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Abstract. In this paper we extend the PAC learning algorithm due to Clark and Thollard for
learning distributions generated by PDFA to automata whose transitions may take varying time
lengths, governed by exponential distributions.

1 Motivation

The problem of learning (distributions generated by) probabilistic automata and related mod-
els has been intensely studied by the grammatical inference community; see [4, 12, 13] and
references therein. The problem has also been studied in variants of the PAC model. In par-
ticular, it has been observed that polynomial-time learnability of PDFA is feasible if one allows
polynomiality not only in the number states but also in other measures of the target automa-
ton complexity. Specifically, Ron et al. [11] showed that acyclic PDFA can be learned w.r.t.
the Kullback–Leibler (KL) divergence in time polynomial in alphabet size, 1/ε, 1/δ, number
of target states, and 1/µ, where µ denotes the distinguishability of the target automaton.
Clark and Thollard extended the result to general PDFA by considering also as a parameter
the expected length of the strings L generated by the automaton [3]. Their algorithm, a state
merge-split method, was in turn extended or refined in subsequent work [6, 7, 5, 2].

Here we consider what we call asynchronous PDFA (AsPDFA), in which each transition
has an associated exponential distribution. We think of this distribution as indicating the
‘time’ or duration of the transition. Note that there are several models of timed automata
in the literature with other meanings, for example automata with timing constraints on the
transitions. Our model is rather the finite-state and deterministic restriction of so-called semi-
Markov processes; a widely-studied particular case of the latter are continuous-time Markov
chains, in which times between transitions are exponentially distributed. We show a general
expression for the KL divergence between two given AsPDFA similar to that in [1] for PDFA.
Based on this expression and a variant of the Clark–Thollard algorithm from [2], we show that
AsPDFA are learnable w.r.t. the KL divergence. Technically, the algorithm requires bounds
on the largest and smallest possible values of the parameters of the exponential distributions,
which can be thought as defining the ‘time-scale’ of the target AsPDFA. Full proofs are
omitted in this version and will appear elsewhere.

The result above is motivated by the importance of modeling temporal components in
many scenarios where probabilistic automata or HMM’s are used as modeling tools. We
in particular were brought to this problem by the work of one of the authors and other
collaborators on modeling users’ access patterns to websites [8–10]. Models similar to (visible-
or hidden- state) Markov Models have been used for this purpose in marketing circles and are
called Customer Behavior Model Graphs. After the work in [8–10], we noted that the time
among successive web clicks, the user think time, was extremely informative to discriminate
among different user types and predict their future behavior, and this information is not
captured by standard PFA.



2 Results

We essentially follow notation and learning model from [3, 2]. In particular, the definition of
probabilistic deterministic finite automaton (PDFA) and associated notation used here are
from [2]. Furthermore, we borrow the KL–PAC model for learning distributions over sequences
and the notion of µ-distinguishability of PDFA from [3]. We will denote by KL(D1‖D2) the
relative entropy, or KL divergence, between a pair of distributions over the same set. The
distributions are sometimes denoted by their models or parameters. In particular, in the case
of two exponential distributions Exp(λ) and Exp(λ̂) one has KL(λ‖λ̂) = ln(λ/λ̂) + λ̂/λ− 1.

An asynchronous PDFA (AsPDFA) is a tuple 〈Q,Σ, τ, γ, ξ, q0, Λ〉, where the sub-tuple
〈Q,Σ, τ, γ, ξ, q0〉 defines a PDFA and Λ : Q×Σ → IR is a partial function that assigns a rate
parameter Λ(q, σ) = λq,σ > 0 to each transition defined in the PDFA. We will say that an
AsPDFA is µ-distinguishable if the underlying PDFA is µ-distinguishable.

When acting as a generator, an AsPDFA works like a PDFA with a minor modification.
If q is the current state, after ‘deciding’ to emit the symbol σ (with probability γ(q, σ)), it
also emits a real number t, called the duration of the transition, sampled at random from
Exp(λq,σ), an exponential distribution with parameter λq,σ. Next state is τ(q, σ). In this
process, all durations sampled from exponential distributions are mutually independent. An
observation generated by an AsPDFA is a temporal string x = ((σ0, t0), . . . , (σk, tk), (ξ, tk+1))
where σi ∈ Σ and ti ∈ IR. Thus, an AsPDFA induces a probability measure over the space
X = (Σ × IR)∗ × ({ξ} × IR).

Our first theorem provides an expression for the relative entropy between two AsPDFA
that generalizes the formula in [1] for PDFA. Carrasco’s formula was used in [3] to bound the
KL divergence between a target PDFA and an hypothesis produced by a learning algorithm.
By the following result, similar techniques can be use to prove learnability for AsPDFA.

