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Abstract

We propose and illustrate a method for developing algorithms that
can adaptively learn from data streams that change over time. As
an example, we take Hoeffding Tree, an incremental decision tree
inducer for data streams, and use as a basis it to build two new
methods that can deal with distribution and concept drift: a sliding
window-based algorithm, Hoeffding Window Tree, and an adaptive
method, Hoeffding Adaptive Tree. Our methods are based on
using change detectors and estimator modules at the right places;
we choose implementations with theoretical guarantees in order to
extend such guarantees to the resulting adaptive learning algorithm.
A main advantage of our methods is that they require no guess
about how fast or how often the stream will change; other methods
typically have several user-defined parameters to this effect.

In our experiments, the new methods never do worse, and in
some cases do much better, than CVFDT, a well-known method for
tree induction on data streams with drift.

1 Introduction

Data streams pose several challenges on data mining algo-
rithm design. Limited use of resources (time and memory)
is one. The necessity of dealing with data whose nature or
distribution changes over time is another fundamental one.
Dealing with time-changing data requires in turn strategies
for detecting and quantifying change, forgetting stale exam-
ples, and for model revision. Fairly generic strategies ex-
ist for detecting change and deciding when examples are no
longer relevant. Model revision strategies, on the other hand,
are in most cases method-specific.

Most strategies for dealing with time change contain
hardwired constants, or else require input parameters, con-
cerning the expected speed or frequency of the change; some
examples are a priori definitions of sliding window lengths,
values of decay or forgetting parameters, explicit bounds on
maximum drift, etc. These choices represent preconceptions
on how fast or how often the data are going to evolve and,
of course, they may be completely wrong. Even more, no
fixed choice may be right, since the stream may experience
any combination of abrupt changes, gradual ones, and long
stationary periods. More in general, an approach based on
fixed parameters will be caught in the following tradeoff: the
user would like to use large parameters to have more accu-
rate statistics (hence, more precision) during periods of sta-
bility, but at the same time use small parameters to be able to
quickly react to changes, when they occur.

Many ad-hoc methods have been used to deal with drift,

often tied to particular algorithms. In this paper, we propose
a more general approach based on using two primitive design
elements: change detectors and estimators. The idea is
to encapsulate all the statistical calculations having to do
with detecting change and keeping updated statistics from a
stream an abstract data type that can then be used to replace,
in a black-box way, the counters and accumulators that
typically all machine learning and data mining algorithms
use to make their decisions, including when change has
occurred.

We believe that, compared to any previous approaches,
our approach better isolates different concerns when design-
ing new data mining algorithms, therefore reducing design
time, increasing modularity, and facilitating analysis. Fur-
thermore, since we crisply identify the nuclear problem in
dealing with drift, and use a well-optimized algorithmic so-
lution to tackle it, the resulting algorithms more accurate,
adaptive, and time- and memory-efficient than other ad-hoc
approaches. We have given evidence for this superiority in
[3, 2, 4] and we demonstrate this idea again here.

We apply this idea to give two decision tree learning
algorithms that can cope with concept and distribution drift
on data streams: Hoeffding Window Trees in Section 4 and
Hoeffding Adaptive Trees in Section 5. Decision trees are
among the most common and well-studied classifier models.
Classical methods such as C4.5 are not apt for data streams,
as they assume all training data are available simultaneously
in main memory, allowing for an unbounded number of
passes, and certainly do not deal with data that changes over
time. In the data stream context, a reference work on learning
decision trees is the Hoeffding Tree or Very Fast Decision
Tree method (VFDT) for fast, incremental learning [7]. The
methods we propose are based on VFDT, enriched with the
change detection and estimation building blocks mentioned
above.

We try several such building blocks, although the best
suited for our purposes is the ADWIN algorithm [3], de-
scribed in Section 4.1.1. This algorithm is parameter-free
in that it automatically and continuously detects the rate of
change in the data streams rather than using apriori guesses,
thus allowing the client algorithm to react adaptively to the
data stream it is processing. Additionally, ADWIN has rig-



orous guarantees of performance (a theorem). We show that
these guarantees can be transferred to decision tree learners
as follows: if a change is followed by a long enough stable
period, the classification error of the learner will tend, and
the same rate, to the error rate of VFDT.

We test on Section 6 our methods with synthetic
datasets, using the SEA concepts, introduced in [22] and a
rotating hyperplane as described in [13], and two sets from
the UCI repository, Adult and Poker-Hand. We compare our
methods among themselves but also with CVFDT, another
concept-adapting variant of VFDT proposed by Domingos,
Spencer, and Hulten [13]. A one-line conclusion of our ex-
periments would be that, because of its self-adapting prop-
erty, we can present datasets where our algorithm performs
much better than CVFDT and we never do much worse.
Some comparison of time and memory usage of our meth-
ods and CVFDT is included.

2 A Methodology for Adaptive Stream Mining

The starting point of our work is the following observation:
In the data stream mining literature, most algorithms incor-
porate one or more of the following ingredients: windows to
remember recent examples; methods for detecting distribu-
tion change in the input; and methods for keeping updated
estimations for some statistics of the input. We see them as
the basis for solving the three central problems of

e what to remember or forget,
e when to do the model upgrade, and

e how to do the model upgrade.

Our claim is that by basing mining algorithms on well-
designed, well-encapsulated modules for these tasks, one
can often get more generic and more efficient solutions
than by using ad-hoc techniques as required. Similarly, we
will argue that our methods for inducing decision trees are
simpler to describe, adapt better to the data, perform better or
much better, and use less memory than the ad-hoc designed
CVEFDT algorithm, even though they are all derived from the
same VFDT mining algorithm.

A similar approach was taken, for example, in [4] to give
simple adaptive closed-tree mining adaptive algorithms. Us-
ing a general methodology to identify closed patterns based
in Galois Lattice Theory, three closed tree mining algo-
rithms were developed: an incremental one INCTREENAT,
a sliding-window based one, WINTREENAT, and finally one
that mines closed trees adaptively from data streams, ADA-
TREENAT.

