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Abstract. During the last decade, the interest to apply machine learn-
ing algorithms to genomic data has significantly increased for a variety
of bioinformatics applications. Analyzing this type of data entails tack-
ling difficulties related to high-dimensionality and class imbalance for
knowledge extraction and identifying important features. In this study,
we propose a general framework to tackle those challenges by stacking
different machine learning algorithms and techniques to choose the best
configuration as the final model to be used for classification and identify
relevant SNPs (e.g. single nucleotide polymorphism). We test and com-
pare the machine learning framework presented in this short paper in a
real data-set and compared with the standard state-of-the-art Genome
Wide Association approach.
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1 Introduction

Lung cancer (LC) is a malignant lung tumor characterized by uncontrolled cell
growth in tissues of the lung. If left untreated, it can spread beyond the lung tis-
sue and cause metastasis into nearby tissue or other parts of the body. There are
two main types of lung cancer: small-cell lung carcinoma (SCLC) and non-small-
cell lung carcinoma (NSCLC). Treatment and long-term outcomes depend on
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the type of cancer, the stage (degree of spread), and the person’s overall health.
LC is commonly treated with surgery, chemotherapy, and radiotherapy. NSCLC
is sometimes treated with surgery, whereas SCLC usually responds better to
chemotherapy and radiotherapy. Moreover, LC is an important cause of admis-
sion to the ICU after surgery and is also considered an important co-morbidity
in critical care.

Array based genotyping and sequencing technologies has enabled genome-
wide characterization of the effect of DNA variation (e.g. single nucleotide poly-
morphisms (SNPs)) on diseases and their complex traits. Many studies have
identified genetic variants, which affect the risk of multiple diseases. However,
a single variant confers a small risk with low prediction power. To identify in-
dividuals at high risk it is appropriate to consider mixed models with genetic
and epidemiological data. The huge number of genetic variants available from
OMIC data, and the single SNP approach of the classical genome wide associa-
tion studies (GWAS) analysis present the limitation of not being able to identify
potential interactions. This analysis is challenging because of the high dimen-
sionality of genomic data (up to millions of SNPs), the relatively small number
of analyzed individuals and the uneven proportion of individuals belonging to
each class (class imbalance). This is why the interest of applying machine learn-
ing algorithms to array-based SNP data has recently become so popular [2] [3]
[4] [7] [5].

In cancer therapy there are clear evidences that response to treatment is a
complex trait where genomic and environmental factors play overlapping roles
as modifiers. In this scenario, GWAS analysis is commonly used to investigate
the predictive role of genomic variants in response to treatment in a case-control
design.

Our main goal in this short study is to identify a reduced set of SNPs with
the highest prognostic value in a cohort of lung cancer patients treated with
platinum-based chemotherapy. We accomplish this task by designing a specific
framework/pipeline to deal with the multi-dimensionality problem using differ-
ent feature selection techniques, followed by the application of sampling tech-
niques to deal with class imbalance, and, finally, make predictions using machine
learning classification methods [8]. We also propose different metrics to rank and
select a relevant subset of SNPs. Ranked SNPs are then compared against the
p-value based rank from the standard state-of-the-art method used in GWAS,
which uses single-SNP logistic regression.

In the following sections, we describe the design of the pipeline-based anal-
ysis and the results obtained of its application to a lung cancer data-set. The
concluding remarks, as well as future refinements of this approach, are provided
in the conclusions section of this paper.
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2 Methodology

