
Adaptive XML Tree Mining on Evolving Data Streams

Albert Bifet Ricard Gavaldà

Laboratory for Relational Algorithmics, Complexity and Learning LARCA
Departament de Llenguatges i Sistemes Informàtics

Universitat Politècnica de Catalunya

ECML-PKDD 2009
Bled, september 8th, 2009

Pattern Mining in Data Streams

Our setting

Patterns: Objects where

“p subpattern of q”

makes sense (partial order)

Sets, sequences, trees, graphs

Mining frequent patterns

Classifying patterns

In a data stream that changes over time

2 / 24

XML Trees

<?xml version=" 1.0 " ?>
<?xml−s t y l eshee t type=" t e x t / x s l " h re f = " movie1 . x s l " ?>
< f i l m l i b r a r y >

<name>Class ic Fi lms< / name>
<movie>

< t i t l e >The B icyc le Th ie f < / t i t l e >
<genre>Soc ia l Drama< / genre>
<language> I t a l i a n < / language>
<year>1948< / year>
< leng th>90 Min . < / leng th>
< f i l m t y p e >BW< / f i l m t y p e >
< c r e d i t s >

< d i r e c t o r > V i t t o r i o de Sica< / d i r e c t o r >
< s to r y >Gennarino B a r t o l i n i < / s t o r y >
<cinematography>Carlo Montuor i< / cinematography>

< / c r e d i t s >
< / movie>

< / f i l m l i b r a r y >

3 / 24

Issues

Pattern Classification

Mapping patterns→ features

Frequent patterns, closed patterns, generators, . . .

Data stream classification

Highly sublinear memory (in #items seen)

Low processing time per item

Tolerate distribution & concept change

4 / 24

Our Work

To our knowledge, first tree pattern classifier in data streams

Builds features by mining frequent closed subtrees or maximal
subtrees

Miner is interesting in itself / competititve with state-of-the art

Uses recently proposed ensemble methods for classification

Implementation over the MOA framework

5 / 24

Tree (Pattern) Mining

Task occurs in chemistry, computer vision, text retrieval
bioinformatics, Web analysis, XML queries, . . .

A transaction supports a tree if the tree is a subtree of the
transaction

Support of a tree is the number of transactions that support it

Given a dataset of trees and value min_support, find

Frequent Tree mining (FT):

all trees whose support is no less than min_support

Closed Frequent Tree mining (CT):

+ no super-tree with the same support

6 / 24

Previous Work

[Zaki-Agrawal] Classifier from frequent sets + Bayesian rules

[Kudo et al.] Classifier from “significant” frequent trees +
boosting

[Collins et al.,Kashima et al.] SVM’s, tree kernels; feature space
= frequent trees

CMTreeMiner [Chi et al.], [Termier et al.] Dryade: Closed
frequent tree miners without computing all frequent trees

[Li et al 06] Frequent subtree miner for XML data streams

[Bifet-G 08] Frequent closed pattern miner in data streams,
unlabelled trees

7 / 24

Closure Operator on Trees

D : the finite input dataset of trees

T : the (infinite) set of all trees

Definition
We define the following Galois connection pair:

For finite A⊆D

σ(A) is the set of subtrees of the A trees in T

σ(A) = {t ∈T
∣∣ ∀ t ′ ∈ A(t � t ′)}

For finite B ⊂T

τD (B) is the set of supertrees of the B trees in D

τD (B) = {t ′ ∈D
∣∣ ∀ t ∈ B (t � t ′)}

8 / 24

Closure Operator on Trees (2)

Closure Operator
The composition CD = σ ◦ τD is a closure operator

Characterizing closed trees
A tree t is closed (no supertree with same support) in D

iff
CD(t) = {t}

9 / 24

Closure Operator on Trees (3)

Rules for adding and removing patterns to datasets [Bifet-G 08]:

Theorem
Let D1 and D2 be two datasets of patterns. A pattern t is
closed for D1∪D2 if and only if

t is a closed pattern for D1, or

t is a closed pattern for D2, or

t is a subpattern of a closed pattern in D1 and of a closed
pattern in D2 and CD1∪D2({t}) = {t}.

Theorem
Let D be a pattern dataset. A pattern t is closed for D if and
only if the intersection of all its closed superpatterns is t.

10 / 24

Incremental Algorithm

Computing the lattice of frequent trees

Construct empty lattice L;

Repeat

Collect batch of B trees;

Build closed tree lattice for B, L2;

L := merge(L,L2) (using addition rule)

Memory & time depend on lattice size (number of closed trees)
not on DB size!