2.1 Time Change Detectors and Predictors To choose a
change detector or an estimator, we will review briefly all the
different types of change detectors and estimators, in order to
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Figure 1: Change Detector and Estimator System

justify the election of one of them for our algorithms. Most
approaches for predicting and detecting change in streams of
data can be discussed as systems consisting of three modules:
a Memory module, an Estimator Module, and a Change
Detector or Alarm Generator module. These three modules
interact as shown in Figure 1, which is analogous to Figure
8in [21].

In general, the input to this algorithm is a sequence
T1,%2,...,Tt,... of data items whose distribution varies
over time in an unknown way. The outputs of the algorithm
are, at each time step

e an estimation of some important parameters of the input
distribution, and

e a signal alarm indicating that distribution change has
recently occurred.

We consider a specific, but very frequent case, of this
setting: that in which all the z; are real values. The desired
estimation in the sequence of x; is usually the expected value
of the current z;, and less often another distribution statistics
such as the variance. The only assumption on the distribution
is that each z; is drawn independently from each other. Note
therefore that we deal with one-dimensional items. While the
data streams often consist of structured items, most mining
algorithms are not interested in the items themselves, but on
a bunch of real-valued (sufficient) statistics derived from the
items; we thus imagine our input data stream as decomposed
into possibly many concurrent data streams of real values,
which will be combined by the mining algorithm somehow.

Memory is the component where the algorithm stores
the sample data or summary that considers relevant at current
time, that is, its description of the current data distribution.

The Estimator component is an algorithm that estimates
the desired statistics on the input data, which may change
over time. The algorithm may or may not use the data
contained in the Memory. The simplest Estimator algorithm
for the expected is the linear estimator, which simply returns



the average of the data items contained in the Memory. Other
examples of efficient estimators are Auto-Regressive, Auto
Regressive Moving Average, and Kalman filters.

The change detector component outputs an alarm signal
when it detects change in the input data distribution. It uses
the output of the Estimator, and may or may not in addition
use the contents of Memory.

We classify these predictors in four classes, depending
on whether Change Detector and Memory modules exist:

o Type I: Estimator only. The simplest one is modelled
by
Ty = (]. — Oz)iﬁ'k,1 + -z

The linear estimator corresponds to using « = 1/N
where N is the width of a virtual window containing
the last NV elements we want to consider. Otherwise,
we can give more weight to the last elements with an
appropriate constant value of «. The Kalman filter tries
to optimize the estimation using a non-constant « (the
K value) which varies at each discrete time interval.

e Type II: Estimator with Change Detector. An exam-
ple is the Kalman Filter together with a CUSUM test
change detector algorithm, see for example [15].

o Type IlI: Estimator with Memory. We add Memory to
improve the results of the Estimator. For example, one
can build an Adaptive Kalman Filter that uses the data
in Memory to compute adequate values for process and
measure variances.

o Type 1V: Estimator with Memory and Change Detector.
This is the most complete type. Two examples of this
type, from the literature, are:

— A Kalman filter with a CUSUM test and fixed-
length window memory, as proposed in [21]. Only
the Kalman filter has access to the memory.

— A linear Estimator over fixed-length windows
that flushes when change is detected [17], and a
change detector that compares the running win-
dows with a reference window.

3 Incremental Decision Trees: Hoeffding Trees

Decision trees are classifier algorithms [5, 20]. Each internal
node of a tree DI" contains a test on an attribute, each branch
from a node corresponds to a possible outcome of the test,
and each leaf contains a class prediction. The label y =
DT (z) for an example z is obtained by passing the example
down from the root to a leaf, testing the appropriate attribute
at each node and following the branch corresponding to the
attribute’s value in the example. Extended models where the
nodes contain more complex tests and leaves contain more
complex classification rules are also possible.

A decision tree is learned top-down by recursively re-
placing leaves by test nodes, starting at the root. The at-
tribute to test at a node is chosen by comparing all the avail-
able attributes and choosing the best one according to some
heuristic measure.

Classical decision tree learners such as ID3, C4.5 [20],
and CART [5] assume that all training examples can be
stored simultaneously in main memory, and are thus severely
limited in the number of examples they can learn from. In
particular, they are not applicable to data streams, where
potentially there is no bound on number of examples and
these arrive sequentially.

Domingos and Hulten [7] developed Hoeffding trees, an
incremental, anytime decision tree induction algorithm that
is capable of learning from massive data streams, assuming
that the distribution generating examples does not change
over time.

Hoeffding trees exploit the fact that a small sample can
often be enough to choose an optimal splitting attribute.
This idea is supported mathematically by the Hoeffding
bound, which quantifies the number of observations (in our
case, examples) needed to estimate some statistics within
a prescribed precision (in our case, the goodness of an
attribute). More precisely, the Hoeffding bound states that
with probability 1 — §, the true mean of a random variable
of range R will not differ from the estimated mean after n
independent observations by more than:

_ /32112121/5).

A theoretically appealing feature of Hoeffding Trees not
shared by other incremental decision tree learners is that it
has sound guarantees of performance. Using the Hoeffding
bound one can show that its output is asymptotically nearly
identical to that of a non-incremental learner using infinitely
many examples. The intensional disagreement A; between
two decision trees DT} and D75 is the probability that the
path of an example through DT} will differ from its path
through DT5.

THEOREM 3.1. If HTj is the tree produced by the Hoeffd-
ing tree algorithm with desired probability § given infinite
examples, DT is the asymptotic batch tree, and p is the leaf
probability, then E[A;(HTs, DT)] < §/p.

VEDT (Very Fast Decision Trees) is the implementation
of Hoeffding trees, with a few heuristics added, described in
[7]; we basically identify both in this paper. The pseudo-
code of VFDT is shown in Figure 2. Counts n;;, are the
sufficient statistics needed to choose splitting attributes, in
particular the information gain function G' implemented in
VEDT. Function €(d, .. .) in line 4 is given by the Hoeffding
bound and guarantees that whenever best and 2nd best at-
tributes satisfy this condition, we can confidently conclude



VFDT(Stream, 0)

1 > Let HT be a tree with a single leaf(root)
2 p> Init counts n;j, at root

3 for each example (z,y) in Stream

4 do VFDTGROW((z,y), HT,J)

VFDTGROW((z,y), HT, 0)

> Sort (z,y) to leaf [ using HT
> Update counts n;;, at leaf [
> Compute G for each attribute from counts n; ;
if G(Best Attr.)—G(2nd best) > €(4, .. .)
then
> Split leaf [ on best attribute
for each branch
do > Initialize new leaf counts at [

01NN B W=

Figure 2: The VFDT algorithm

that best indeed has maximal gain. The sequence of exam-
ples S may be infinite, in which case the procedure never
terminates, and at any point in time a parallel procedure can
use the current tree to make class predictions.

