate less than a

i

times to learn dfa with n

i

states. The theorem follows if

we can prove this for any sequence fn

i

g

i�0

with these properties.

Take any learner S that runs in polynomial time, and for each n

i

in the sequence

consider the behavior of S with input hn

i

; 2k

i

(a

i

+ 1)i. By Theorem 4.1, one of the

following facts holds for some target dfa with n

i

states:

1. either S asks an equivalence query of size at least 2

c

0

k

i

,

2. or S alternates more than a

i

times,

3. or S asks at least c

k

i

equivalence queries,

4. or S asks at least 2

k

i

� 1 membership queries,

where c > 1 and c

0

> 0 are constants. If cases 1, 3, or 4 hold for in�nitely many i,

then the running time of S is d

k

i

= d

!(logn

i

)

, for in�nitely many i and the constant

d = minf2

c

0

; c; 2g > 1. This contradicts the assumption that S runs in polynomial time.

Hence, case 2 must hold for all but �nitely many i and we are done. tu

5. Trade-o� Between the Number of Membership and Equivalence Queries

In this section, we consider the general case; that is, no restriction (except the number of

queries) is assumed on the way of asking membership and equivalence queries. We show

some trade-o� relation between the number of membership and equivalence queries.

Let us consider the performance of Angluin's query learning algorithm [1] for DFA.

Suppose that the algorithm is to learn a n state dfa within a length bound m. Then it

is easy to see that the algorithm asks at most n equivalence queries and a polynomial

number of membership queries. Here we improve the equivalence query complexity while

spending some more membership queries. More speci�cally, our improved algorithm takes

hn;m; hi as input and learns a target dfa in the bounded learning sense, while asking

n=h equivalence queries and 2

h

� p

1

(n + m) membership queries, where p

1

is some �xed

polynomial. Furthermore, the algorithm runs in polynomial time w.r.t. the number of

queries.

Theorem 5.1. There is a (Mem,Equ)-learner S

0

for DFA with the following complexity:

for every n;m; h > 0,

14

(a) #equ-query

S

0

(n;m; h) �

n

h

,

(b) #mem-query

S

0

(n;m; h) � 2

h

� p

1

(n+m), and

(c) S

0

on input hn;m; hi halts within time p

2

(#query

S

0

(n;m; h)),

where p

1

and p

2

are polynomials depending on S

0

.

Remark. The upper bound for the membership query complexity depends on the

choice of our alphabet, i.e., � = f0; 1g. More in general, we have #mem-query

S

0

(n;m; h)

� k�k

h

� p

0

1

(n+m+ k�k).

Our algorithm is a generalization of Angluin's algorithm. Let us recall some facts

about Angluin's algorithm. Angluin's algorithm uses observation table for constructing

hypothesis. An observation table is a tuple (S;E; T), where S and E are �nite and pre�x-

closed sets, and T maps (S [S � �) � E to f0; 1g. For each s 2 S [S � � and e 2 E,

T (s; e) is set 0 if s � e is not in the target set, and 1 if s � e is in the target set. At certain

points, the algorithm builds a dfaM =M(S;E; T) (i.e., a hypothesis) from the table, and

presents M to the teacher as an equivalence query. If the answer is \yes", the algorithm

halts. Otherwise, it uses a received counterexample to expand S, E, and T , in a way

such that the next equivalence query must have at least one more state than the previous

one. Furthermore, the algorithm has the following property: If the target set is accepted

by a n state dfa, then when the constructed hypothesis has n states at some point, it

must accept exactly the target language. From these properties, it is clear that Angluin's

algorithm needs at most n equivalence queries.

In an observation table, the part corresponding to S � � � E is used for determining

M 's move when reading one symbol. We will extend this part to S ��

�h

�E so that M 's

move after reading up to h symbols can be determined from this part. It will be shown

that if dfa is constructed from such a table, then at least h states are added between

each two consecutive equivalence queries. Thus, our learning algorithm, which uses this

extended observation table, needs at most n=h equivalence queries. By this expansion,

however, the algorithm needs to ask more membership queries to �ll in the table. This is

the idea of our generalization.