2.1 Data-set

The study dataset comprises raw data and results from a GWAS analysis con-
ducted at PMPPC (Programa de Medicina Predictiva i Personalitzada del càncer).
The data-set comprises a series of 178 patients with advanced NSCLC and mea-
surable disease (at least one target lesion). Subjects are classified according to
RECIST (response evaluation criteria in solid tumors) as Non responders (Dis-
ease progression) (n=41) and Responder (partial/complete response and sta-
ble disease) (n=137). All relevant clinical and sociodemografic variables were
included in the analysis. Genome-wide genotypes were generated using arrays-
SNP technology using the Infinium HTS Assay, HumanCoreExome-24v1-0 Bead-
Chip, (ILLUMINA, San Diego, CA) at the Genomic Units of PMPPC. A total
of 325,762 SNPs remain after systematic quality control on the raw genotyping
data (overall call rate of 99.89%). In silico methods were used for genome wide
imputation to generate a data-set of 24,873,940 SNPs, from which 10,307,177
SNPs were retained for the association analysis. For the purposes of this anal-
ysis we consider only chromosome 12, where several significant GWAS signals
were identified. Raw genotype data from 423,929 common variants (hg19 assem-
bly, minor allele frequency > 0.01) and the p-values from uni-variate analysis
(additive model) were analyzed.

Genetic variants are encoded using the additive model, using 0, 1, or 2 as
numerical values [14]. Responders and non responders to treatment are classified
as class 0 and 1 respectively. This data-set is split 80-20 into training and test
sets resulting in 142 individuals for training (109 from class 0 and 33 from class
1) and 36 for test (28 from class 0 and 8 from class 1). The split is performed in
a stratified way, to ensure the same proportion of individuals of each class as in
the original data-set.

2.2 Pipeline configuration

To identify combinations of features with significant prediction power, a machine
learning pipeline framework has been designed and tested (see Figure 1). The
instantiation of this methods and algorithms, unfold a series of different models
and their corresponding results.

We first add into the pipeline a feature selection method to deal with the
multi-dimensionality problem introduced before. The main idea is to find irrele-
vant (noisy) or redundant features that do not contribute to the increase of the
accuracy/performance of the final classification model, discard those, and keep
the relevant ones to move forward in the pipeline process.

Feature selection methods are usually classified into three categories, depend-
ing on how they combine the feature selection search with the construction of
the predictive model: filter, wrapper and embedded methods. Filter methods
work independently of the classifier design, and perform feature selection by



4

Fig. 1. General Pipeline Framework

looking at the intrinsic properties of the data. In contrast, wrapper and embed-
ded methods perform feature selection by making use of a specific classification
model. While wrapper methods employ a search strategy in the space of possible
feature subsets, guided by the predictive performance of a classification model,
embedded methods make use of the classification model internal parameters to
perform feature selection [1]. In our pipeline design we use one of each type of
feature selection methods [24] to instantiate this step of the pipeline: ANOVA
as a filter method, recursive feature elimination with logistic regression (RFE-
LR) as a wrapper method and regularized L1 logistic regression (RLR-L1) as an
embedded method.

To deal with the class imbalance problem of having highly unequal number
of individuals for each class of the target column, we propose to add a sampling
step to the pipeline. The main objective of using a sampling technique is to
adjust the class distribution of a data-set contributing to create a good model
using a balanced training data-set [16]. We try down-sampling, up-sampling [18]
and SMOTE-sampling [12] as alternatives of instantiation of the sampling step
of the pipeline.

Finally, the classifier building step of the pipeline consists of a machine learn-
ing supervised model. We try out linear support vector machines (Linear SVM)
[10], random forests (RF) [9] and K nearest neighbors (KNN) [11] as classification
methods based on very different strategies to discriminate between classes.

In general, the feature selection and sampling steps, should not be decou-
pled from the process of creating an accurate classification model to avoid over-
optimistic estimates of the error [13]. For this reason, we evaluate the whole
pipeline process using cross-validation (CV) as a model selection tool. We apply
grid-search with cross-validation to find the best combination of parameters for
a specific pipeline using a training set, and afterwards having chosen a set of
specific parameters (the model with highest CV score), we test the predictive
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power of the model with a separate and independent test set, for which sampling
has not been applied, preserving the original distribution of the data.