4 Decision Trees on Sliding Windows

We propose a general method for building incrementally a
decision tree based on a keeping sliding window of the last
instances on the stream. To specify one such method, we
specify how to:

e place one or more change detectors at every node that
will raise a hand whenever something worth attention
happens at the node

e create, manage, switch and delete alternate trees

e maintain estimators of only relevant statistics at the
nodes of the current sliding window

We call Hoeffding Window Tree any decision tree
that uses Hoeffding bounds, maintains a sliding win-
dow of instances, and that can be included in this gen-
eral framework. Figure 3 shows the pseudo-code of
HOEFFDING WINDOW TREE.

4.1 HWT-ADWIN : Hoeffding Window Tree using
ADWIN Recently, we proposed an algorithm termed
ADWIN [3] (for Adaptive Windowing) that is an estimator
with memory and change detector of type IV. We use it to
design HWT-ADWIN, a new Hoeffding Window Tree that
uses ADWIN as a change detector. The main advantage of
using a change detector as ADWIN is that as it has theoreti-

HOEFFDING WINDOW TREE(Stream, d)

1

2
3
4

> Let HT be a tree with a single leaf(root)
B> Init estimators A, at root
for each example (z,y) in Stream

do HWTREEGROW ((z,y), HT, d)

HWTREEGROW ((x,y), HT, J)

1 © Sort (z,y) to leaf [ using HT
2 1> Update estimators A;jj,
3 at leaf [ and nodes traversed in the sort
4 if this node has an alternate tree Ty;;
5 HWTREEGROW ((z, ), Tuit, )
6 > Compute G for each attribute
7 if G(Best Attr.)—G(2nd best) > €(d,...)
8 then
9 > Split leaf on best attribute
10 for each branch
11 do > Start new leaf
12 and initialize estimators
13 if one change detector has detected change
14 then
15 > Create an alternate subtree if there is none
16 if existing alternate tree is more accurate
17 then
18 > replace current node with alternate tree

9Here &’ should be the Bonferroni correction of § to account for
the fact that many tests are performed and we want all of them to
be simultaneously correct with probability 1 — J. It is enough e.g.
to divide § by the number of tests performed so far. The need for
this correction is also acknowledged in [7], although in experiments
the more convenient option of using a lower ¢ was taken. We have
followed the same option in our experiments for fair comparison.

Figure 3: Hoeffding Window Tree algorithm



cal guarantees we can extend this guarantees to the learning
algorithms.

4.1.1 The ADWIN algorithm ADWIN is a change detec-
tor and estimator that solves in a well-specified way the prob-
lem of tracking the average of a stream of bits or real-valued
numbers. ADWIN keeps a variable-length window of re-
cently seen items, with the property that the window has the
maximal length statistically consistent with the hypothesis
“there has been no change in the average value inside the
window”.

The idea of ADWIN method is simple: whenever two
“large enough” subwindows of W exhibit “distinct enough”
averages, one can conclude that the corresponding expected
values are different, and the older portion of the window
is dropped. The meaning of “large enough” and “distinct
enough” can be made precise again by using the Hoeffding
bound. The test eventually boils down to whether the average
of the two subwindows is larger than a variable value €.,
computed as follows

2
m =
1/[Wo| +1/[Wh|
€ = \/i In —4|W‘
cut = om 5 .

where m is the harmonic mean of |[Wy| and | |.

The main technical result in [3] about the performance
of ADWIN is the following theorem, that provides bounds
on the rate of false positives and false negatives for ADWIN:

THEOREM 4.1. With €.+ defined as above, at every time
step we have:

1. (False positive rate bound). If u; has remained constant
within W, the probability that ADWIN shrinks the
window at this step is at most 6.

2. (False negative rate bound). Suppose that for some
partition of W in two parts WoWy (where Wy contains
the most recent items) we have |puw, — tw,| > 2€cuz.
Then with probability 1 — § ADWIN shrinks W to W1,
or shorter.

This theorem justifies us in using ADWIN in two ways:

e as a change detector, since ADWIN shrinks its window
if and only if there has been a significant change in
recent times (with high probability)

e as an estimator for the current average of the sequence
it is reading since, with high probability, older parts of
the window with a significantly different average are
automatically dropped.

ADWIN is parameter- and assumption-free in the sense
that it automatically detects and adapts to the current rate of
change. Its only parameter is a confidence bound 9, indicat-
ing how confident we want to be in the algorithm’s output,
inherent to all algorithms dealing with random processes.

Also important for our purposes, ADWIN does not
maintain the window explicitly, but compresses it using a
variant of the exponential histogram technique in [6]. This
means that it keeps a window of length W using only
O(log W) memory and O(log W) processing time per item,
rather than the O(W) one expects from a naive implementa-
tion.

4.1.2 Example of performance Guarantee Let
HWT*ADWIN be a variation of HWT-ADWIN with
the following condition: every time a node decides to create
an alternate tree, an alternate tree is also started at the
root. In this section we show an example of performance
guarantee about the error rate of HWT*ADWIN. Informally
speaking, it states that after a change followed by a stable
period, HWT*ADWIN’s error rate will decrease at the same
rate as that of VFDT, after a transient period that depends
only on the magnitude of the change.

We consider the following scenario: Let C' and D be
arbitrary concepts, that can differ both in example distribu-
tion and label assignments. Suppose the input data sequence
S is generated according to concept C' up to time tg, that
it abruptly changes to concept D at time tg + 1, and re-
mains stable after that. Let HWT*ADWIN be run on se-
quence S, and e; be error(HWT*ADWIN,S,ty), and ey be
error(HWT*ADWIN,S,tg + 1), so that e5 — e; measures how
much worse the error of HWT*ADWIN has become after the
concept change.

