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Abstract

We propose new algorithms for adaptively mining closed rooted trees,
both labeled and unlabeled, from data streams that change over time.
Closed patterns are powerful representatives of frequent patterns, since
they eliminate redundant information. Our approach is based on an ad-
vantageous representation of trees and a low-complexity notion of relaxed
closed trees, as well as ideas from Galois Lattice Theory. More precisely,
we present three closed tree mining algorithms in sequence: an incremen-
tal one, IncTreeMiner, a sliding-window based one, WinTreeMiner,
and finally one that mines closed trees adaptively from data streams, Ada-
TreeMiner. By adaptive we mean here that it presents at all times the
closed trees that are frequent in the current state of the data stream. To
the best of our knowledge this is the first work on mining closed frequent
trees in streaming data varying with time. We give a first experimental
evaluation of the proposed algorithms.

1 Introduction

The frequent pattern discovery task has been intensely studied during the last
decade. It is becoming harder every day, as the size of the pattern datasets
is increasing and as we move to data that arrive sequentially instead of being
available from the start. In the latter case, we have to accept that the distri-
bution that generates data may vary over time, often in an unpredictable and
drastic way, and correspondingly the algorithm must be ready to reconsider the
patterns it outputs.
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Tree Mining in particular is becoming an important field of research. A
strong motivation is that XML patterns are tree patterns. XML is becoming
a standard for information representation and exchange over the Internet; the
amount of XML data is growing, and it will soon constitute one of the largest
collections of human knowledge. Other applications of tree mining appear in
chemical informatics [16], computer vision [23], text retrieval [29], bioinformat-
ics [25] [17], and Web analysis [8] [31].

In this paper we take an approach to tree mining based on the notion of
closure: we mine frequent closed tree patterns. Sharing some of the attractive
features of frequency-based summarization of subpatterns, closure-based min-
ing offers an alternative algorithmic view with both downsides and advantages;
among the latter, there are the facts that, first, by imposing closure, the num-
ber of frequent patterns is heavily reduced and, second, the possibility appears
of developing a mathematical foundation that connects it with lattice-theoretic
approaches such as Formal Concept Analysis. A downside, however, is that, at
the time of influencing the practice of Data Mining, their conceptual sophistica-
tion is higher than that of frequent pattern sets, which are, therefore, preferred
often by non-experts.

Data streams model the situations where 1) data arrive in sequence, 2) at
high speed, so we have little time to process each item, and 3) are so large that
we may not be able to store all of what we see. Several applications naturally
generate data streams, a prime example being log records or click-streams in
web tracking and personalization. Typically, we assume that some features of
the data stream, such as the distribution of the items it contains, change over
time, and we want to keep an updated view of the current features. A frequent
way to deal with continuous data streams that may evolve over time is to fix
some window size W and try to keep updated information about the last W
items seen, which can be seen a sliding window over the data stream; the window
thus defines the portion of the data stream that is considered relevant at any
given time. We call such an algorithm sliding window based.

We propose a general methodology to identify closed patterns in a data
stream, using intersection of patterns and Galois Lattice Theory. We then
specialize this methodology to trees, and develop three closed tree mining al-
gorithms: IncTreeMiner, an incremental closed tree mining algorithm; Win-
TreeMiner, a sliding window closed tree mining algorithm; and finally Ada-
TreeMiner, an adaptive closed tree mining algorithm. By adaptive we mean
here that it presents at all times the closed trees that are frequent in the current
state of the data stream, that is, since the last noticeable distribution change
occurred.

AdaTreeMiner is a new algorithm that can adaptively mine from data
streams that change over time, with no need for the user to enter parameters
describing the speed or nature of the change. In place or counters or accu-
mulators, it uses as a black-box a recently proposed algorithm (ADWIN) [5] for
detecting change and keeping updated statistics from a data stream with rigor-
ous performance guarantees.

The rest of the paper is organized as follows. We discuss related work in
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Section 2. Sections 3 and 4 give background and introduce our closure operator
and its properties needed for our algorithms. Section 5 introduces the general
mining framework and Section 6 shows how to adapt this framework to deal
with distribution change. Section 7 shows its application to tree structures.
Experimental results are given in Section 8, and some conclusions in Section 9.

2 Related Work

There is a large body of work done on itemset mining. An important part
of the most recent work applies to data streams; see the survey [10] and the
references there. We can divide these data stream methods in two different
classes depending on whether they use a landmark window, containing all the
examples seen so far, or a sliding window, as described before. Only a small
part of these methods deal with frequent closed mining. Moment [11], CFI-
Stream [19] and IncMine [9] are the state-of-art algorithms for mining frequent
closed itemsets over a sliding window. CFI-Stream stores only closed itemsets
in memory, but maintains all closed itemsets as it does not apply a minimum
support threshold, with the corresponding memory penalty. Moment stores
much more information besides the current frequent closed itemsets, but it has
a minimum support threshold to reduce the quantity of patterns found. IncMine
proposes a notion of semi-FCIs that consists in increasing the minimum support
threshold for an itemset as it is retained longer in the window.