To identify the most important features, we also use the best model found
with highest CV score, and measure the stability of the features selected by the
feature selection step, by re-training this model several times using S different
samplings/shuffles without replacement of 80% of the data of the training set
[6]. Each feature of the original data-set will have a stability score associated
to it. After re-training the whole pipeline, we add 1 to the stability score of
the features that were selected. At the end of this process, features that were
consistently selected S times, will have a score of S points. During this process
of stability check, we also record other metrics useful to perform a ranking over
the SNPs, based on characteristics of specific instantiations of the classification
step in the pipeline. For example, if the classifier of the pipeline in analysis is
a linear SVM, we save the values of the weights assigned by the algorithm to
each feature. In a similar way, for the case of random forests, we keep record
of the variable importance metric [15] associated to each feature while using
this classification model. Regardless of the ranking measure used, let us refer to
these values as coefficients. The sign of the coefficients can be used to measure
the feature effect in the final classification result. A positive coefficient should
be interpreted as a contribution to the classifier with no response to treatment
and tumor progression (class 1).

After the iterative process is finished, we define the following aggregated
metrics: the mean of the coefficients (MC), the mean of the absolute value of the
coefficients, (MAC) since some coefficients can be equally important as positive
and negative values, and the scaled version of the previously mentioned measure
(MSC), in order to be able to make a comparison between the importance of
each feature in terms of it’s coefficient measure. We also intend to compare the
results obtained of the most important features with the results of the single SNP
logistic regression applied using the PLINK tool [17]. The output of applying
this method gives a p-value associated to each SNP, and using a threshold =
0.01 we can filter the most significant SNPs by selecting those whose nominal
value is greater than this threshold.

2.3 Functional in silico analysis

Evaluation of the potential functional impact of the identified variants was an-
alyzed by gene annotation on GRch37 (hg19) using the seq2pathway R library
[23], and GWAS Catalog of the National Human Genome Research Institute
(NHGRI) for genome-wide significant matches [21].

3 Results

As stated in the previous section, the whole pipeline model was validated using
5-fold cross-validation and using the F1 weighted measure as scoring function.
We use the latter scoring function due to the nature and distribution of the data,
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since we know a priori that classes are imbalanced and we want to give equal
importance to the precision and recall of both classes. The tuning of param-
eters associated to each step was performed using a grid-search. The different
parameters tried are shown in Table 1. The C parameter in RLR-L1 refers to
the inverse of regularization strength. In the case of Linear SVM it refers to the
penalty parameter of the error term. In both of the latter cases, the smaller the
values, the stronger the regularization. The n estimators parameter in RF refers
to the number of trees in the forest and n neighbors in KNN is the number of
neighbors to take into account in the neighbors voting step of the classifier.

Table 1. Parameter evaluated using grid-search and 5-fold cross-validation.

Pipeline Step Parameter Options

RLR-L1 C = [10, 50, 500, 1000, 1500]
Linear SVM C = [0.001, 0.01, 0.1, 1, 10, 100, 1000]

RF n estimators = [30, 47, 75, 119, 189, 299, 475, 753, 1194, 1892, 2999]
KNN n neighbors = [5, 20, 35, 50]

For the training process we obtained the results shown in Table 2. They are
ordered in descending order by CV F1 score. For all 36 experiments, we only
show the top 5 pipelines with the best performances. There were no significant
differences between the top 5 classifiers in CV F1 score (from 0.702 to 0.681).
The pipeline with the highest CV F1 score (0.702) consisted of the combination
of down-sampling, followed by a regularized L1 logistic regression embedded
feature selection (of 5,464 features using C = 1000) and finally using a random
forest classifier (with 30 decision trees). The KNN pipeline reached the same CV
F1 performance score as RF. However given that the former pipeline did not
outperformed the latter in F1 Test score, we chose this one (RF) as the best
pipeline given it’s better capability to generalize on unseen observations.

The performance of the best pipeline (RF) was adjusted by -0.061 of F1 score
in the Test set. This was partially due to the score achieved in Test Recall (0.611)
which is affected by the errors made on the class with less number of instances
(class 1, non-responders to treatment).