Here error(HWT*ADWIN,S,t) denotes the classification
error of the tree kept by HWT*ADWIN at time ¢ on S.
Similarly, error(VFDT,D,t) denotes the expected error rate
of the tree kept by VFDT after being fed with ¢ random
examples coming from concept D.

THEOREM 4.2. Let S, tg, e1, and es be as described above,
and suppose t is sufficiently large w.r.t. eo — e1. Then for
every time t > tg, we have

error(HWT*ADWIN, S,t) < min{ es, ey ppr }
with probability at least 1 — 0, where
e eyppr = error(VEDT, Dt — t0 — g(ea — e1)) +
O(o)

t—to

o glea —e1) = 8/(ex — e1)?In(4ty/d)

The following corollary is a direct consequence, since
O(1/+/t — o) tends to 0 as t grows.



COROLLARY 4.1. If error(VFDT, D,t) tends to some quan-
tity € < eg as t tends to infinity, then error(HWT ADWIN
,S,t) tends to € too.

Proof. Note: The proof is only sketched in this version. We
know by the ADWIN False negative rate bound that with
probability 1 — §, the ADWIN instance monitoring the error
rate at the root shrinks at time ¢y + n if

lea — 1| > 2€cur = \/2/mIn(4(t — t0)/9)

where m is the harmonic mean of the lengths of the subwin-
dows corresponding to data before and after the change. This
condition is equivalent to

m > 4/(e; — ez)? In(4(t — to)/d)

If ¢y is sufficiently large w.r.t. the quantity on the right hand
side, one can show that m is, say, less than n /2 by definition
of the harmonic mean. Then some calculations show that for
n > g(ea — e1) the condition is fulfilled, and therefore by
time ¢ty + n ADWIN will detect change.

After that, HWT*ADWIN will start an alternative tree
at the root. This tree will from then on grow as in VFDT,
because HWT*ADWIN behaves as VFDT when there is no
concept change. While it does not switch to the alternate
tree, the error will remain at eo. If at any time ¢y + g(eq —
e2) + n the error of the alternate tree is sufficiently below
eo, with probability 1 — § the two ADWIN instances at the
root will signal this fact, and HWT*ADWIN will switch to
the alternate tree, and hence the tree will behave as the one
built by VFDT with ¢ examples. It can be shown, again by
using the False Negative Bound on ADWIN |, that the switch
will occur when the VFDT error goes below e; — O(1/4/n),
and the theorem follows after some calculation.

4.2 CVFDT As an extension of VFDT to deal with con-
cept change Hulten, Spencer, and Domingos presented
Concept-adapting Very Fast Decision Trees CVFDT [13] al-
gorithm. We review it here briefly and compare it to our
method.

CVEDT works by keeping its model consistent with re-
spect to a sliding window of data from the data stream, and
creating and replacing alternate decision subtrees when it de-
tects that the distribution of data is changing at a node. When
new data arrives, CVFDT updates the sufficient statistics at
its nodes by incrementing the counts n;;; corresponding to
the new examples and decrementing the counts n;;; corre-
sponding to the oldest example in the window, which is ef-
fectively forgotten. CVFDT is a Hoeffding Window Tree as
it is included in the general method previously presented.

Two external differences among CVFDT and our
method is that CVFDT has no theoretical guarantees (as far
as we know), and that it uses a number of parameters, with
default values that can be changed by the user - but which

are fixed for a given execution. Besides the example window
length, it needs:

1. Tjy: after each Ty examples, CVFDT traverses all the
decision tree, and checks at each node if the splitting
attribute is still the best. If there is a better splitting
attribute, it starts growing an alternate tree rooted at
this node, and it splits on the currently best attribute
according to the statistics in the node.

2. Tj: after an alternate tree is created, the following T}
examples are used to build the alternate tree.

3. T5: after the arrival of 737 examples, the following 15
examples are used to test the accuracy of the alternate
tree. If the alternate tree is more accurate than the
current one, CVDFT replaces it with this alternate tree
(we say that the alternate tree is promoted).

The default values are T, = 10,000, 77 = 9,000,
and 75 = 1,000. One can interpret these figures as the
preconception that often about the last 50, 000 examples are
likely to be relevant, and that change is not likely to occur
faster than every 10,000 examples. These preconceptions
may or may not be right for a given data source.

The main internal differences of HWT-ADWIN respect
CVEDT are:

e The alternates trees are created as soon as change is
detected, without having to wait that a fixed number
of examples arrives after the change. Furthermore, the
more abrupt the change is, the faster a new alternate tree
will be created.

e HWT-ADWIN replaces the old trees by the new alter-
nates trees as soon as there is evidence that they are
more accurate, rather than having to wait for another
fixed number of examples.

These two effects can be summarized saying that HWT-
ADWIN adapts to the scale of time change in the data, rather
than having to rely on the a priori guesses by the user.

5 Hoeffding Adaptive Trees

In this section we present Hoeffding Adaptive Tree as a
new method that evolving from Hoeffding Window Tree,
adaptively learn from data streams that change over time
without needing a fixed size of sliding window. The optimal
size of the sliding window is a very difficult parameter to
guess for users, since it depends on the rate of change of the
distribution of the dataset.

In order to avoid to choose a size parameter, we propose
a new method for managing statistics at the nodes. The
general idea is simple: we place instances of estimators of
frequency statistics at every node, that is, replacing each n;;1,



counters in the Hoeffding Window Tree with an instance
A;ji, of an estimator.

More precisely, we present three variants of a Hoeffding
Adaptive Tree or HAT, depending on the estimator used:

e HAT-INC: it uses a linear incremental estimator

o HAT-EWMA: it uses an Exponential Weight Moving
Average (EWMA)

e HAT-ADWIN : it uses an ADWIN estimator. As the
ADWIN instances are also change detectors, they will
give an alarm when a change in the attribute-class
statistics at that node is detected, which indicates also
a possible concept change.