There have been subsequent efforts in moving towards closure-based min-
ing on structured data, particularly sequences, trees, and graphs. One of the
differences with closed itemset mining stems from the fact that uniqueness of
set-theoretic intersection no longer holds: whereas the intersection of two sets
is a set, the intersection of two sequences or two trees is not one sequence or
one tree; an example will be given in Section 7.

This makes it nontrivial to justify the word “closed” in terms of a standard
closure operator. Many papers resort to a support-based notion of closure of a
tree or sequence [12]; others (like [1]) choose a variant of trees where a closure
operator between trees can be actually defined (via least general generaliza-
tion). In some cases, the trees are labeled, and strong conditions are imposed
on the label patterns (such as nonrepeated labels in tree siblings [27] or nonre-
peated labels at all in sequences [15]). Chi et al. proposed CMTreeMiner [12],
the first algorithm to discover all closed and maximal frequent subtrees with-
out first discovering all frequent subtrees. CMTreeMiner shares many features
with CloseGraph [30], and works for labeled trees with the “induced” notion of
subtree; see explanation in Section 7.

A lot of research work exists on XML pattern mining. Asai et al. [2] present
StreamT, an online tree mining algorithm that uses a forgetting model and is
able to maintain frequent trees over a sliding window, but it extracts all frequent
trees, not just closed ones. Hsieh et al. [18] propose STMer, an alternative to
StreamT to deal with frequent trees over data streams, but it is not sliding-
window based as it never forgets any counts, so it is not adequate for streams
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that may change over time. In [14], Feng et al. present SOLARIA*, a frequent
closed XML query pattern mining algorithm; it is not an incremental method. Li
et al [22] present Incre-FXQPMiner, which mines frequent XML query patterns
incrementally; however, it does not obtain the closed XML queries, neither it is
sliding-window based.

Labeled trees are trees in which each vertex is given a unique label. Unla-
beled trees are trees in which each vertex has no label, or there is a unique label
for all vertices. A comprehensive introduction to the algorithms on unlabeled
trees can be found in [28].

In [7] a XML tree classifier is presented that uses frequent closed and max-
imal trees as features; to extract them, it uses a preprocessor based on the
approach presented in this paper.

To the best of our knowledge this is the first work dealing with mining
frequent closed trees in streaming data that evolve with time.

3 Preliminaries

3.1 Patterns

Following Formal Concept Analysis usage, we are interested in (possibly infinite)
sets of patterns, endowed with a partial order relation � among these patterns.

The set of all patterns will be denoted with T , but actually all our develop-
ments will proceed in some finite subset of T which will act as our universe of
discourse.

Given two patterns t and t′, we say that t is a subpattern of t′, or t′ is a
super-pattern of t, if t � t′. Two patterns t, t′ are said to be comparable if t � t′
or t′ � t. Otherwise, they are incomparable. Also we write t ≺ t′ if t is a proper
subpattern of t′ (that is, t � t′ and t 6= t′).

The input to our data mining process is a dataset D of transactions, where
each transaction s ∈ D consists of a transaction identifier, tid, and a pattern.
The dataset is a finite set in the standard setting, and a potentially infinite
sequence in the data stream setting. Tids are supposed to run sequentially from
1 to the size of D. From that dataset, our universe of discourse U is the set of
all patterns that appear as subpattern of some pattern in D.

Following standard usage, we say that a transaction s supports a pattern
t if t is a subpattern of the pattern in transaction s. The number of transac-
tions in the dataset D that support t is called the support of the pattern t. A
subpattern t is called frequent if its support is greater than or equal to a given
threshold min supp. The frequent subpattern mining problem is to find all fre-
quent subpatterns in a given dataset. Any subpattern of a frequent pattern is
also frequent and, therefore, any superpattern of a nonfrequent pattern is also
nonfrequent (the antimonotonicity property).

We define a frequent pattern t to be closed (implicitly, w.r.t. to D) if none of
its proper superpatterns has the same support as it has in D. Generally, there
are much fewer frequent closed patterns than frequent ones. In fact, we can
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obtain all frequent subpatterns with their support from the set of frequent closed
subpatterns with their supports. So, the set of frequent closed subpatterns
maintains the same information as the set of all frequent subpatterns.

Other possible definitions of frequent closed pattern are the following:

• a frequent pattern is closed if it is in the intersection of all transactions
that contain it.

• a frequent pattern is closed if no super-pattern is contained in exactly the
same elements of D as itself.

Examples of pattern classes are itemsets, sequences, and trees [32]. Trees,
viewed as patterns, are discussed in more detail in Section 7.