Proof. We �rst de�ne some notions and notations. In the following discussion, we use

the same symbols as above. Here, as in [1], we use row(s), where s 2 S � �

�h

, to denote

the �nite function mapping each e 2 E to T (s; e). In other words, row(s) is the sth

row of observation table (S;E; T). Our learning algorithm uses observation table with

lookahead h. It is a tuple (S;E; T) as before, but table T maps (S � �

�h

) � E to f0; 1g.

Note that Angluin's tables are tables with lookahead 1. Angluin used the notions of

15

\closed observation table" and \consistent observation table". These notions are extended

naturally here. That is, an observation table with lookahead h is called closed if for every

s 2 S and every u 2 �

�h

, there is some s

0

2 S such that row(s � u) = row(s

0

). An

observation table with lookahead h is called consistent if for every pair of s

1

and s

2

2 S,

if row(s

1

) = row(s

2

), then row(s

1

� u) = row(s

2

� u) for all u 2 �

�h

.

Now describe our learner S

0

. It is almost the same as Angluin's algorithm, except

that it uses an observation table with lookahead h. This requires �lling k�

�h

k entries in

T with membership queries each time that S increases.

Clearly, this modi�cation does not a�ect the correctness of the learner; that is, like

Angluin's learning algorithm, S

0

learns DFA correctly. Furthermore, maintaining this

additional information roughly increases the number of necessary membership queries by

k�

�h

k �p

1

(n+m) for some polynomial p

1

. Thus, the entire membership query complexity

satis�es the theorem with some polynomial p

1

. It is also easy to show that S

0

halts in

time polynomial in the total number of queries.

Now it remains to show that at least h states are added after each equivalence query

since this implies the desired upper bound on the number of equivalence queries. To show

this property, it is enough to prove the following stronger version of Lemma 4 in [1]. tu

Lemma 5.2. Assume that (S;E; T) is a closed and consistent observation table with

lookahead h. Suppose that dfa M =M(S;E; T) has k states. If M

0

is any dfa consistent

with T that has less than k + h states, then M

0

is isomorphic to M .

Proof. In the following, let M = (Q; q

0

; F; �) and M

0

= (Q

0

; q

0

0

; F

0

; �

0

). We assume

without loss of generality that M

0

is minimum. That is, every state of M

0

can be reached

from q

0

0

and no two states in M

0

are equivalent.

We show an isomorphism between M and M

0

. Let us �rst recall or give some de�ni-

tions.

� Recall that Q = frow(s) : s 2 Sg is the set of states of M .

� For every q

0

2 Q

0

, de�ne Row(q

0

) to be a �nite function from E to f0; 1g such that

Row(q

0

)(e) = 1 i� �

0

(q

0

; e) 2 F

0

.

� For every s 2 S, de�ne f(s) = �

0

(q

0

0

; s). Note that Row(f(s)) = row(s), from the as-

sumption thatM

0

is consistent with T . In fact, for every u 2 �

�h

, Row(�

0

(f(s); u)) =

row(s � u).

� For every q 2 Q, de�ne �(q) = ff(s) : row(s) = qg.

In the following sequence of claims, we show that � de�nes a bijection between Q and the

set ffq

0

g : q

0

2 Q

0

g. Clearly, we can then transform � into a bijection from Q to Q

0

, and

16

this turns out to be our desired isomorphism.

Claim 1. kRange(f)k � k.

Proof. From the above remark, it is easy to see that f(s

1

) = f(s

2

) implies row(s

1

) =

row(s

2

). On the other hand, there are k di�erent rows row(s) in T (i.e., the states of M);

hence, there must be at least k di�erent f(s). Thus, kRange(f)k � k. tu Claim 1

Intuitively, the next claim states that for any two states in M

0

there is already some

string in E that proves them di�erent. Here is where we make explicit use of the lookahead.

Claim 2. For any two di�erent states q

0

1

and q

0

2

in Q

0

, Row(q

0

1

) 6= Row(q

0

2

).

Proof. By induction on the length of a string x witnessing that q

0

1

and q

0

2

are not equiv-

alent.