The main advantages of this new method over a Hoeffd-
ing Window Tree are:

e All relevant statistics from the examples are kept in
the nodes. There is no need of an optimal size of
sliding window for all nodes. Each node can decide
which of the last instances are currently relevant for
it. There is no need for an additional window to store
current examples. For medium window sizes, this factor
substantially reduces our memory consumption with
respect to a Hoeffding Window Tree.

o A Hoeffding Window Tree, as CVFDT for example,
stores only a bounded part of the window in main
memory. The rest (most of it, for large window sizes) is
stored in disk. For example, CVFDT has one parameter
that indicates the amount of main memory used to store
the window (default is 10,000). Hoeffding Adaptive
Trees keeps all its data in main memory.

5.1 Example of performance Guarantee In this subsec-
tion we show a performance guarantee on the error rate of
HAT-ADWIN on a simple situation. Roughly speaking, it
states that after a distribution and concept change in the data
stream, followed by a stable period, HAT-ADWIN will start,
in reasonable time, growing a tree identical to the one that
VEDT would grow if starting afresh from the new stable dis-
tribution. Statements for more complex scenarios are possi-
ble, including some with slow, gradual, changes, but require
more space than available here.

THEOREM 5.1. Let Dy and D1 be two distributions on
labelled examples. Let S be a data stream that contains
examples following Dq for a time T, then suddenly changes
to using Dq. Let t be the time that until VFDT running on a
(stable) stream with distribution D, takes to perform a split
at the node. Assume also that VFDT on Dg and D, builds
trees that differ on the attribute tested at the root. Then with
probability at least 1 — §:

e By timet'! = T + c-V? - tlog(tV), HAT-ADWIN
will create at the root an alternate tree labelled with
the same attribute as VFDT(D1). Here ¢ < 20 is an
absolute constant, and V' the number of values of the
attributes."

o this alternate tree will evolve from then on identically
as does that of VFDT(D1), and will eventually be
promoted to be the current tree if and only if its error
on D1 is smaller than that of the tree built by time T'.

If the two trees do not differ at the roots, the correspond-
ing statement can be made for a pair of deeper nodes.

LEMMA 5.1. In the situation above, at every time t + T >
T, with probability 1 — § we have at every node and for every
counter (instance of ADWIN) A; j i

In(1/8")T
Ai i — Pl <4 —F—2%—
| 2Jk »J,k| — t(t +T)
where P; ;1. is the probability that an example arriving at
the node has value j in its ith attribute and class k.

Observe that for fixed 6’ and T this bound tends to 0 as
t grows.

To prove the theorem, use this lemma to prove high-
confidence bounds on the estimation of G(a) for all at-
tributes at the root, and show that the attribute best chosen by
VFDT on D; will also have maximal G(best) at some point,
so it will be placed at the root of an alternate tree. Since this
new alternate tree will be grown exclusively with fresh ex-
amples from Dy, it will evolve as a tree grown by VFDT on
D;.

5.2 Memory Complexity Analysis Let us compare the
memory complexity Hoeffding Adaptive Trees and Hoeffd-
ing Window Trees. We take CVFDT as an example of Ho-
effding Window Tree. Denote with

e E :size of an example

e A : number of attributes

e V : maximum number of values for an attribute

e C : number of classes

e T : number of nodes

A Hoeffding Window Tree as CVFDT uses memory
O(WE + TAVC), because it uses a window W with E
examples, and each node in the tree uses AV C counters. A

TThis value of ¢’ is a very large overestimate, as indicated by our
experiments. We are working on an improved analysis, and hope to be able
toreducet’ to T + c - t, forc < 4.



Hoeffding Adaptive Tree does not need to store a window of
examples, but uses instead memory O(log W) at each node
as ituses an ADWIN as a change detector, so its memory re-
quirement is O(T AV C + T'log W). For medium-size W,
the O(WE) in CVFDT can often dominate. HAT-ADWIN
has a complexity of O(TAVC'log W).

6 Experimental evaluation

We tested Hoeffding Adaptive Trees using synthetic and real
datasets. In the experiments with synthetic datasets, we
use the SEA Concepts [22] and a changing concept dataset
based on a rotating hyperplane explained in [13]. In the
experiments with real datasets we use two UCI datasets [1]
Adult and Poker-Hand from the UCI repository of machine
learning databases. In all experiments, we use the values
§ = 107%, Ty = 20,000, T} = 9,000, and T = 1,000,
following the original CVFDT experiments [13].

In all tables, the result for the best classifier for a given
experiment is marked in boldface, and the best choice for
CVEDT window length is shown in italics.

We included an improvement over CVFDT (which
could be made on the original CVFDT as well). If the two
best attributes at a node happen to have exactly the same
gain, the tie may be never resolved and split does not occur.
In our experiments this was often the case, so we added an
additional split rule: when G(best) exceeds by three times
the current value of €(d, . . .), a split is forced anyway.

We have tested the three versions of Hoeffding Adaptive
Tree, HAT-INC, HAT-EWMA(a = .01), HAT-ADWIN, each
with and without the addition of Naive Bayes (NB) classi-
fiers at the leaves. As a general comment on the results, the
use of NB classifiers does not always improve the results,
although it does make a good difference in some cases; this
was observed in [11], where a more detailed analysis can be
found.

First, we experiment using the SEA concepts, a dataset
with abrupt concept drift, first introduced in [22]. This
artificial dataset is generated using three attributes, where
only the two first attributes are relevant. All three attributes
have values between 0 and 10. We generate 400,000 random
samples. We divide all the points in blocks with different
concepts. In each block, we classify using f; + fo < 0,
where f1 and f5 represent the first two attributes and 6 is a
threshold value.We use threshold values 9, 8, 7 and 9.5 for
the data blocks. We inserted about 10% class noise into each
block of data.

We test our methods using discrete and continuous
attributes. The on-line errors results for discrete attributes
are shown in Table 1. On-line errors are the errors measured
each time an example arrives with the current decision
tree, before updating the statistics. Each column reflects a
different speed of concept change. We observe that CVFDT
best performance is not always with the same example

Table 1: SEA on-line errors using discrete attributes with
10% noise

CHANGE SPEED

1,000 10,000 100,000

HAT-INC 16.99% 16.08% 14.82%
HAT-EWMA 16.98% 15.83% 14.64 %
HAT-ADWIN 16.86%  15.39% 14.73 %
HAT-INC NB 16.88% 15.93% 14.86%
HAT-EWMA NB 16.85% 1591% 14.73 %
HAT-ADWIN NB 16.90% 15.76%  14.75 %
CVFDT |W| = 1,000 19.47%  15.71% 15.81%
CVEDT |W| = 10,000 17.03% 17.12% 14.80%
CVFDT |W| = 100,000 16.97% 17.15% 17.09%

—HWT-ADWIN
----CVFDT

Error Rate (%)
®

O I~ 0 O ©O ~ A M ¢ 1 © N 0 O O
O N & © O mm M 1O I~ O — M v N~ O
N NN @M M M M <

0

Examples x 100!