3.2 Relaxed support

Song et al.[26] introduced the concept of relaxed frequent itemset; we adapt
it to general pattern mining. The support space of all subpatterns can be
divided into n = d1/εre intervals, where εr is a user-specified relaxing factor,
and each interval can be denoted by Ii = [li, ui), where li = (n − i) ∗ εr ≥ 0,
ui = (n − i + 1) ∗ εr ≤ 1 and i ≤ n. Then a subpattern t is called a relaxed
closed subpattern if and only if there exists no proper superpattern t′ of t whose
support belongs to the same interval Ii.

Mining for relaxed (rather than strict) closed patterns may greatly reduce
the number of closed subpatterns in data streams where approximation is ac-
ceptable.

We can define relaxed support as a mapping from all possible dataset supports
to the set of relaxed intervals. We apply it to our mining algorithms replacing
the calls to support values with calls to relaxed support values.

We introduce the concept of logarithmic relaxed frequent pattern, by defining
li = dcie, ui = dci+1 − 1e for the value of c generating n intervals. Now,
the mapping from supports to relaxed supports is a logarithmic function. It
happens often that the number of patterns decreases roughly exponentially as we
increase the support threshold. In this case, the notion of logarithmic support
may be more appropiate than the linear one, to have roughly equally populated
intervals.

4 Closure Operators on Patterns

In this section we develop our approach for closed pattern mining based on the
use of closure operators. We obtain a notion of closed pattern using intersection
and not only support, so antimonotonicity is not the only mathematical property
exploited. Our approach relies on much richer mathematics, which, as usual,
leads to more powerful algorithmics.

Definition 1. Let B = {t1, . . . , tn} ∈ T . A pattern is a common subpattern of
the patterns in B if it is subpattern of all the patterns in B. A subpattern is
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maximal in B if it is common, and it is not a subpattern of any other common
subpattern of the patterns in B. The intersection of a set of patterns B, denoted
t1 ∩ . . . ∩ tn, is the set of all maximal subpatterns in B.

Definition 2. The closure of a pattern t for a dataset D denoted by ∆D(t) is
the intersection of all transactions in D that contain it.

We can relate the notion of closure to the notion of closed pattern based
on support, as previously defined, as follows: a pattern t is closed if it is in its
closure ∆D(t).

Proposition 1. Adding a pattern transaction to a dataset of patterns D does
not decrease the number of closed patterns for D.

Proof. All previously closed patterns remain closed: A closed pattern would
become non-closed if one of its superpatterns reached the same support, but
that is not possible because every time the support of a pattern increases, the
support of all its subpatterns also increases. 2

Proposition 2. A pattern transaction t added to a dataset of patterns D will
be a closed pattern for D.

Proof. The supports of superpatterns of pattern t are lower than or equal to the
support of pattern t. A pattern transaction t added would be non-closed if one
of its superpatterns reach the same support, but that is not possible because
only t is added and none of its supperpatterns is added. 2

Proposition 3. Adding a transaction with pattern t to a dataset of patterns D
where t is closed does not modify the number of closed patterns for D.

Proof. Let t be the pattern to be added and closed in D, and s a subpattern
of t. If s is closed then it will remain closed, as no one of its superpatterns
will reach the same support. Suppose s is non-closed and let t1, . . . , tk be the
closed superpatterns immediately above s. Since s is non-closed, we know that
the support of s equals that of ti, for some i. For every j, if tj 6� t, the support
of s must be larger than that of tj , because every transaction containing t is
counted in the support of s but not in that of tj . So we know that the index i
above must correspond to some ti with ti � t. Then adding t to D increases, in
particular, the supports of ti and s by exactly 1, their supports remain equal,
and s remains non-closed. 2

Proposition 4. Deleting a pattern transaction from a dataset of patterns D
does not increase the number of closed patterns for D.

Proof. All the previous non-closed patterns remain non-closed: A necessary
condition for a non-closed pattern to become closed is that a superpattern with
the same support modifies their support, but this is not possible because every
time we decrease the support of a superpattern we also decrease the support of
this pattern. 2
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Proposition 5. Deleting a pattern transaction that is repeated in a dataset of
patterns D does not modify the number of closed patterns for D.

Proof. By Proposition 2, transactions patterns added to D are closed. By
Proposition 3, adding a transaction with a previously closed pattern to a dataset
of patterns D does not modify the number of closed patterns for D. So delet-
ing from D a pattern that is closed and repeated cannot change the number of
closed patterns either. 2

Proposition 6. Let D1 and D2 be two datasets of patterns. A pattern t is
closed for D1 ∪ D2 if and only if it is in the intersection of its closures ∆D1(t)
and ∆D2(t).

