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It has been argued that the actual distribution of word frequencies could be 

reproduced or explained by generating a random sequence of letters and spaces 

according to the so-called intermittent silence process. The same kind of process 

could reproduce or explain the counts of other kinds of units from a wide range of 

disciplines. Taking the linguistic metaphor, we focus on the frequency spectrum, 

i.e. the number of words with a certain frequency, and the vocabulary size, i.e. the 

number of different words of text generated by an intermittent silence process. We 

derive and explain how to calculate accurately and efficiently the expected 

frequency spectrum and the expected vocabulary size as a function of the text size. 

 

I.   Introduction 

 

In a seminal work, Benoît Mandelbrot put forward a theory of word frequencies 

(Mandelbrot 1951, 1953). A product of his seminal work is the following simple 

stochastic process. Consider that you generate random words by choosing characters at 

random from an alphabet made of N letters plus a special character indicating the end of 

a word (e.g., a space). A popular version (Miller & Chomsky 1963) assumes that letters 

are equally likely and that the special character has probability σ (hence a specific letter 
has probability (1-σ)/N). We will refer to this kind of process as the intermittent silence 

process (ISP), borrowing the term “intermittent silence” from Miller (1957). Although 

other terms are used for referring to this process we believe that they are not accurate 

enough. For instance, Li (1992) uses the term random text but random texts can be 

generated in many ways, not necessarily through his ISP. For instance, one could 

generate a random text reproducing the long range correlation of real writings using the 

model by Lacalle et al. 2006 (notice that Li’s ISP generates a sequence of independent 

words). Furthermore, Li’s ISP generates words by concatenating characters while 

Lacalle et al.’s (2006) picks already existing words.  

Here we aim to study the frequency of words produced by Miller & Chomsky’s 

(1963) ISP, in which letters are equally likely. Although the case of unequal letter 

probabilities has been considered in the literature (Li 1992, Cohen et al. 1997, Ferrer i 

Cancho & Solé 2002, Wolfram 2002), it is not the focus of our article. In general, the 

empirical frequency of elements (e.g., words) can be studied by means of the rank 

distribution, i.e. the relationship between the absolute or relative frequency of a word 

and its rank (a word has rank i if it is the i-th most frequent word of a text) or the 

frequency spectrum, i.e. the number or the proportion of words of a given frequency 
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within a given text (Tuldava 1996). Whether actual word frequency counts can be 

explained by the ISP is the subject of a long controversy concerning the linguistic 

relevance or utility of word frequency counts (Miller 1957, Miller & Chomsky 1963, Li 

1992; Ferrer i Cancho & Solé 2002, Suzuki et al. 2005, McCowan et al. 2005; Ferrer i 

Cancho 2005). We aim to provide some fundamental results for future rigorous 

comparisons of the ISP versus real words and other situations where the ISP may apply, 

such as frequency counts from animal communication (McCowan et al. 1999) or DNA 

(Furusawa & Kaneko 2003). The reader should not interpret that the scope of the 

problem is restricted to communicative units like words. Unit frequency counts and 

their explanation is the subject of disciplines as different as information science 

(Bailón-Moreno et al. 2005, Egghe 1998), quantitative biology (Gisiger 2001) or 

network theory (Albert & Barabási 2002). Given a certain frequency count, an ISP is 

always a possibility, as the process can be formulated in an abstract way by replacing 

letters with any convenient subunit. This is the spirit of Suzuki et al. (2005), who 

replace letters with faces of a die to make the ISP abstract and general. Hereafter the 

units of word length are letters.  

Miller & Chomsky (1963), restating what Mandelbrot (1953) had calculated 

previously, showed that, <i>, the mean rank of words of the same length generated by 

an ISP, obeys  
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where p(<i>) is the probability of the mean rank <i>, 
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We define T as the text length or the sample size in words. The derivation of Eq. 1 is 

made assuming that all words of the same length appear at least once in the text, which 

is only true for any length in the limit of large T. Furthermore, the derivation is rough, 

as it concerns the probability of the mean rank over words of the same length and not 

the probability of an individual rank. Notice that that it is customary to use Eq. 1 as if it 

had been derived for individual ranks in different disciplines as information sciences 

(Bailón-Moreno et al. 2005, Egghe 1998) and computational linguistics (Manning & 

Schütze 1999). In contrast, here we aim to derive the exact expected frequency 

histogram of words of finite (and not necessarily very large) samples from the point of 

view of the frequency spectrum.  