Figure 4: Learning curve of SEA Concepts using continuous
attributes

window size, and that there is no optimal window size.
The different versions of Hoeffding Adaptive Trees have
a very similar performance, essentially identical to that of
CVFDT with optimal window size for that speed of change.
More graphically, Figure 4 shows its learning curve using
continuous attributes for a speed of change of 100, 000. Note
that at the points where the concept drift appears HWT-
ADWIN, decreases its error faster than CVFDT, due to the
fact that it detects change faster.

Another frequent dataset is the rotating hyperplane, used
as testbed for CVFDT versus VEDT in [13]. A hyperplane
in d-dimensional space is the set of points x that satisfy
Zle w;x; > wo where x;, is the ith coordinate of x. Exam-
ples for which the sum above is nonnegative are labeled pos-
itive, and examples for which it is negative are labeled neg-
ative. Hyperplanes are useful for simulating time-changing
concepts, because we can change the orientation and posi-



tion of the hyperplane in a smooth manner by changing the
relative size of the weights.

We experiment with abrupt and with gradual drift. In
the first set of experiments, we apply abrupt change. We
use 2 classes, d = 5 attributes, and 5 discrete values
per attribute. We do not insert class noise into the data.
After every N examples arrived, we abruptly exchange
the labels of positive and negative examples, i.e., move to
the complementary concept. So, we classify the first NV
examples using 2?21 w;x; > wo, the next N examples
using Z?:l w;x; < wo, and so on. The on-line error rates
are shown in Table 2, where each column reflects a different
value of N, the period among classification changes. We
detect that Hoeffding Adaptive Tree methods substantially
outperform CVFDT in all speed changes.

Table 2: On-line errors of Hyperplane Experiments with
abrupt concept drift

CHANGE SPEED

1,000 10,000 100,000

HAT-INC 46.39% 31.38%  21.17%
HAT-EWMA 42.09%  31.40%  21.43 %
HAT-ADWIN 41.25%  30.42%  21.37 %
HAT-INC NB 46.34% 31.54%  22.08%
HAT-EWMA NB 3528%  24.02% 15.69 %
HAT-ADWIN NB 3535% 24.47%  13.87 %
CVFDT |W| = 1,000 50.01%  39.53% 33.36%
CVFDT |W| =10,000 50.09% 49.76% 28.63%
CVEDT |W| = 100,000 49.89%  49.88%  46.78%

In the second type of experiments, we introduce gradual
drift. We vary the first attribute over time slowly, from 0 to
1, then back from 1 to 0, and so on, linearly as a triangular
wave. We adjust the rest of weights in order to have the same
number of examples for each class.

The on-line error rates are shown in Table 3. Observe
that, in contrast to previous experiments, HAT-EWMA and
HAT-ADWIN do much better than HAT-INC, when using
NB at the leaves. We believe this will happen often in the
case of gradual changes, because gradual changes will be
detected earlier in individual attributes than in the overall
error rate.

We test Hoeffding Adaptive Trees on two real datasets
in two different ways: with and without concept drift. We
tried some of the largest UCI datasets [1], and report results
on Adult and Poker-Hand. For the Covertype and Census-
Income datasets, the results we obtained with our method
were essentially the same as for CVFDT (ours did better by
fractions of 1% only) — we do not claim that our method is
always better than CVFDT, but this confirms our belief that
it is never much worse.

Table 3: On-line errors of Hyperplane Experiments with
gradual concept drift

CHANGE SPEED

1,000 10,000 100,000

HAT-INC 9.42% 9.40% 9.39%
HAT-EWMA 9.48% 9.43% 9.36 %
HAT-ADWIN 9.50% 9.46% 9.25 %
HAT-INC NB 9.37% 9.43% 9.42%
HAT-EWMA NB 8.64% 8.56% 8.23 %
HAT-ADWIN NB 8.65% 8.57% 8.17 %
CVFEDT |W| = 1,000 2495% 22.65% 22.24%
CVFDT |W| =10,000 14.85% 15.46% 13.53%
CVEDT |W| = 100,000 10.50%  10.61% 10.85%

An important problem with most of the real-world
benchmark data sets is that there is little concept drift in
them [23] or the amount of drift is unknown, so in many
research works, concept drift is introduced artificially. We
simulate concept drift by ordering the datasets by one of its
attributes, the education attribute for Adult, and the first (un-
named) attribute for Poker-Hand. Note again that while us-
ing CVFDT one faces the question of which parameter val-
ues to use, our method just needs to be told “go” and will
find the right values online.

The Adult dataset aims to predict whether a person
makes over 50k a year, and it was created based on census
data. Adult consists of 48,842 instances, 14 attributes (6
continuous and 8 nominal) and missing attribute values. The
Poker-Hand dataset consists of 1,025,010 instances and 11
attributes. Each record of the Poker-Hand dataset is an
example of a hand consisting of five playing cards drawn
from a standard deck of 52. Each card is described using
two attributes (suit and rank), for a total of 10 predictive
attributes. There is one Class attribute that describes the
”Poker Hand”. The order of cards is important, which is
why there are 480 possible Royal Flush hands instead of 4.

Table 4 shows the results on Poker-Hand dataset. It can
be seen that CVFDT remains at 50% error, while the dif-
ferent variants of Hoeffding Adaptive Trees are mostly be-
low 40% and one reaches 17% error only. In Figure 5 we
compare HWT-ADWIN error rate to CVFDT using different
window sizes. We observe that CVFDT on-line error de-
creases when the example window size increases, and that
HWT-ADWIN on-line error is lower for all window sizes.