Proof. A pattern t is closed for D1 ∪ D2 only if it is in closure ∆D1∪D2(t),
the intersection of all transactions of D1 and D2 that contain it. The closure
∆D1∪D2(t) of pattern t is the intersection of all the transactions of D1∪D2 that
contain it. Then ∆D1∪D2(t) is equal to the intersection of all the transactions
of D1 that contains it, and all the transactions of D2 that contains it. Hence,
∆D1∪D2(t) is the intersection of the closure of t for D1 and the closure of t for
D2.

2

We use Proposition 6 as a closure checking condition when adding a set of
transactions to a dataset of patterns.

Corollary 1. Let D1 and D2 be two datasets of patterns. A pattern t is closed
for D1 ∪ D2 if and only if

• t is a closed pattern for D1, or

• t is a closed pattern for D2, or

• t is a subpattern of a closed pattern in D1 and a closed pattern in D2 and
it is in ∆D1∪D2({t}).

In summary, the closure-based approach gives us elegant and algorithmically
useful conditions that are for checking whether a pattern is closed.

5 Closed Pattern Mining

5.1 Incremental Closed Pattern Mining

In this subsection we propose a new method to do incremental closed pattern
mining. LetD1 be the transaction set seen so far, whose set of closed patterns T1
we have computed already. Suppose that a new batch of patterns D2 arrives. We
compute its set of closed patterns, T2, and then we update the closed pattern
set to that of D1 ∪ D2 using procedure Closed Subpattern Mining Add,
shown in Figure 1.
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Closed Subpattern Mining Add(T1, T2,min supp, T )
Input: Pattern sets T1 and T2, and min supp;

T1 and T2 are the frequent closed patterns of some datasets D1, D2
Output: The set T of frequent closed patterns of dataset D1 ∪D2

1 T ← T1
2 for every t in T2 in size-ascending order
3 do if t is closed in T1
4 then supportT (t)+ = supportT2(t)
5 for every t′ that is a subpattern of t
6 do if t′ is in T1
7 then if t′ support is not updated
8 then insert t′ into T
9 supportT (t′)+ = supportT2(t′)

10 else
11 skip processing t′ and all its subpatterns
12 else insert t into T
13 for every t′ that is a subpattern of t
14 do if t′ support is not updated
15 then if t′ is in T1
16 then supportT (t′)+ = supportT2(t′)
17 if t′ is closed
18 then insert t′ into T
19 supportT (t′)+ = supportT2(t′)
20 else skip processing t′ and all its subpatterns
21 delete from T patterns with support below min supp
22 return T

Figure 1: The Closed Subpattern Mining Add algorithm
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Closed Subpattern Mining Delete(T1, T2,min supp, T )
Input: Pattern sets T1 and T2, and min supp;

T1 and T2 are the frequent closed patterns of some datasets D1, D2
Output: The set T of frequent closed patterns of dataset D1 \D2

1 T ← T1
2 for every t in T2 in size-ascending order
3 do for every t′ that can be obtained deleting nodes from t
4 do if t′ support is not updated
5 then if t′ is in T1
6 then if t′ is not closed
7 then delete t′ from T
8 else supportT (t′)− = supportT2(t′)
9 else skip processing t′ and all its subpatterns

10 delete from T patterns with support below min supp
11 return T

Figure 2: The Closed Subpattern Mining Delete algorithm

In words, let T1 be the existing set of closed patterns, and T2 those coming
from the new batch D2. For each closed pattern in T2, we check whether the
pattern is closed in T1. If it is closed, we update its support and that of all
its subpatterns, as justified by Proposition 3. If it is not closed, as it is closed
for T2, we add it to the closed pattern set, as justified by Corollary 1, and we
check for each of its subpatterns whether it is closed or not. In line 18, we use
Proposition 6 to do the closure-checking. As we check all the subpatterns of
T2 in size-ascending order, we know that all closed subpatterns of t have been
checked before.

Note that this is a totally generic algorithm for pattern mining. The best
(most efficient) data structure to do this task will depend on the kind of pat-
terns. In general, a lattice is the default option, where each lattice node is
a pattern with its support, a list of its closed superpatterns, and a list of its
closed subpatterns.When merging the closed patterns, the parameter min supp
becomes important. If two transaction sets are merged, a pattern that is infre-
quent in both of them may become frequent in their union. We take care of that
using min supp′ = α ·min supp < min supp, so that a pattern can be in the
the union of the transaction sets not only if it is closed in only one of them.

5.2 Closed pattern mining over a sliding window

By adding a method to delete a set of transactions, we can adapt our method
to use a sliding window of pattern transactions.

Figure 2 shows the pseucodode of Closed Subpattern Mining Delete.
We check for every t pattern in T2 in ascending order if its subpatterns are still
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closed or not after deleting some transactions. We can look for a closed su-
perpattern with the same support.The lattice structure supports this operation
well. We can delete a transaction one by one, or delete a batch of transactions
of the sliding window. We delete transactions one by one to avoid recomputing
the frequent closed patterns of each batch of transactions.