In the literature, there is no agreement on the minimum word length L0 of the words 

that an ISP generates. For instance, Li (1992) excludes empty words, i.e. L0=1, whereas 

Miller & Chomsky (1963) assume empty words (or consecutive spaces), i.e. L0=0. We 

believe that L0=1 is more reasonable and realistic for human language, but we will 

embrace all the possibilities with a generalized ISP with three parameters, i.e. N, σ  and 
L0. 
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The main goal of this article is deriving the expected frequency spectrum of our 

three-parameter ISP, i.e. the expected value of n(f|T), the number of words produced by 

an ISP that occur f times knowing that the text has length T>0, with f∈[1,T]. In what 

follows, we assume that N is a strictly positive natural number, σ∈(0,1) and L0≥0. 
 

II.   Analytical derivation of the frequency spectrum 

 

We define l(w) as the length of the word w. Knowing that there are N
L
 words of 

length L, we can write n(f|T) as 
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where I(f|w,L,T) is a Bernoulli variable indicating if the word w has appeared f times 

knowing that l(w)=L and the text produced by an ISP has length T (I(f|w,L,T)=1) or not 

(I(f|w,L,T)=0). Hence, the expected value of n(f|T) is  
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Being I(f,w,L,T) a Bernoulli variable, we have E[I(f|w,L,T)]=p(f|w,L,T), the 

probability that a word w is produced f times by and ISP knowing that l(w)=L and that 

the text has length T. Since there are N
L
 words of length L, we have  
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Now we aim to derive, p(f|w,L,T). On the one hand, the length of a word produced 

by an ISP is geometrically distributed, i.e. 
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with L=L0, L0+1, L0+2,… When L0=0, Eq. 7 defines the typical geometric distribution 

(Wimmer & Altmann 1999) while it defines a shifted or displaced geometrical 

distribution when L0=1. On the other hand, there are N
L
 words of length L and the 

probability that an ISP produces a word w which has length L is  
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where p(w|L) is the probability that an ISP produces w knowing that it has length L. 

Being all letters equally likely, it follows that all words of the same length L are equally 

likely, p(w|L)=1/N
L
. This way, replacing Eq. 7 into Eq. 8 we finally obtain  
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We define p(w,L|T) as the probability that an ISP produces a word w of length L in a 

text of length T. We obviously have that p(w,L|T)=p(w,L) due to independence. 

Therefore, the frequency of occurrence of a word w which has length L in a text of 

length T is binomially distributed with parameters T and p(w,L), i.e.  
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with f∈[1,T]. Finally, replacing Eq. 10 into Eq. 6 yields  
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We also want to study the vocabulary growth of the ISP with T. We define n(T) as 

the number of different words produced by an ISP in a text of length T. Writing n(T) as  
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it becomes obvious that n(T) is a statistic of the frequency spectrum. Using Eq. 12,  the 

expected value of n(T) becomes just simply 
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Replacing Eq. 11 into Eq. 13 and knowing that  
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we finally obtain  
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Using the binomial expansion, Eqs. 11 and 15 can be rewritten as an exact finite 

summation (Appendix A)  
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III. Numerical calculation of the frequency spectrum 

 

In Appendix C, it is argued that it is convenient to calculate E[n(f|T)] through Eq. 11 

and E[n(T)] through Eq. 13. Thus, the crux of the numerical calculation problem 

reduces to Eq. 11. Eq. 11 contains a summation from L=L0 to ∞. In practice, the 

summation should be performed in a finite range, i.e. L∈[Lmin,Lmax] (with Lmin≥ L0) out 

of which the contribution of the terms of the summation might be neglected. We 

actually would like to calculate the relationship between Lmax and a desired error  or 

actually (for simplicity) an upper bound of the desired error, i.e. γmax (e.g.,  γmax=10
-10
),  

when neglecting the contributions of the terms of lengths above Lmax  in the calculation 

of E[n(f|T)]. Similarly, we would like to do the same for and upper bound of the desired 

error when neglecting the contribution of the terms below Lmin. This way, Eq. 11 gives 

an upper bound of the right error  
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and the left error  
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for E[n(f|T)]. In practice, we want to fix the desired maximum error γmax and determine 