7 Time and memory

In this section, we discuss briefly the time and memory
performance of Hoeffding Adaptive Trees. All programs
were implemented in C modifying and expanding the version
of CVFDT available from the VFML [14] software web
page. We have slightly modified the CVFDT implementation



22%

20% - \d\r

18% -

o —~—CVFDT
16% —= HWT-ADWIN

14% -

On-line Error

12% -

10%

1.000  5.000 10.000 15.000 20.000 25.000 30.000

Figure 5: On-line error on UCI Adult dataset, ordered by the
education attribute.

w
o

w

@m1000 [
m 10000
00100000} —

n
3}

Memory (Mb)
-~ oo

e
3
.

||

CVFDT
w=1,000

o

CVFDT CVFDT
w=10,000 w=100,000

HAT-INC HAT-EWMA  HAT-

ADWIN

Figure 6: Memory used on SEA Concepts experiments

Table 4: On-line classification errors for CVFDT and Ho-
effding Adaptive Trees on Poker-Hand data set.

NO ARTIFICIAL
DRIFT DRIFT

HAT-INC 38.32% 39.21%
HAT-EWMA 39.48% 40.26%
HAT-ADWIN 38.71% 41.85%
HAT-INC NB 41.77% 42.83%
HAT-EWMA NB 24.49% 27.28 %
HAT-ADWIN NB 16.91% 33.53%
CVFDT |W| = 1,000 49.90% 49.94%
CVFDT |W| = 10,000 49.88% 49.88 %
CVFEDT |W| = 100,000 49.89% 52.13 %
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Figure 7: Number of Nodes used on SEA Concepts experi-
ments

to follow strictly the CVFDT algorithm explained in the
original paper by Hulten, Spencer and Domingos [13]. The
experiments were performed on a 2.0 GHz Intel Core Duo
PC machine with 2 Gigabyte main memory, running Ubuntu
8.04.

Consider the experiments on SEA Concepts, with differ-
ent speed of changes: 1,000, 10,000 and 100, 000. Figure 6
shows the memory used on these experiments. As expected
by memory complexity described in section 5.2, HAT-INC
and HAT-EWMA, are the methods that use less memory. The
reason for this fact is that they don’t keep examples in mem-
ory as CVFDT, and that they don’t store ADWIN data for all
attributes, attribute values and classes, as HAT-ADWIN. We
have used the default 10, 000 for the amount of window ex-
amples kept in memory, so the memory used by CVFDT is
essentially the same for W = 10,000 and W = 100, 000,
and about 10 times larger than the memory used by HAT-
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INC memory.

Figure 7 shows the number of nodes used in the experi-
ments of SEA Concepts. We see that the number of nodes is
similar for all methods, confirming that the good results on
memory of HAT-INC is not due to smaller size of trees.

Finally, with respect to time we see that CVFDT is still
the fastest method, but HAT-INC and HAT-EWMA have a
very similar performance to CVFDT, a remarkable fact given
that they are monitoring all the change that may occur in any
node of the main tree and all the alternate trees. HAT-ADWIN
increases time by a factor of 4, so it is still usable if time or
data speed is not the main concern.

8 Related Work

It is impossible to review here the whole literature on deal-
ing with time evolving data in machine learning and data
mining. Among those using fixed-size windows, the work of
Kifer et al. [17] is probably the closest in spirit to ADWIN.
They detect change by keeping two windows of fixed size, a
“reference” one and “current” one, containing whole exam-
ples. The focus of their work is on comparing and imple-
menting efficiently different statistical tests to detect change,
with provable guarantees of performance.

Among the variable-window approaches, best known
are the work of Widmer and Kubat [25] and Klinkenberg
and Joachims [18]. These works are essentially heuristics
and are not suitable for use in data-stream contexts since they
are computationally expensive. In particular, [18] checks all
subwindows of the current window, like ADWIN does, and
is specifically tailored to work with SVMs. The work of
Last [19] uses info-fuzzy networks or IFN, as an alternative
to learning decision trees. The change detection strategy is
embedded in the learning algorithm, and used to revise parts

of the model, hence not easily applicable to other learning
methods.

Tree induction methods exist for incremental settings:
ITI [24], or ID5R [16]. These methods constructs trees
using a greedy search, re-structuring the actual tree when
new information is added. More recently, Gama, Fernandes
and Rocha [8] presented VFDTc as an extension to VFDT in
three directions: the ability to deal with continous data, the
use of Naive Bayes techniques at tree leaves and the ability to
detect and react to concept drift, by continously monitoring
differences between two class-distribution of the examples:
the distribution when a node was built and the distribution in
a time window of the most recent examples.

Ultra Fast Forest of Trees (UFFT) algorithm is an algo-
rithm for supervised classification learning, that generates a
forest of binary trees, developed by Gama, Medas and Rocha
[10]. UFFT is designed for numerical data. It uses analytical
techniques to choose the splitting criteria, and the informa-
tion gain to estimate the merit of each possible splitting-test.
For multi-class problems, the algorithm builds a binary tree
for each possible pair of classes leading to a forest-of-trees.

The UFFT algorithm maintains, at each node of all
decision trees, a Naive Bayes classifier. Those classifiers
were constructed using the sufficient statistics needed to
evaluate the splitting criteria when that node was a leaf. After
the leaf becomes a node, all examples that traverse the node
will be classified by the Naive Bayes. The basic idea of
the drift detection method is to control this error rate. If
the distribution of the examples is stationary, the error rate
of Naive Bayes decreases or stabilizes. If there is a change
on the distribution of the examples the Naive Bayes error
increases.

The system uses DDM, the drift detection method pro-
posed by Gama et al. [9] that controls the number of errors
produced by the learning model during prediction. It com-
pares the statistics of two windows: the first one contains all
the data, and the second one contains only the data from the
beginning until the number of errors increases. Their method
doesn’t store these windows in memory. It keeps only statis-
tics and a window of recent examples stored since a warning
level triggered. Details on the statistical test used to detect
change among these windows can be found in [9].

DDM has a good behaviour detecting abrupt changes
and gradual changes when the gradual change is not very
slow, but it has difficulties when the change is slowly grad-
ual. In that case, the examples will be stored for long time,
the drift level can take too much time to trigger and the ex-
amples memory can be exceeded.