6 Adaptive closed pattern mining

In this section we present a new method for dealing with distribution change in
pattern mining, using ADWIN [5], an algorithm for detecting change and dynam-
ically adjusting the length of a data window. First we briefly review the ADWIN
algorithm and then we describe our method combining the previous sliding win-
dow pattern mining algorithms and ADWIN.

6.1 The ADWIN algorithm

Recently, we proposed an algorithm termed ADWIN (for Adaptive Windowing)
that solves in a well-specified way the problem of tracking the average of a
stream of bits or real-valued items. ADWIN keeps a variable-length window of
recently seen items, with the property that the window has at all times the
maximal length statistically consistent with the hypothesis “there has been no
change in the average value inside the window”.

The inputs to ADWIN are a confidence value δ ∈ (0, 1) and a (possibly infinite)
sequence of real values x1, x2, x3, . . . , xt, . . . The value of xt is available only at
time t. Each xt is generated according to some distribution Dt, independently
for every t. We denote with µt the expected value of xt when it is drawn
according to Dt. We assume that xt is always in [0, 1]; by an easy rescaling, we
can handle any case in which we know an interval [a, b] such that a ≤ xt ≤ b
with probability 1. Nothing else is known about the sequence of distributions
Dt; in particular, µt is unknown for all t.

Algorithm ADWIN uses a sliding window W with the most recently read
xi. Let µ̂W denote the (known) average of the elements in W , and µW the
(unknown) average of µt for t ∈ W . We use |W | to denote the length of a
(sub)window W .

Algorithm ADWIN is presented in Figure 3. The idea of ADWIN method is sim-
ple: whenever two “large enough” subwindows of W exhibit “distinct enough”
averages, one can conclude that the corresponding expected values are different,
and the older portion of the window is dropped. The meaning of “large enough”
and “distinct enough” can be made precise again by using the Hoeffding bound.
The test eventually boils down to whether the average of the two subwindows
is larger than a variable value εcut computed as follows

m :=
2

1/|W0|+ 1/|W1|

εcut :=

√
1

2m
· ln 4|W |

δ
.
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ADWIN: Adaptive Windowing Algorithm

1 Initialize Window W
2 for each t > 0
3 do W ←W ∪ {xt} (i.e., add xt to the head of W )
4 repeat Drop elements from the tail of W
5 until |µ̂W0 − µ̂W1 | < εcut holds
6 for every split of W into W = W0 ·W1

7 output µ̂W

Figure 3: Algorithm ADWIN.

where m is the harmonic mean of |W0| and |W1|.
The main technical result in [5] about the performance of ADWIN is the fol-

lowing theorem, that provides bounds on the rate of false positives and false
negatives for ADWIN:

Theorem 1. With εcut defined as above, at every time step we have:

1. (False positive rate bound). If µt has remained constant within W , the
probability that ADWIN shrinks the window at this step is at most δ.

2. (False negative rate bound). Suppose that for some partition of W in two
parts W0W1 (where W1 contains the most recent items) we have |µW0 −
µW1 | > 2εcut. Then with probability 1 − δ ADWIN shrinks W to W1, or
shorter.

This theorem justifies us in using ADWIN in two ways:

• as a change detector, since ADWIN shrinks its window if and only if there
has been a significant change in recent times (with high probability)

• as an estimator for the current average of the sequence it is reading since,
with high probability, older parts of the window with a significantly dif-
ferent average are automatically dropped.

ADWIN is parameter- and assumption-free in the sense that it automatically
detects and adapts to the current rate of change. Its only parameter is a con-
fidence bound δ, indicating how confident we want to be in the algorithm’s
output, inherent to all algorithms dealing with random processes. This is one
reason for our choice, since many other simpler methods for detecting change
(such as CUSUM, EWMA, and others) require some parameter from the user
balancing reaction time and anticipated change rate.

Also important for our purposes, ADWIN does not maintain the window ex-
plicitly, but compresses it using a variant of the exponential histogram tech-
nique in [13]. In particular, it keeps a window of length W using only O(logW )
memory rather than the O(W ) one expects from a näıve implementation. The
processing time per item is also O(logW ).
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6.2 Closed pattern mining in the presence of distribution
change

We propose two strategies to deal with distribution change:

1. Using a sliding window of transactions with an ADWIN estimator deciding
the size of the window by monitoring the number of different closed trees.
The number of closed trees is a good measure of the distribution change
as it will always increase when we add new transactions with different
frequent closed patterns, by Proposition 1.

2. Maintaining an ADWIN estimator for the support of each closed pattern in
the lattice structure.

The second strategy has higher computational cost, but gives us a more pre-
cise control, on a one-to-one basis, of which trees are changing their distribu-
tion in the data stream and which ones are not. In both strategies we use
Closed Subpattern Mining Add to add transactions. In the first strat-
egy we use Closed Subpattern Mining Delete to delete transactions as
we maintain a sliding window of transactions.