Lmax. It can be shown that the upper bound of the right error of E[n(f|T)] gives 

(Appendix B) 
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and Lmax+1-L0≥0 while an upper bound of the left error gives (Appendix B)  
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E[n(T)] can be calculated with maximum error )(max Tγ  from Eq. 12. If we impose that 

)|(max Tf+γ  and )|(max Tf−γ  are the same for each frequency, the maximum errors of 

individual frequencies are related with )(max Tγ  through 

 

))|1()|1(()( maxmaxmax TTTT −+ += γγγ . (24) 

 

If we impose 0)|1(max =− Tγ  for simplicity on Eq. 24, we obtain the necessary maximum 

error of individual frequencies, i.e.  
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Further technical remarks for calculating E[n(f|T)] and E[n(T)] with a computer are 

given in Appendix C.  

 

IV. Some numerical results 

 

Fig. 1 shows E[n(f|T)] for increasingly larger values of T in order of magnitude, with 

N=26 and σ=0.18, which according to Miller (1957) and Miller & Chomsky (1963) are 

representative of written English. Calculations are based on Eq. 11 with bounded length. 

The error of the finite interval numerical approximation does not exceed 10
-40
. To see it, 

notice that we obtained Lmax for each frequency f from Eq. 20 ( 40

max 10)|( −+ =Tfγ  for 

each f) and used Lmin=L0 for simplicity (thus 0)|(max =− Tfγ ).  

Each mode in the curves of Fig. 1 is mainly due to the contribution of words of the 

same length L within the range of L that is expected to be observed at least once in a 

text of length T. In Fig. 1, arrows are used to indicate the peaks of the different lengths. 

The gaps between modes can be explained by the fact that the probabilities of words of 

length L are smaller than those of words of length L-1 (L>L0) by a factor of (1-σ)/N. It is 
well-known from numerical experiments that a more gradual transition between the 

probabilities of words of different lengths (e.g., by not using equally likely letters) 

smoothes the frequency spectrum of the ISP (Ferrer i Cancho & Solé 2002, Cohen et al. 

1997). Similarly, it is known that non-commensurate letter probabilities smooth the rank 

distribution of the ISP (Li 1992, Wolfram 2002).  

Fig. 2 shows the practically linear growth of E[n(T)] in logarithmic scale with the same 

parameters as in Fig. 1. Calculations are based on Eq. 15 with bounded length. The 

maximum error of the finite interval numerical approximation does not exceed 10
-35
, i.e. 

40

max 10)( −≤Tγ , in Fig. 2. To see it, consider that we calculated E[n(T)] through Eq. 13 

and for each frequency f and each T we fixed the maximum error to 10
-40
 as in Fig. 1 

( 40

max 10)|( −+ =Tfγ  and 0)|(max =− Tfγ  for each f and each T). Thus, )(max Tγ  obeys Eq. 

25 in Fig. 2. Defining Tmax as the maximum value of T, Eq. 25 gives  

 

)|1()( maxmaxmax TTT +≤ γγ . (26) 

 

Thus, replacing Tmax=10
5
 from Fig. 2 and 40

max 10)|1( −+ =Tγ  into Eq. 26, we conclude 

that the error of E[n(T)] in Fig. 2 does not exceed 10
-35
. 
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V. Discussion 

 

In this article we have derived the frequency spectrum of the ISP and a particular 

aspect of this spectrum, i.e. the vocabulary growth as the text length increases. We have 

explained how the expected frequency spectrum and the expected vocabulary growth 

can be calculated efficiently and accurately with a computer. By doing so, we have 

provided the basis for evaluating the goodness of the fit of the ISP to empirical 

histograms (for instance, plots of the number of words with a certain frequency or plots 

of the authors with a certain a certain number of publications). Imagine that we want to 

evaluate the goodness of the fit of concrete parameters of the ISP. One possible way of 

proceeding could be the following three steps (Goldstein et al. 2004):  

1. Calculating the deviation δ between the actual frequency histogram and the 

expected frequency spectrum for an ISP with these parameters.  