Theorem 1. Let A and Â be AsPDFA over the same alphabet Σ with the same terminal
symbol ξ. The KL divergence between the probability distributions induced by A and Â is

KL(A‖Â) =
∑
q∈Q

∑
q̂∈Q̂

W (q, q̂)
∑
σ∈Σ′

γ(q, σ)
[
log

γ(q, σ)
γ̂(q̂, σ)

+ KL(λq,σ‖λ̂q̂,σ)
]
, (1)

where Σ′ = Σ ∪ {ξ} and W (q, q̂) =
∑

s∈P (q,q̂) γ(q0, s) with

P (q, q̂) = {s ∈ Σ∗ | τ(q0, s) = q and τ̂(q̂0, s) = q̂} . (2)

Note that (1) yields a decomposition of KL(A‖Â) as a sum of two terms, one correponding
to the KL divergence between the underlying PDFA and another that contains all the terms
from Λ and Λ̂. The proof of Theorem 1 is similar in spirit to that in [1]. However, some
measurability issues need to be taken into account in this case. Essentially, this is due to the
fact that an AsPDFA defines a probability measure over (Σ× IR)∗× ({ξ}× IR), a space which
is neither discrete nor continuous.

As already mentioned, the decomposition given by (1) opens the door to algorithms for
learning AsPDFA similar to those for PDFA. In particular, a variation of the Clark–Thollard
algorithm [3] for learning AsPDFA will be outlined next. The algorithm is called AsLearner
and is built as an extension, with some improvements, over the Learner algorithm from [2].

As input parameters AsLearner receives the alphabet size |Σ|, an upper bound n on
the number of states of the target, a confidence parameter δ, and upper and lower bounds,



λmax and λmin respectively, on all rate parameters of the target. Furthermore, AsLearner is
provided with a sample S of examples, in this case temporal strings, drawn independently at
random from the target AsPDFA A.

Grosso modo, the algorithm uses S to build a graph which captures all ‘essential’ parts
of A, the so-called frequent states and frequent transitions. Each node and each arc in this
graph is assigned a multiset. In the case of nodes, multisets collect suffixes generated from
states corresponding to them. These multisets can be used to estimate stopping and transition
probabilities associated to that state. For arcs, multisets contain all observed durations of the
corresponding transition. From these durations a rate parameter for each transitions can be
easily estimated. These estimation steps turn the graph into an hypothesis AsPDFA. Finally,
a smoothing step is performed and a ground state is added to the hypothesis. The resulting
AsPDFA Â is returned.

Some little differences between Learner and AsLearner are to be found on how the graph
is constructed. Remarkably, a variation of the distinctness test from [2] requiring less samples
is employed. Furthermore, a different stopping condition is used to determine when the graph
contains all relevant states and transitions.

The analysis of the algorithm follows a scheme similar to that in [2]. Using Chernoff
bounds as the main technical tool, the graph is guaranteed to be correct with high proba-
bility. Subsequently, estimations of transition probabilities and rate parameters are shown to
be accurate with high probability. Here, a concentration inequality for the sample mean of
exponential random variables is invoked. Finally, bounding techniques from [3] are combined
with (1) to prove that, with high probability, Â is close to A w.r.t. the KL divergence. The
outcome of this analysis is summarized in the following.

Theorem 2. Given a sample S from an AsPDFA A, the algorithm AsLearner outputs, with
probability at least 1 − δ, an hypothesis Â satisfying KL(A‖Â) < ε whenever the number of
examples in S is |S| > N , where N is a function from

Õ

(
n5L9|Σ|3

ε6µ2
· ln
(

1
δ

)
· ln3

(
λmax

λmin

))
. (3)

Furthermore, the algorithm runs in time polynomial in |S| and the lengths of examples in S.

3 Discussion

Improving on previous algorithms, AsLearner needs less input parameters (about the un-
derlying PDFA) thanks to the new stopping condition. Futhermore, an improved test for
comparing states and a sharper analysis yield a dependence on |Σ| in the sample bound from
Theorem 2 one degree smaller than in the Learner algorithm. On the other side, note the
dependence on the number of states is one degree larger. That is because some more sam-
ples are needed in order to guarantee a good approximation of all relevant rate parameters.
Apart from the dependence on λmax and λmin, which determine the ‘time scale’ of the target
AsPDFA, the rest of parameters appear with the same degree as in the bounds from [2].

Recall that the distinguishability of an AsPDFA is defined here as the distinguishability
of its underlying PDFA. This allows to prove learnability for AsPDFA using almost the
same algorithm for learning PDFA. In particular, the same statistical test for distinguishing
between different states can be used for learning PDFA and AsPDFA under this definition of
distinguishability. However, it is conceivable that a new test using information provided by



transition durations in addition to information from suffix distributions can be used to learn
AsPDFA. Such a test would require a novel definition of distinguishability and would provide
means for learning AsPDFA whose underlying PDFA are not learnable. Thus, we regard our
results as a proof of concept on AsPDFA learning which we plan to extend along these lines
in future work.

Finally, it is worth remarking that Theorem 1 can be generalized to broader classes of au-
tomata where, instead of duration, transitions convey more general types of information. This
generalization can be proved under very mild measurability conditions on the distributions
that generate such information. Identifying families of distributions, other than exponential,
for which learning is feasible, can significantly extend the range of practical applications where
these techniques can be used.
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