In the second strategy, we do not delete transactions. Instead, each ADWIN
monitors the support of a closed pattern. When it detects a change, we can
conclude reliably that the support of this pattern seems to be changing in the
data stream in recent times. If the support decreases, the number of closed
patterns may decrease and we have to delete the non-closed patterns from the
lattice. We check whether it and all its subpatterns are still closed by trying to
find a superpattern with the same support.

In order to obtain frequent closed patterns with a min supp support, we
will add to our algorithms a min supp support checking condition, to delete
and reduce the number of closed patterns in the lattice.

7 Closed tree mining

In this section we apply the general framework above specifically by considering
rooted, unranked tree patterns. Trees are connected acyclic graphs, rooted trees
are trees with a vertex singled out as the root, and unranked trees are trees
with unbounded arity. We say that t1, . . . , tk are the components of tree t if t is
made of a node (the root) joined to the roots of all the ti’s. We can distinguish
betweeen the cases where the components at each node form a sequence (ordered
trees) or just a set (unordered trees). We will deal with ordered and unordered,
labeled and unlabeled trees.

An induced subtree of a tree t is any connected subgraph rooted at some node
v of t whose vertices and edges are subsets of those of t. A top-down subtree of
a tree t is an induced subtree of t which contains the root of t. An embedded
subtree of a tree t is any tree rooted at some node v of t that preserves the
ancestor-descendant relationship among vertices as in t. We will always use the
notion of induced subtree. Formally, let t be a rooted tree with vertex set V
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and edge set E, and t′ a rooted tree with vertex set V ′ and edge set E′. Tree
t′ is an induced subtree (or simply a subtree) of t (written t′ � t) if and only if
1) V ′ ⊆ V , 2) E′ ⊆ E, and 3) the labeling of V ′ (if present) is preserved in t.
This notation can be extended to sets of trees A � B: this means that for every
t ∈ A, there is some t′ ∈ B for which t � t′.

As mentioned in Section 2 the intersection of two trees is not necessarily one
tree. Indeed: A common subtree of two trees is a tree that is subtree of both; it
is a maximal common subtree if it is not a proper subtree of any other common
subtree. Two unlabeled trees have always some maximal common subtree but,
as is shown in Figure 4, this common subtree does not need to be unique.

A: B: X: Y:X: Y:

Figure 4: Trees X and Y are maximal common subtrees of A and B.

In fact, both trees X and Y in Figure 4 have the maximum number of nodes
among the common subtrees of A and B. As per Definition 2, the intersection
of a set of trees is the set of all maximal common subtrees of the trees in the
set.

We represent unlabeled trees using level representations [20, 21]. The level
representation of a tree is a sequence over a countably infinite alphabet, namely,
the set of natural numbers. This encoding basically corresponds to a preorder
traversal of t, where each number of the sequence represents the level or depth
of the current node in the traversal. As an example, the level representation of
the tree

is the natural sequence (0, 1, 2, 2, 3, 1). Note that, for example, the subsequence
(1, 2, 2, 3) corresponds to the induced subtree rooted at the left son of the root.
Formally, a labeled level sequence is a sequence ((x1, l1) . . . , (xn, ln)) of pairs of
level numbers and labels such that x1 = 0 and each subsequent number xi+1

belongs to the range 1 ≤ xi+1 ≤ xi +1. For every such sequence one can build a
tree whose representation is that sequence, hence these sequences are in 1-to-1
correspondence with trees.

To represent labeled trees, we extend this notion to labeled level sequences [3,
24]: now every element of the sequence is a pair formed by a natural number,
and a label, with the sequence formed by taking the first components of all
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Figure 5: An example dataset

pairs satisfying the condition above. Given two such labeled sequences x, y, we
denote with |x| the number of pairs of x, with x · y the sequence obtained as
concatenation of x and y, and with x+ the sequence obtained adding 1 to the
first components of each pair in x.

For example, x = ((0, A), (1, B), (2, A), (3, B), (1, C)) is a level sequence that
satisfies |x| = 6 and x = ((0, A)) · ((0, B), (1, A), (2, B))+ · ((0, C))+. Note
that, in general, the representation of t as a labelled sequence can be formed
recursively from the representations of its subtrees using the pair-building, ·,
and + operators.

The input to our data mining process is a dataset D of transactions, where
each transaction s ∈ D consists of a transaction identifier, tid, and a rooted
tree. In offline mining, D is a finite set, and in the datastream setting D is
a potentially infinite sequence. Figure 5 shows a finite dataset example. The
closed trees for the dataset of Figure 5 are shown as a Galois lattice in Figure 6.