Efficient ops. using the representation for trees by
[Balcázar-Bifet-Lozano]

11 / 24

Incremental Algorithm

Computing the lattice of frequent trees

Construct empty lattice L;

Repeat

Collect batch of B trees;

Build closed tree lattice for B, L2;

L := merge(L,L2) (using addition rule)

Memory & time depend on lattice size (number of closed trees)
not on DB size!

Efficient ops. using the representation for trees by
[Balcázar-Bifet-Lozano]

11 / 24

Dealing with time changes

Keep a window on recent stream elements

Actually, just its lattice of closed sets!

Keep track of number of closed trees in lattice, N

Use some change detector on N

When change is detected:

Drop stale part of the window
Update lattice to reflect this deletion, using deletion rule

Alternatively, sliding window of some fixed size

12 / 24

Miner is interesting in itself

Can also be used for static databases
For small number of labels:

slightly faster than CMTreeMiner

significantly less memory than CMTreeMiner

(CMTreeMiner keeps all dataset in memory)

T8M synthetic dataset [Zaki02]:
100 labels, mother tree size 10,000, DBsize 8M

13 / 24

Maximal Trees

Maximal Trees
A tree is maximal if no supertree of t is frequent
All maximal trees are closed

Non-maximal closed patterns can be derived from maximal ones

. . . but not their supports

Are they still enough for classification?

14 / 24

XML Tree Classification
on evolving data streams

D

D

B

C

A

C

D

B

C

B

D

B

C C

B

D

B

C

A

B

CLASS1 CLASS2 CLASS1 CLASS2

Figure: A dataset example

15 / 24

XML Tree Classification
on evolving data streams

Closed Maximal
Trees Trees

Id Tree c1 c2 c3 c4 c1 c2 c3 Class
1 1 1 0 1 1 1 0 CLASS1
2 0 0 1 1 0 0 1 CLASS2
3 1 0 1 1 1 0 1 CLASS1
4 0 1 1 1 0 1 1 CLASS2

16 / 24

XML Tree Framework on evolving data
streams

Two components:

An XML closed frequent tree miner

A Data stream classifier algorithm, which we will feed with tuples
to be classified online.

Attributes in these tuples represent the occurrence of the
current closed trees in the originating tree, although the
classifier algorithm need not be aware of this.

17 / 24

WEKA: the bird

18 / 24

MOA: the bird

The Moa (another native NZ bird) is not only flightless, like the
Weka, but also extinct.

19 / 24

MOA: the software

{M}assive {O}nline {A}nalysis is a framework for online learning
from data streams.
http://www.cs.waikato.ac.nz/∼abifet/MOA/

It is closely related to WEKA

It includes a collection of offline and online algorithms and tools
for evaluation:

Hoeffding Trees, Hoeffding option trees
Boosting and bagging. In particular:
Adaptive-Size Hoeffding Tree bagging & boosting [Bifet et al.,
KDD09]

with and without Naïve Bayes classifiers at the leaves.

20 / 24

Experiments: Synthetic datasets

Zaki’s tree dataset generator

2 mother trees, 2 classes, depth and fanout 10

1M samples, node labels change every 250,000 trees

Bagging Time Acc. Mem.

AdaTreeMiner 161.61 80.06 4.93
IncTreeMiner 212.75 65.73 4.4

21 / 24

Experiments: Real dataset

LOGML files [Zaki 02]
describing 3 weeks of user sessions logs, each as XML file
classes = .edu vs. non-.edu visitors

Maximal Closed

Trees Att. Acc. Mem. Att. Acc. Mem.

CSLOG12 15483 84 79.64 1.2 228 78.12 2.54
CSLOG23 15037 88 79.81 1.21 243 78.77 2.75
CSLOG31 15702 86 79.94 1.25 243 77.60 2.73
CSLOG123 23111 84 80.02 1.7 228 78.91 4.18

22 / 24

Conclusions

A tree / XML tree stream classifier system

Frequent closed / maximal trees as features

Frequent closed tree miner based on closure operators

That reacts quickly to distribution / label changes

Maximal trees may suffice

23 / 24

Future Work

More experiments for better understanding of behavior

Especially, comparison with CMTreeMiner

Deletion of obsolete attributes

Use generators instead of closed / maximal

XML mining in data streams when #labels is large

24 / 24