2. Calculating the probability of obtaining a deviation larger or equal than δ  (e.g.,  
using a Monte Carlo procedure to estimate this probability).  

3. If this probability is below a certain (low) significance level one concludes that 

it is unlikely that the histogram has been generated by an ISP. Otherwise, this 

possibility cannot be denied. 

Our article is crucial for step 1.   

Notice that our results are a turning point in the characterization of the distributions 

generated by the ISP and its applications (e.g., fitting). To see it, consider that using Eq. 

1 to evaluate the fit of an ISP to a rank histogram is problematic because this equation:  

• Does not define the relationship between a rank and its probability but the 

relationship between the mean rank (over words of the same length) and its 

probability. Therefore evaluating the fit of the ISP using Eq. 1 would lack 

precision.  

• It assumes that all words of a certain length have appeared in a text of certain 

length, while this is not true for sufficiently long words in finite texts.   

Therefore Eq. 1 cannot be used for step 1 in a rigorous statistical test of fit. In contrast, 

we have shown that the expected frequency spectrum of the ISP can be calculated 

accurately for individual frequencies taking into account the exact length of the text, 

which are two weak points in the popular derivations of the “rank” distribution of the 

ISP (e.g., Miller & Chomsky 1963, Li 1992, Suzuki et al. 2005). We leave for future 

work a systematic and rigorous study of the goodness of the fit of the ISP for the 

frequency spectrum of real words or other units. 
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Appendix A 

 

A.1.Binomial expansion of E[n(f|T)]. 

 

Now we will transform Eq. 11 from a summation on the infinite interval [L0,∞] to a 

summation on [0,T-f] employing the binomial expansion 
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Replacing Eq. 9 and Eq. A1 into Eq. 11 gives 
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Before we proceed, we need to pay attention to two issues. First, the fact that  
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yields  
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for r≠1. Secondly, notice the fact that σ∈(0,1), f∈[1,T] and thus (recall Eq. 22) gives 
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Applying Eq. A4, the inner summation within Eq. A2 becomes 
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assuming r(f+i)<1, which is warranted by Eq. A5 and the fact that f+i≥1. 
 

Finally, replacing Eqs. 22 and A6 into Eq. A2 we obtain   

 








 −









+−
−









= ∑

−

=

−

i

fT

Nifr
N

f

T
TfnE

i

L

fT

i

i
fLf

0

0

0

)1(

)(1

)1(
)]|([

σσ . 
(A7) 

 

after some algebra. 

 

A.2. Binomial expansion of E[n(T)]. 
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With the same methods employed for deriving Eq. A7, it is possible to transform 

Eq. 15 into a sum on a finite interval. The steps for the derivation are the following. 

Firstly, replacing the binomial expansion 
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and Eq. 9 into Eq. 15 gives 
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Recalling A4 and knowing that r(i)<1 (recall Eq. A5), Eq. A9 becomes 
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after some algebra.  

 

Appendix B 

 

We aim to derive, )|(max Tf+γ , an upper bound of the error of calculating E[n(f|T)] 

approximately to a maximum length Lmax, which is defined in Eq. 18. Knowing that T-f 

≥0 and using ( ) 1),(1 ≤− − fT
Lwp , Eq. 18 gives 
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Applying Eq. A4 on Eq. B1, we obtain  
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assuming r(f)<1, which is warranted by Eq. A5.  

Similarly, we aim to derive )|(max Tf−γ , an upper bound of the error of calculating 

E[n(f|T)] approximately from a minimum Lmin (with Lmin≥0), which is defined in Eq. 19. 
Knowing that T-f ≥0 and using ( ) 1),(1 ≤− − fT

x Lwp , Eq. 19 gives 
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Applying Eq. A4 on Eq. B3, we obtain  
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assuming r(f)≠1, which is again supported by Eq. A5.  
It is possible to derive Lmin and Lmax from the maximum desired left and right error, 

respectively. On the one hand, Eq. B2 yields 
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)(log

))()|(log( max
max −=
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fr
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. 