From the results shown in Table 2 it can be seen that RF is the most common
classifier, giving better results for this kind of data and complex disease. Previous
research shows the good performance of RF using SNP data to predict lung
cancer [30] [31] and other complex diseases [25] like multiple sclerosis [26], age-
related macular degeneration [27], crohn’s disease [28] or rheumatoid arthritis
[29]. Also, the top 5 pipelines indicate the use of a sampling techniques to improve
the prediction, and up-sampling is the most common technique among them.

As for the feature ranking, we performed S = 50 different samplings/shuffles
without replacement of 80% of the training set and calculated the stability score.
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Table 2. Top 5 results obtained in training process of all possible combinations of
instantiations of every step in the general pipeline.

Sampling
Feature
Selection

Classifier
CV
F1

Train
F1

Test
F1

Test
Accuracy

Test
Precision

Test
Recall

Down Sample
Embedded:
RLR-L1

RF 0.702 0.849 0.641 0.611 0.700 0.611

Up Sample
Wrapper:
RFE-LR

KNN 0.702 0.751 0.592 0.583 0.601 0.583

Up Sample
Wrapper:
RFE-LR

Linear SVM 0.693 1.000 0.606 0.639 0.577 0.639

Smote Sample
Filter:
ANOVA

RF 0.682 1.000 0.681 0.778 0.605 0.778

Up Sample
Embedded:
RLR-L1

RF 0.681 1.000 0.667 0.750 0.600 0.750

After experimentation and to avoid being too restrictive, we select features with
a stability score greater or equal to 45 (see Table 3), along side other coefficient
metrics recorded throughout this stability process. The PLINK P-Value column,
refers to the associated p-value obtained from single SNP logistic regression using
PLINK.

Table 3. Subset of most important SNPs ordered in descending order by stability
score.

SNP Stability MC MSC
PLINK
P-Value

Variant1 49 1.423e-4 2.360e-3 >1e-2
Variant2 49 5.939e-4 9.851e-3 2.917e-3
Variant3 49 1.589e-4 2.635e-3 >1e-2
Variant4 47 4.839e-4 8.028e-3 >1e-2
Variant5 47 1.065e-3 1.767e-2 4.850e-4
Variant6 46 6.091e-4 1.010e-2 3.101e-3
Variant7 46 1.600e-3 2.655e-2 2.686e-3
Variant8 46 4.328e-4 7.179e-3 >1e-2
Variant9 46 7.398e-4 1.227e-2 >1e-2
Variant10 45 3.058e-4 5.073e-3 3.101e-3
Variant11 45 5.178e-4 8.590e-3 >1e-2
Variant12 45 1.789e-4 2.968e-3 1.543e-3

With the help of the R library seq2pathway, we map genome features on the
hg19 assembly. Subsequently, using the GWAS Catalog of the National Human
Genome Research Institute (NHGRI) [21] and the European Bioinformatics In-
stitute (EMBL-EBI) [22], we were able to search associated traits or diseases to
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this genes. The genes in the regions identified in the top-5 models have not been
associated directly to cancer, but to lung-related functions (see Table 4).

Table 4. Some associated traits to genes with lung-related functions.

Associated Trait

Body mass in chronic obstructive pulmonary disease.
Pulmonary function in asthmatics.
Asthma or chronic obstructive pulmonary disease.
Post-bronchodilator lung function in asthma (FEV1).
Post-bronchodilator lung function in asthma (FEV1/FVC).
Post bronchodilator FEV1.
Post bronchodilator FEV1 in COPD.
Post bronchodilator FEV1/FVC ratio.
Post bronchodilator FEV1/FVC ratio in COPD.
Pulmonary function.
Pulmonary function decline.
Lung function (FEV1).
Pre bronchodilator FEV1/FVC ratio.