7.1 Non-Incremental Closed Tree Mining

In [4] the authors presented an algorithm TreeNat for computing frequent and
closed trees from a dataset of trees, in a non-incremental way. They represent
the potential subtrees to be checked as frequent and closed on the dataset in such
a way that extending them by one single node, in all possible ways, corresponds
to a clear and simple operation on the representation. The completeness of the
procedure is assured, that is, all trees can be obtained in this way. This allows
them not having to extend trees that are found to be already nonfrequent.

The pseudocode of this method, Closed Subtree Mining, is presented
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Closed Subtree Mining(t,D,min supp, T )
Input: A tree representation t, a tree dataset D, and min supp
Output: The frequent closed tree set T

1 if t 6= Canonical Representative(t)
2 then return T
3 for every t′ that can be extended from t in one step
4 do if support(t′) ≥ min supp
5 do T ← Closed Subtree Mining(t′, D,

min supp, T )
6 do if support(t′) = support(t)
7 then t is not closed
8 if t is closed
9 then insert t into T

10 return T

Figure 7: The Closed Subtree Mining algorithm

in Figures 7 and 8. Note that the first line of the algorithm is a canonical
representative checking, a check that is used frequently in tree mining literature.
In [4] the authors selected one of the ordered trees corresponding to a given
unordered tree to act as a canonical representative: by convention, this canonical
representative has larger trees always to the left of smaller ones.

The main difference of TreeNat with CMTreeMiner is that CMTreeMiner
needs to store all occurrences of subtrees in the tree dataset to use its pruning
methods, whereas TreeNat does not. The number of occurrences is high if
the trees are big, or the number of labels is small. In this case, CMTreeMiner
needs more memory and time to process them. Otherwise, if the size of the
trees is small, or the number of labels is high then CMTreeMiner outperforms
TreeNat, since it can use the power of its pruning methods.

Closed Mining(D,min supp)
Input: A tree dataset D, and min supp
Output: The set T of closed trees of D with support at least min supp

1 t← r
2 T ← ∅
3 T ← Closed Subtree Mining(t,D,min supp, T )
4 return T

Figure 8: The Closed Unordered Mining algorithm
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7.2 Incremental Closed Tree Mining

Following the general framework for patterns presented in Section 5, and adapt-
ing it to the tree pattern case, it is easy to derive three unlabeled tree mining
algorithms:

• IncTreeMiner-U, an incremental closed tree mining algorithm (this al-
gorithm was called IncTreeNat in [6]),

• WinTreeMiner-U, a sliding window closed tree mining algorithm (this
algorithm was called WinTreeNat in [6]),

• AdaTreeMiner-U an adaptive closed tree mining algorithm (this algo-
rithm was called AdaTreeNat in [6])

And for labeled trees, we propose three labeled tree mining algorithms:

• IncTreeMiner-L, an incremental closed tree mining algorithm,

• WinTreeMiner-L, a sliding window closed tree mining algorithm

• AdaTreeMiner-L an adaptive closed tree mining algorithm

The batches are processed using the non-incremental algorithm explained in
Subsection 7.1. The main difference between the labeled and unlabeled methods
is the tree representation used, see [4]. We use the relaxed notion of closed tree
described in Section 3.2 to speed up the mining process.

8 Experimental Evaluation

We tested our algorithms on synthetic and real data, comparing the results with
CMTreeMiner [12].

All experiments were performed on a 2.0 GHz Intel Core Duo PC machine
with 2 Gigabytes of main memory, running Ubuntu 7.10. As far as we know,
CMTreeMiner is the state-of-art algorithm for mining induced frequent closed
trees in databases of rooted trees. CMTreeMiner and our algorithms are imple-
mented in C++. The main difference with our approach is that CMTreeMiner
is not incremental and only works with induced subtrees, and our method works
with both induced and top-down subtrees. In all experiments using ADWIN, its
confidence parameter δ is set to 0.01.

8.1 Unlabeled Trees

On synthetic data, we use the same dataset as in [12] and [31] for rooted ordered
trees restricting the number of distinct node labels to one. We call this dataset
TN1, and is generated by the tree generation program of Zaki [31] available from
his web page. This program generates a mother tree that simulates a master
website browsing tree. Then it assigns probabilities of following its children
nodes, including the option of backtracking to its parent, such that the sum of
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Figure 9: Execution time on the ordered unlabeled tree TN1 dataset
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Figure 10: Time used on unordered unlabeled trees, TN1 dataset

all the probabilities is 1. Using the master tree, the dataset is generated creating
subtrees by randomly picking subtrees according to these probabilities.

In the TN1 dataset, the parameters are the following: the number of distinct
node labels is N = 1, the total number of nodes in the tree is M = 10, 000, the
maximal depth of the tree is D = 10, the maximum fanout is F = 10. The
average number of nodes is 3.