If x is the empty string, then Row(q

0

1

) and Row(q

0

2

) are di�erent in the entry corre-

sponding to the empty string.

Consider the case where x is not empty. For the �rst symbol a 2 � of x, de�ne

q

0

3

= �

0

(q

0

1

; a) and q

0

4

= �

0

(q

0

2

; a). Then q

0

3

6= q

0

4

(otherwise x is not a witness), and a string

shorter than x witnesses that q

0

3

and q

0

4

are not equivalent. By induction hypothesis,

Row(q

0

3

) is di�erent from Row(q

0

4

).

On the other hand, because there are less than h states in Q

0

� Range(f) (since

kRange(f)k � k from Claim 1), q

0

1

and q

0

2

must be reachable from states in Range(f)

with a path of length less than h. More precisely, there exist u, v in �

<h

and s

1

, s

2

in S

such that q

0

1

= �

0

(f(s

1

); u) and q

0

2

= �

0

(f(s

2

); v). Then

row(s

1

� ua) = Row(q

0

3

) 6= Row(q

0

4

) = row(s

2

� va)

(the equalities are true because M

0

is consistent with T and ua and va are in �

�k

). By

the consistency of T , it must happen that

row(s

1

� u) 6= row(s

2

� v):

But row(s

1

� u) = Row(q

0

1

) and row(s

2

� v) = Row(q

0

2

), again because M

0

is consistent

with T , and u and v are in �

�p

. Hence Row(q

0

1

) 6= Row(q

0

2

). tu Claim 2

Now using Claim 2, we prove that � is a bijection from Q to ffq

0

g : q

0

2 Q

0

g in the

following way.

Claim 3.

17

(1) For every q 2 Q, k�(q)k � 1,

(2) Q

0

� Range(f), and

(3) � is a bijection from Q to ffq

0

g : q

0

2 Q

0

g.

Proof. Part (1): Suppose that some �(q) has two di�erent states q

0

1

and q

0

2

in Q

0

. By

Claim 2, Row(q

0

1

) 6= Row(q

0

2

). Since both q

0

1

and q

0

2

are in �(q), there are strings s

1

; s

2

in S

such that q

0

1

= f(s

1

), q

0

2

= f(s

2

), and row(s

1

) = row(s

2

) = q. However, we have row(s

1

)

(= Row(f(s

1

))) = Row(q

0

1

) 6= Row(q

0

2

) = (Row(f(s

2

)) =) row(s

2

). A contradiction.

Part (2): Take any q

0

in Q

0

. By an argument as in Claim 2, q

0

must be reachable from

some state f(s

1

) using a string u 2 �

<h

, that is, Row(q

0

) = row(s

1

� u). Because T is

closed, there is some s

2

2 S such that row(s

1

� u) = row(s

2

). Therefore, Row(q

0

) =

row(s

2

) = Row(f(s

2

)). By Claim 2 this means q

0

= f(s

2

), and thus q

0

2 Range(f).

Part (3): From the above part (2) and our de�nitions, we have

Q

0

� Range(f) �

[

q2Q

�(q) � Q

0

:

Note also that kRange(f)k � k (but kQk = k) and that k�(q)k � 1 for every q 2 Q.

Thus, it must happen that k�(q)k = 1 for every q 2 Q and that all �(q) are di�erent.

Furthermore, every q

0

2 Q

0

has some q 2 Q such that q

0

2 �(q), which is in fact fq

0

g =

�(q). tu Claim 3

Finally we must show that � is not only a bijection but also an isomorphism between

M and M

0

. That is, it carries q

0

to q

0

0

, it preserves � to �

0

, and it carries F to F

0

. But

having proved that Q and Q

0

have the same cardinality, the rest is exactly as in Angluin's

proof. tu

From this theorem, it is straightforward to derive the following two upper bound

results.

Corollary 5.3. Let f(n) be any polynomial time computable function such that f(n) <

n. There exist a (Mem,Equ)-learner S

f

for DFA, and a polynomial q

f

such that for every

n;m > 0,

#equ-query

S

f

(n;m) �

n

f(n)

and #mem-query

S

f

(n;m) � 2

f(n)

� q

f

(n+m):

Corollary 5.4. For any c > 0, there exists a polynomial time (Mem,Equ)-learner S

c

for

DFA such that #equ-query

S

c

(n;m) �

n

c log n

for every n;m > 0.

