Adaptive XML Tree Mining on Evolving Data Streams

Albert Bifet
Ricard Gavalda

ABIFETQLSI.UPC.EDU
GAVALDA@QLSI.UPC.EDU

Universitat Politecnica de Catalunya, Departament de Llenguatges i Sistemes Informatics

Abstract

We propose a new method to classify trees,
using closed and maximal frequent trees.
Closed trees maintain the same information
as frequent trees using less space and maxi-
mal trees maintain approximate information.
We use them to reduce the number of classifi-
cation features. We present a new framework
for data stream tree classification. For the
first component of our classification frame-
work, using a methodology based in Galois
Lattice Theory, we present three closed tree
mining algorithms: an incremental one INC-
TREEMINER, a sliding-window based one,
WINTREEMINER, and finally one that mines
closed trees adaptively from data streams,
ADATREEMINER. To the best of our knowl-
edge this is the first work on tree classifi-
cation in streaming data varying with time.
We give a first experimental evaluation of the
proposed classification method.

1. Introduction

Tree classification and the frequent tree discovery task
have been important tasks over the last decade. Nowa-
days, they are becoming harder, as the size of the trees
datasets is increasing and we cannot assume that data
has been generated from a static distribution. If we
want accuracy in the results of our algorithms, we
have to consider that the distribution that generates
data may vary over time, often in an unpredictable
and drastic way.

Tree Mining is becoming an important field of research
due to the fact that XML patterns are tree patterns
and that XML is becoming a standard for information
representation and exchange over the Internet. XML

Presented at ILP-MLG-SRL, Leuven, Belgium, 2009.

data is growing and it will soon constitute one of the
largest collection of human knowledge. XML tree clas-
sification has been done traditionally using informa-
tion retrieval techniques considering the labels of nodes
as bags of words. With the development of frequent
tree miners, classification methods using frequent trees
appeared (Zaki & Aggarwal, 2003). Recently, closed
frequent miners were proposed (Chi et al., 2001), and
using them for classification tasks is the next natural
step.

A longer version of this paper will be available from
the first author webpage.

2. Preliminaries

Trees are connected acyclic graphs, rooted trees are
trees with a vertex singled out as the root, and un-
ranked trees are trees with unbounded arity. We say
that tq,...,t; are the components of tree t if ¢t is made
of a node (the root) joined to the roots of all the ¢;’s.
We can distinguish betweeen the cases where the com-
ponents at each node form a sequence (ordered trees)
or just a set (unordered trees). We will deal with
rooted, unranked trees.

An induced subtree of a tree t is any connected sub-
graph rooted at some node v of ¢ that its vertices and
edges are subsets of those of t. An embedded subtree of
a tree t is any connected subgraph rooted at some node
v of ¢ that does not break the ancestor-descendant re-
lationship among the vertices of t. We are interested
in induced subtrees.

The (infinite) set of all trees will be denoted with 7,
but actually all our developments will proceed in some
finite subset of 7 which will act as our universe of
discourse.

The input to our data mining process, now is a given
finite or infinite dataset D of transactions, where each
transaction s € D consists of a transaction identifier,
tid, a tree, and a discrete class label. Tids are sup-
posed to run sequentially from 1 to the size of D. From

Adaptive XML Tree Mining on Evolving Data Streams

that dataset, our universe of discourse U is the set of
all trees that appear as subtree of some tree in D.

Figure 1 shows a finite dataset example of trees.

30 @<§8
o o
Q

CLASS2

o

Crassl CLASS2 Crassl

D
Figure 1. A dataset example

Following standard usage, we say that a transaction s
supports a tree t if t is a subtree of the tree in trans-
action s. The number of transactions in the dataset
D that support t is called the support of the tree ¢t. A
subtree t is called frequent if its support is greater than
or equal to a given threshold min_sup. The frequent
subtree mining problem is to find all frequent subtrees
in a given dataset. Any subtree of a frequent tree is
also frequent and, therefore, any supertree of a non-
frequent tree is also nonfrequent (the antimonotonicity

property).

2.1. Frequent Tree Compression

We define a frequent tree ¢ to be closed if none of its
proper supertrees has the same support as it has. Gen-
erally, there are much fewer closed trees than frequent
ones. In fact, we can obtain all frequent subtrees with
their support from the set of frequent closed subtrees
with their supports. So, the set of frequent closed sub-
trees maintains the same information as the set of all
frequent subtrees.

We define a frequent tree t to be maximal if none of t’s
proper supertrees is frequent. All maximal trees are
closed, but not all closed trees are maximal, so there
are more closed trees than maximal. Note that we
can obtain all frequent subtrees without their support
from the set of maximal frequent subtrees. So, the set
of maximal frequent subtrees maintains approximately
the same information as the set of all frequent subtrees.

Maximal trees are trees that do not have any fre-
quent supertree. All maximal trees are closed trees.

Tree Trans.

Closed | Freq. not Closed Trees | 1 | 2 | 3 | 4

C1 i 1 O 1 O
o

Co Q Q 170101

d D

c3 Q B NB O|1]1]1

Q
90000
C4 Q 171111

Figure 2. Frequent trees from dataset example (min_sup =
30%), and their corresponding attribute vectors.

If min_sup is zero, then maximal trees are the trans-
action trees.