(B5) 

 

with 
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(B6) 

 

On the other hand, Eq. B4 yields 

 

)(log

))()|()(log( max
min

0

fr

fGTffr
L

L −−= γ
. 

(B7) 

 

Notice that Eq. B7 is useless when L0=1 because Lmin≤L0. To see it, consider that the 

condition Lmin≤1 on Eq. B7 yields  
 

0)()|(max ≥− fGTfγ  (B8) 

 

when L0=1. Eq. B8 is trivially true and thus Lmin≤1 as )|(max Tf−γ  and G(f) are positive 

numbers. When L0=0, our experience with typical parameters of N and σ used in the 
literature of the ISP (e.g., Miller & Chomsky 1963, Li 1992), is that Eq. B7 provides 

very little advantage compared to taking Lmin=0 with small )|(max Tf−γ  (e.g., 

40

max 10)|( −− =Tfγ ). 

 

Appendix C 

 

Here we consider various technical issues that arise when calculating the expected 

frequency spectrum and the expected vocabulary size. Firstly, when calculating LN and 
T

x Lwp )),(1(1 −− separately in Eq. 15, one has to be very careful with the divergence of 

LN  and or the vanishing of T

x Lwp )),(1(1 −− beyond computer precision. For instance, 

if T

x Lwp )),(1(1 −−  is practically zero according to the computer precision, one may 

incorrectly conclude that  0))),(1(1( =−− T

x Lwp although LN  might be huge. A way 

of avoiding this problem is calculating E[n(f|T)] by means of Eq. 11 and Eq. 13 instead 

of Eq. 15.  
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Secondly, Eq. 11 needs calculating the binomial coefficient efficiently. This can be 

done in θ(min(T,T-f)) time (Manolopoulos 2002). Computation time can be saved in the 

calculation of binomial coefficients for  f∈[1,T] knowing that   

 










−
=









fT

T

f

T
. 

(C.1) 

 

Thus, if suffices to calculate the binomial coefficient only in the range  [ ]2/,1 Tf ∈  

using Eq. C.1 when  2/Tk > . Furthermore, it is possible to calculate the binomial 

coefficients for  [ ]2/,0 Tf ∈  in time θ(T) time through the recurrence  
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(C.2) 

 

Thirdly, the taking of logarithms for very large and very small quantities and their 

products is necessary in many cases.  

Fourthly, although the binomial coefficient in Eq. 11 is a common factor, it is 

convenient for safe reasons to move it inside the summation so that very low numbers 

within the original summation do not give a false zero if their product with the binomial 

coefficient cannot be neglected.  

Finally, notice that although Eqs. 16 and 17 are mathematically equivalent to Eqs. 11 

and 15, respectively, it is convenient to use Eqs. 11 and 13 for computer calculation for 

various reasons. First, direct implementation of Eqs. 16 and 17 allows one to calculate 

E[n(f|T)] and E[n(T)] exactly but at the risk of having to calculate more terms of the 

summation (with regard to Eqs. 11 and 15) than needed for a given numerical precision. 

Secondly, the binomial coefficients in Eqs. 16 and 17 yield huge natural numbers for 

sufficiently large T. Such large numbers cannot be stored with enough numerical 

precision (specially if logarithms are taken and the recurrence of Eq. C.2 is employed), 

which is problematic as the lower weight digits, the ones that are discarded when stored 

as a floating point real number, are relevant for the results of the alternating sign 

summation of Eqs. 16 and 17. For this reason, we leave for future work the derivation of 

lower or upper bounds of the error of E[n(f|T)] and E[n(T)] using Eqs. 16 and 17, as 

well as, the study of the convergence of the summations in Eqs. 16 and 17.
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Fig. 1. The expected frequency spectrum of an ISP with N=26 and σ=0.18 and two 
different minimum lengths L0=0 (solid line) and L0=1 (dashed line), for different text 

lengths T. (a) T=10
2
, (b) T=10

3
, (c) T=10

4
 and (d) T=10

5
. To ease visualization and 

comparison, the values of n(f|T) below T=10
-5
 are not shown. 
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Fig. 2. The expected vocabulary growth over text length T of an ISP with N=26 and 

σ=0.18 and two different minimum lengths L0=0 (solid line) and L0=1 (dashed line). 

     