18

Concerning these upper bound results, a natural question is whether they can be

improved. For example, we may ask whether the number of equivalence queries can

be reduced by more than a O(log n) factor. However, it is shown in the following that

such reduction is not possible without increasing the number of membership queries more

than polynomially. That is, there is a certain type of trade-o� between the number of

membership and equivalence queries.

For showing such trade-o� phenomena, we �rst prove the following somewhat general

lower bound.

Theorem 5.5. For any (Mem,Equ)-learner S for DFA, and for any n;m > 0, we have

the following bounds:

#equ-query

S

(n;m) �

�

n� 2

m

�

or #mem-query

S

(n;m) � 2

m

�

�

n� 2

m

�

:

Remark. Proposition 1.2 (1) is a special case, i.e., n = m+ 2, of this theorem.

Proof. We show a property stronger than the theorem: For every (Mem,Equ)-learner S

that has query complexity better than the above, and every (Mem,Equ)-teacher T , S fails

to learn some dfa from T .

To prove this, �x a (Mem,Equ)-learner S, a bounded (Mem,Equ)-teacher T for DFA,

and any n;m > 0. Without loss of generality we may assume that m+ 2 � n � m2

m

+2

(otherwise one of the inequalities in the theorem holds trivially). Let l = b(n�2)=mc, and

assume that #equ-query

S

(n;m) < l and #mem-query

S

(n;m) < 2

m

� l. De�ne R

l;m;n

to be the set of dfa representations r such that jrj � n ^ L(r) � �

m

^ kL(r)k � l. Notice

that every L � �

m

such that kLk � l is accepted by some dfa with at most lm+ 2 � n

states. Thus, any L � �

m

of size at most l has some dfa representation in R

l;m;n

.

In the following, we exhibit some set that has a dfa representation in R

l;m;n

and for

which S fails to learn from T . The set is constructed while simulating S with T . De�ne

two sets Pos and Neg to be initially empty. Simulate S with input hn;mi, answering its

queries as follows:

� When S makes a membership query x, answer \yes" if x 2 Pos; otherwise, answer

\no" and add x to Neg .

� When S makes equivalence query r, one of the following three cases occurs.

� Pos 6= L(r)

�m

: Return the counterexample x given by T for L(r) when the target

concept is Pos, and add x to Neg if it is not in Pos.

� Pos = L(r)

�m

and there is some x of length m not in Pos [Neg: Return x and

add x to Pos.

19

� Otherwise: Return \yes".

Let POS and NEG be the values of Pos and Neg when S halts, and we will use POS

to de�ne the desired set. But �rst, we need to show that S indeed halts in the above

simulation. In fact, we can prove that S makes less than l equivalence queries and 2

m

� l

membership queries in the simulation.

Let Pos

i

be the value of Pos just after the ith query of S is answered in the simulation.

We make the following claim, whose veri�cation is straightforward and left to the reader.

Claim. For every i, the answers returned for the �rst i queries of the simulation are

exactly those returned by the teacher T when the target concept is Pos

i

.

With this claim we can prove that in the simulation, S makes less than l equivalence

queries. Assume otherwise that S makes l (or more) equivalence queries. By the claim,

it also makes l equivalence queries to the teacher T . Let Pos

0

be the value of Pos just

before S makes its lth equivalence query. Note that strings are added to Pos only when

S makes equivalence queries, so kPos

0

k � l�1. Furthermore, we always have Pos

0

� �

m

.

Hence, Pos

0

has some dfa representation in R

l;m;n

of size at most n. That is, S makes l

or more equivalence queries to T on some target concept in R

l;m;n

. A contradiction with

the query bound we have assumed for S.

Similarly, we can prove that S makes less than 2

m

� l membership queries in the

simulation. Thus, the total number of queries in the simulation is at most (l� 1)+ (2

m

�

l � 1) = 2

m

� 2.