Following standard usage on Galois lattices, we con-
sider now implications of the form A — B for sets of
trees A and B from U. Specifically, we consider the
following set of rules: A — I'p(A). Alternatively, we
can split the consequents into {A — ¢ | t € I'p(A)}.

It is easy to see that D obeys all these rules: for each
A, any tree of D that has as subtrees all the trees of
A has also as subtrees all the trees of I'p(A).

Proposition 1 Let t; be a frequent tree for D. A
transaction tree t satisfies t; < t, if and only if it sat-
isfies Ap(t;) S t.

We use Proposition 1 to reduce the number of at-
tributes on our classification task, using only closed
frequent trees, as they keep the same information. The
attribute vector of a frequent tree will be the same as
its closed tree attribute vector. Also, we may reduce
the number of attributes on our classification task, us-
ing only maximal frequent trees, as they keep approx-
imately the same information as closed frequent trees.

Adaptive XML Tree Mining on Evolving Data Streams

Maximal Closed
BAGGING Unordered Ordered Unordered Ordered
Trees || Att. Acc. Mem. || Att. | Acc. | Mem. || Att. | Acc. | Mem. || Att. | Acc. | Mem.
CSLOG12 15483 84 79.64 1.2 7 79.63 1.1 228 | 78.12 2.54 183 | 78.12 2.03
CSLOG23 15037 88 79.81 1.21 80 79.8 1.09 243 | 78.777 | 2.75 196 | 78.89 2.21
CSLOG31 15702 86 79.94 1.25 80 79.87 1.17 243 77.6 2.73 196 | 77.59 2.19
CSLOG123 | 23111 84 80.02 1.7 78 79.97 1.58 228 | 78.91 4.18 181 78.91 3.31
Maximal Closed
BOOSTING Unordered Ordered Unordered Ordered
#Trees || Att. Acc. Mem. || Att. Acc. Mem. || Att. | Acc. | Mem. || Att. [Acc. | Mem.
CSLOG12 15483 84 79.46 1.21 77 78.83 1.11 228 | 75.84 2.97 183 | 77.28 2.37
CSLOG23 15037 88 79.91 1.23 80 80.24 1.14 243 77.24 2.96 196 78.99 2.38
CSLOG31 15702 86 79.77 1.25 80 79.69 1.17 243 | 76.25 3.29 196 | 77.63 2.62
CSLOG123 | 23111 84 79.73 1.69 78 80.03 1.56 228 76.92 4.25 181 76.43 3.45

Table 1. Comparison of tree classification algorithms. Memory is measured in MB. The best individual accuracies are

indicated in boldface (one per row).

3. XML Tree Classification framework
on data streams

Our XML Tree Classification Framework has two com-
ponents:

e An XML closed frequent tree miner, for which we
could use any incremental algorithm that main-
tains a set of closed frequent trees.

e A Data stream classifier algorithm, which we will
feed with tuples to be classified online. Attributes
in these tuples represent the occurrence of the cur-
rent closed trees in the originating tree, although
the classifier algorithm need not be aware of this.

For the first component of the framework, we pro-
pose three tree mining algorithms adapting the gen-
eral framework for trees presented in (Bifet & Gavalda,
2008), and extending unlabelled tree mining methods
to labelled ones:

e INCTREEMINER, an incremental closed tree min-
ing algorithm,

e WINTREEMINER, a sliding window closed tree
mining algorithm

e ADATREEMINER, an adaptive closed tree mining
algorithm

The second component of the framework is based
on MOA. Massive Online Analysis (MOA) (Holmes
et al., 2007) is a framework for online learning from
continuous supplies of examples, such as data streams.
It is closely related to the well-known WEKA project,
and it includes a collection of offline and online as well
as tools for evaluation. In particular, it implements
boosting, bagging, and Hoeffding Trees, both with and
without Naive Bayes classifiers at the leaves.

4. Experimental evaluation

We evaluate our approach to tree classification on real
classification data sets. The real CSLOG data set
spans 3 weeks worth of such XML user-sessions. To
convert this into a classification data set they chose to
categorize each user-session into one of two class labels:
edu corresponds to users from an ”edu“ domain, while
other class corresponds to all users visiting the CS de-
partment from any other domain. They separate each
week’s logs into a different data set (CSLOGx, where
x stands for the week; CSLOG12 is the combined data
for weeks 1 and 2). Notice that the edu class has much
lower frequency rate than other.

Table 1 shows the results on bagging and boosting
using 10 Hoeffding Trees with adaptive Naive Bayes
leaf predictions. Comparing maximal trees with closed
trees, we see that maximal trees use 1/4 to 1/3rd of
attributes, 1/3 of memory, and they perform better.

References

Bifet, A., & Gavalda, R. (2008). Mining adaptively fre-
quent closed unlabeled rooted trees in data streams.
KDD08.

Chi, Y., Xia, Y., Yang, Y., & Muntz, R. (2001).
Mining closed and maximal frequent subtrees from
databases of labeled rooted trees. Fundamenta In-
formaticae, XXI, 1001-1038.

Holmes, G., Kirkby, R., & Pfahringer, B.
(2007). MOA: Massive Online Analysis.
http://sourceforge.net/projects/moa-
datastream.

Zaki, M. J., & Aggarwal, C. C. (2003). Xrules: an
effective structural classifier for xml data. KDD 03
(pp. 316-325). New York, NY, USA: ACM.