3-hydroxy-1-methylpropylmercapturic acid levels in smokers.
3-hydroxypropylmercapturic acid levels in smokers.
Exhaled carbon monoxide levels.
MGMT methylation in smokers.
Smoking behavior.
Blood pressure (smoking interaction).
Fibrinogen levels (smoking status, alcohol consumption
or body mass index interaction).

Lung cancer is a complex disease and complex diseases are influenced by a
combination of multiple genes (possibly scattered across different chromosomes)
as well as environmental factors. For this reason, further analysis must be carried
out to explore the data from the rest of the chromosomes. Our overall goal is
to look for genes globally involved in a defined clinical endpoint, in this case,
lung cancer prognosis, and therefore we should search throughout the entire
genome. Once we enrich this study with the results obtained from the rest of the
chromosomes we will analyze the metabolic pathway associated to these genes
to understand the patho-physiology of this type of cancer.

The whole pipeline design in this study was implemented using the Sklearn
library [24]. Sklearn is a simple and efficient open source tool for data mining
and data analysis. Several of the implementations of the algorithms used, are
designed to be able to run in parallel over multiple cores. All of the experiments
were executed on a single computer with 12 CPU cores of 3.30GHz each, and
47GB of RAM memory. Figure 2 shows the computational time efficiency of
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the 36 different experiments executed. It is clear that regardless of the sampling
technique applied to the data, using RLR-L1 as the feature selection step com-
bined with RF as the classification step, resulted in the experiments that took
the longest to finish during model selection, approximately 10 minutes. This
makes sense looking at the number of parameter options of both RLR-L1 (5
options for parameter C) and RF (11 options for parameter n estimators), re-
sulting on 55 different settings and 275 different model fits (because of the 5-fold
cross-validation) during the grid-search process. In this case, the “Embedded”
type of feature selection took a lot more time than the “Wrapper” type because
of the configuration we gave to the RFE method. Previously knowing the huge
number of features that we were going to deal with, the method was configured
to drop 25% of the features at each iteration, reaching very fast to the final goal
of keeping 2000 features.

Fig. 2. Computational time efficiency of all 36 experiments during model selection
(grid-search + cross-validation).

4 Conclusions

We defined an extensible and flexible framework to build classification pipelines
based on machine learning techniques that can be applied to high dimensional
and imbalanced SNP data. Using this approach, we were able to identify the
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best model configuration and underscore genome variants that could be relevant
as prognosis biomarkers in lung cancer patients.

With this general framework we try to fill the gap of commonly used methods
that do not take into account cross-validation, class imbalance and the joined
predictive power of multiple features to identify relevant features and perform
classification tasks. From the set of 36 different experiments done using only
SNPs from chromosome 12, the pipeline that performs down-sampling, regular-
ized L1 logistic regression feature selection and random forest classification, was
the one with best CV F1 score.

Even if our approach has not been able to find out some of the genome
signals (1e-6) identified by PLINK, the annotation analysis of the variants iden-
tified showed some correlation with GWAS traits reported for lung/pulmonary
functions and smoking interactions, as well as with pathways involved in the
carcinogenic process.

We must recognize that the significance of the results presented here are
limited by the sample size, the use of data from a single chromosome and the
reduced number of epidemiological features of the original dataset. It is spe-
cially important to make further experiments using data from the remaining
chromosomes in order to do a better evaluation of complex interactions across
the genome. Further work can be foreseen in order to improve the performances
reported in the results section. Given the nature of the framework described,
easily new experiments could be setup to build new pipelines by simply replac-
ing more sophisticated techniques regarding data sampling, feature selection or
classification algorithms. In this sense we intend to expand the applied options
of the different feature selection techniques, trying mutual information [19] as a
filter method, sequential forward selection [20] as a wrapper method and regular-
ized L2 logistic regression as an embedded method. We also intend to expand the
number of experiments using other scoring functions during model selection, to
give more importance to the recall of class 0, avoiding to predict that a patient’s
disease does not progress when it really does, and the patient is not responding
to the treatment given.
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