Let POS and NEG be the values of Pos and Neg when S halts. Note that each query

of S adds at most one string to either Pos or Neg ; hence, kPOS [NEGk � 2

m

� 2.

Thus, there are two di�erent strings w

1

; w

2

2 �

m

that are not in POS [NEG . Note that

POS [fw

1

g and POS [fw

2

g has at most l elements and that they are subsets of �

m

;

thus, some dfa r

1

; r

2

2 R

l;m;n

recognize these two sets. Now, it follows from our discussion

above that S receives the same answers during the executions of hS; T (r

1

)i(n;m) and

hS; T (r

2

)i(n;m), namely, the answers given in the simulation. Therefore, S with teacher

T outputs a wrong representation for either r

1

or r

2

. tu

As a corollary of this theorem, we have the following lower bound in contrast with

Corollary 5.3.

Corollary 5.6. Let f(n) be any function such that f(n) < n and f(n) becomes arbi-

trarily large as n increases, and let S be any (Mem,Equ)-learner for DFA. Then for some

constants c

1

; c

2

> 0, and for in�nitely many n;m > 0, we have

20

#equ-query

S

(n;m) �

n

f(n)

or #mem-query

S

(n;m) � 2

c

1

f(n)

�

c

2

n

f(n)

Proof. De�ne a nondecreasing sequence m

1

;m

2

; ::: so that m

n

� f(n)=2 and n=f(n) �

b(n� 2)=m

n

c � 3n=f(n). Then the corollary follows from Theorem 5.5 for these pairs of

n and m

n

. (In this rough estimation, c

1

= 1=2 and c

2

= 3.) tu

Thus, roughly speaking, the reduction of the equivalence query complexity by 1=f(n)

factor always costs us about 2

O(f(n))

membership queries. One interesting example is the

following case, which shows the limitation of Corollary 5.4.

Corollary 5.7. Let f(n) be any function such that f(n) < n and f(n)= log n becomes

arbitrarily large as n increases. Then there exists no polynomial time (Mem,Equ)-learner

S for DFA with the query complexity #equ-query

S

(n;m) �

n

f(n)

.

References

1. Angluin, D., Learning regular sets from queries and counterexamples, Information

and Computation, Vol. 75, 1987, pp.87-106.

2. Angluin, D., Queries and concept learning, Machine Learning, Vol. 2, 1988, pp.319{

342.

3. Angluin, D., Negative results for equivalence queries,Machine Learning, Vol. 5, 1990,

pp.121{150.

4. Angluin, D., and Kharitonov, M., When won't membership queries help?, in Proc.

23rd ACM Sympos. on Theory of Computing, ACM, 1991, pp.444{454.

5. Gold, E.M., Identi�cation in the limit, Information and Control, Vol. 10, 1967,

pp.447{474.

6. Hopcroft, J, and Ullman, J., Introduction to Automata Theory, Languages, and Com-

putation, Addison-Wesley, Reading, 1979.

7. Kearns, M., and Valiant, L., Cryptographic limitations on learning boolean formulae

and �nite automata, in Proc. 21st ACM Symposium on Theory of Computing, ACM,

1989, pp.433{444.

21

8. Pitt, L., Inductive inference, DFAs, and computational complexity, in Proc. Inter-

national Workshop on Analogical and Inductive Inference AII'89, Lecture Notes in

Arti�cial Intelligence 397, Springer-Verlag, 1989, pp.18{42.

9. Pitt, L., and Warmuth, M., Reductions among prediction problems: on the di�culty

of prediction automata, in Proc. 3rd Structure in Complexity Theory Conference,

IEEE, 1988, pp.60{69.

10. Valiant, L., A theory of the learnable, Communications of the ACM, Vol. 27, 1984,

pp.1134{1142.

11. Watanabe, O., A formal study of learning via queries, in Proc. 17th International

Colloquium on Automata, Languages and Programming, Lecture Notes in Computer

Science 443, Springer-Verlag, 1990, pp.137{152.

12. Watanabe, O., A framework for polynomial time query learnability, Technical Report

92TR-0003, Dept. of Computer Science, Tokyo Institute of Technology, 1992. To

appear in Mathematical Computation Theory.

22