9 Conclusions and Future Work

We have presented a general adaptive methodology for min-
ing data streams with concept drift, and and two decision
tree algorithms. We have proposed three variants of Hoeffd-



ing Adaptive Tree algorithm, a decision tree miner for data
streams that adapts to concept drift without using a fixed
sized window. Contrary to CVFDT, they have theoretical
guarantees of performance, relative to those of VFDT.

In our experiments, Hoeffding Adaptive Trees are al-
ways as accurate as CVFDT and, in some cases, they have
substantially lower error. Their running time is similar
in HAT-EWMA and HAT-INC and only slightly higher in
HAT-ADWIN, and their memory consumption is remarkably
smaller, often by an order of magnitude.

We can conclude that HAT-ADWIN is the most power-
ful method, but HAT-EWMA is a faster method that gives
approximate results similar to HAT-ADWIN. An obvious fu-
ture work is experimenting with the exponential smoothing
factor « of EWMA methods used in HAT-EWMA.

We would like to extend our methodology to ensemble
methods such as boosting, bagging, and Hoeffding Option
Trees. {M}assive {O}nline {A}nalysis [12] is a framework
for online learning from data streams. It is closely related to
the well-known WEKA project, and it includes a collection
of offline and online as well as tools for evaluation. In par-
ticular, MOA implements boosting, bagging, and Hoeffding
Trees, both with and without Naive Bayes classifiers at the
leaves. Using our methodology, we would like to show the
extremely small effort required to obtain an algorithm that
handles concept and distribution drift from one that does not.

References

[1] D.J. Newman A. Asuncion. UCI machine learning repository,
2007.

Albert Bifet and Ricard Gavalda. Kalman filters and adaptive
windows for learning in data streams. In Discovery Science,
pages 2940, 2006.

Albert Bifet and Ricard Gavalda. Learning from time-
changing data with adaptive windowing. In SIAM Interna-
tional Conference on Data Mining, 2007.

Albert Bifet and Ricard Gavalda. Mining adaptively frequent
closed unlabeled rooted trees in data streams. In /4th ACM
SIGKDD International Conference on Knowledge Discovery
and Data Mining, 2008.

L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classifica-
tion and Regression Trees. Wadsworth and Brooks, Monterey,
CA, 1994.

M. Datar, A. Gionis, P. Indyk, and R. Motwani. Maintaining
stream statistics over sliding windows. SIAM Journal on
Computing, 14(1):27-45, 2002.

Pedro Domingos and Geoff Hulten. Mining high-speed data
streams. In Knowledge Discovery and Data Mining, pages
71-80, 2000.

J. Gama, R. Fernandes, and R. Rocha. Decision trees for
mining data streams. Intell. Data Anal., 10(1):23-45, 2006.
J. Gama, P. Medas, G. Castillo, and P. Rodrigues. Learning
with drift detection. In SBIA Brazilian Symposium on Artifi-
cial Intelligence, pages 286295, 2004.

(2]

(3]

(4]

(5]

(6]

(7]

(8]
(9]

[10]

(11]

[12]

[13]

(14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

(22]

(23]

[24]

[25]

J. Gama, P. Medas, and R. Rocha. Forest trees for on-line
data. In SAC ’04: Proceedings of the 2004 ACM symposium
on Applied computing, pages 632—-636, New York, NY, USA,
2004. ACM Press.

Geoffrey Holmes, Richard Kirkby, and Bernhard Pfahringer.
Stress-testing hoeffding trees. In PKDD, pages 495-502,
2005.

Geoffrey Holmes, Richard Kirkby, and Bern-
hard Pfahringer. MOA: Massive Online Analy-
Sis. http://sourceforge.net/projects/
moa-datastream. 2007.

G. Hulten, L. Spencer, and P. Domingos. Mining time-
changing data streams. In 7th ACM SIGKDD Intl. Conf. on
Knowledge Discovery and Data Mining, pages 97-106, San
Francisco, CA, 2001. ACM Press.

Geoff Hulten and Pedro Domingos. VFML - a toolkit
for mining high-speed time-changing data streams.
http://www.cs.washington.edu/dm/vfml/.
2003.

K. Jacobsson, N. Moller, K.-H. Johansson, and H. Hjalmars-
son. Some modeling and estimation issues in control of het-
erogeneous networks. In 16th Intl. Symposium on Mathemat-
ical Theory of Networks and Systems (MTNS2004), 2004.
Dimitrios Kalles and Tim Morris. Efficient incremental
induction of decision trees. Machine Learning, 24(3):231—
242, 1996.

D. Kifer, S. Ben-David, and J. Gehrke. Detecting change in
data streams. In Proc. 30th VLDB Conf., Toronto, Canada,
2004.

R. Klinkenberg and T. Joachims. Detecting concept drift with
support vector machines. In Proc. 17th Intl. Conf. on Machine
Learning, pages 487 — 494, 2000.

M. Last. Online classification of nonstationary data streams.
Intelligent Data Analysis, 6(2):129-147, 2002.

Ross J. Quinlan. C4.5: Programs for Machine Learning
(Morgan Kaufmann Series in Machine Learning). Morgan
Kaufmann, January 1993.

T. Schon, A. Fidehall, and F. Gustafsson. Lane departure
detection for improved road geometry estimation. Technical
Report LiTH-ISY-R-2714, Dept. of Electrical Engineering,
Link6ping University, SE-581 83 Linkoping, Sweden, Dec
2005.

W. Nick Street and YongSeog Kim. A streaming ensemble
algorithm (sea) for large-scale classification. In KDD ’01:
Proceedings of the seventh ACM SIGKDD international con-
ference on Knowledge discovery and data mining, pages 377—
382, New York, NY, USA, 2001. ACM Press.

Alexey Tsymbal. The problem of concept drift: Definitions
and related work. Technical Report TCD-CS-2004-15, De-
partment of Computer Science, University of Dublin, Trinity
College, 2004.

Paul E. Utgoff, Neil C. Berkman, and Jeffery A. Clouse.
Decision tree induction based on efficient tree restructuring.
Machine Learning, 29(1):5-44, 1997.

G. Widmer and M. Kubat. Learning in the presence of con-
cept drift and hidden contexts. Machine Learning, 23(1):69—
101, 1996.