The results of our experiments on synthetic data are shown in Figures 9,
10, 11, and 12. We used a batch size of 100, 000 for the IncTreeMiner-U
method. We varied the dataset size from 100, 000 to 8 milion, and we observed
that as the dataset size increases, IncTreeMiner-U time increases linearly, and
CMTreeMiner does much worse than IncTreeMiner-U. At 4 milion samples,
in the unordered case, CMTreeMiner needs to use swap memory. After 6 milion
samples, CMTreeMiner runs out of main memory and it ends before outputting
the closed trees. We observe that as the dataset size increases, CMTreeMiner
can not mine datasets bigger than 6 milion trees: not being an incremental
method, it must store the whole dataset in memory all the time in addition
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Figure 11: Memory used on ordered unlabeled tree TN1 dataset

to the lattice structure and the occurrences of the trees, in contrast with our
algorithms.

Figure 13 shows the result of the second experiment: we take a TN1 dataset
of 2 milion trees, and we introduce artificial distribution change changing the
dataset trees from sample 500,000 to 1,000,000 and from 1,500,000 to 2,000,000,
in order to force a small number of closed trees. We compare IncTreeMiner-
U, WinTreeMiner-U with a sliding window of 500, 000 and 1, 000, 000, and
with AdaTreeMiner-U using ADWIN to monitor the size of the sliding window.
We observe that AdaTreeMiner-U detects change faster, and it quickly revises
the number of closed trees in its output. On the other hand, the other methods
will not really detect change until they have flushed many old trees from their
sliding windows, so they take longer to revise the number of closed trees in their
output.

To compare the two adaptive methods, we perform a third experiment. We
use a data stream of 200, 000 trees, with a static distribution of 20 closed trees
on the first 100, 000 trees and 20 different closed trees on the last 100, 000
trees. The number of closed trees remains the same. Figure 14 shows the
difference between the two methods. The first one, which monitors the number
of closed trees, detects change at sample 111,480 and then it reduces the window
size immediately. In the second method there are ADWINs monitoring each tree
support; they notice the appearance of new closed trees quicker, but overall the
number of closed trees decreases more slowly than in the first method.

Finally, we tested our algorithms on the CSLOGS Dataset, available from
Zaki’s web page [31]. It consists of web logs files collected over one month at the
Department of Computer Science of Rensselaer Polytechnic Institute. The logs
touched 13, 361 unique web pages, and the CSLOGS dataset contains 59, 691
trees. The average tree size is 12.

Figure 15 shows the number of closed trees detected on the CSLOGS dataset,
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Figure 12: Memory used on unordered unlabeled trees, TN1 dataset

varying the number of relaxed intervals. We see that, in this dataset, support
values are distributed in such a way that we find more closed trees using loga-
rithmic relaxed support than using linear relaxed support, but not by a order
of magnitude. This higher number of closed trees implies that we obtain more
information using the same number of intervals. When the number of intervals
is greater than 1,000 the number of intervals is 249, the number obtained using
the strict (not relaxed) notion of support.

8.2 Labeled Trees

On synthetic labeled data, we use the same dataset as in [12] and [31] for
rooted ordered trees. The synthetic dataset T8M are generated by the tree
generation program of Zaki [31]. A mother tree is generated first with the
following parameters: the number of distinct node labels N = 100, the total
number of nodes in the tree M = 10, 000, the maximal depth of the tree D = 10
and the maximum fanout F = 10. The dataset is then generated by creating
subtrees of the mother tree. In our experiments, we set the total number of
trees in the dataset to be from T = 0 to T = 8, 000, 000.

The results of our experiments on synthetic data are shown in Figures 16,
17, 18, and 19. We observe that as the dataset size increases, IncTreeMiner-
L and CMTreeMiner times are similar and that IncTreeMiner-L uses much
less memory than CMTreeMiner. CMTreeMiner can not mine datasets bigger
than 8 milion trees: not being an incremental method, it must store the whole
dataset in memory all the time in addition to the lattice structures, as we already
observed for unlabeled trees.

In Figure 20 we compare WinTreeMiner-L with different window sizes
to AdaTreeMiner-L on T8M dataset. We observe that the two versions of
AdaTreeMiner-L outperforms WinTreeMiner-L for all window sizes.
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9 Conclusions

We have presented the first efficient algorithms for mining ordered and un-
ordered frequent closed trees on evolving data streams.

If the distribution of the tree dataset is stationary, the best method to use
is IncTreeMiner, as we do not need to delete any past transaction. If the
distribution may evolve, then a sliding window method is more appropiate. If
we know which is the right size of the sliding window, then we can use Win-
TreeMiner, otherwise AdaTreeMiner would be a better choice, since it does
not need the window size parameter. When compared with state-of-the-art, but
nonincremental, algorithm CMTreeMiner, we clearly observe the advantage of
our algorithm with respect to time and memory consumption, due to not having
to store the whole dataset in main memory at all times.

Future work will be to do more experiments varying other tree parameters,
and comparing it to other incremental methods as StreamT, if they are available.
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