PAC-Learning of Markov Models with Hidden State

Ricard Gavaldà ${ }^{1}$ Philipp W. Keller ${ }^{2}$ Joelle Pineau ${ }^{2}$ Doina Precup ${ }^{2}$

${ }^{1}$ Univ. Politècnica de Catalunya, Barcelona
${ }^{2}$ McGill University, Montréal
(work presented in ECML'06)

Outline

(1) Introduction
(2) HMM and PDFA
(3) PAC-Learning PDFA

4 Our algorithm
(5) Analysis
(6) Experiments
(7) Conclusions

Hidden Markov Models

- Hidden Markov Models (HMM) useful for prediction under uncertainty
- HMM generates probability distribution on sequences of observations (or action/observation pairs)
- Learning problem: Given sample of sequences of observations infer an HMM generating a similar distribution
approximate target's parameters [Rabiner89]

Hidden Markov Models

- Hidden Markov Models (HMM) useful for prediction under uncertainty
- HMM generates probability distribution on sequences of observations (or action/observation pairs)
- Learning problem: Given sample of sequences of observations infer an HMM generating a similar distribution
- Standard approach: Expectation Maximization (EM) to approximate target's parameters [Rabiner89]
- Drawbacks:
(1) requires previous knowledge of state set - not always available
(2) converges to local minimum - how far from optimum?

Summary of Results

- We use Probabilistic Deterministic Finite Automata as approximations of HMM
- We give a learning algorithm for PDFA
- that infers both state representations and parameters
- has formal guarantees of performance - PAC-learning
- We test on (very small) simple dynamical systems - promising results

Previous work

Learning HMM without prior knowledge of states:

- Predictive State Representations [Jaeger et al 05, Rosencrantz et al 04, Singh et al 03]. No formal guarantees, millions of examples.
- PAC-style: [Ron et al 95] [Clark \& Tholard 04]: basis of our work
- [Holmes \& Isbell 06]: similar to ours, deterministic systems

HMM, PNFA, PDFA

- Finite set of observations or letters
- Finite set of states
- Probabilities on transitions between states

HMM: States emit observations, probabilistically

- PNFA, PDFA: Transitions emit observations, probabilistically

HMM, PNFA, PDFA

- Finite set of observations or letters
- Finite set of states
- Probabilities on transitions between states
- HMM: States emit observations, probabilistically
- PNFA, PDFA: Transitions emit observations, probabilistically

HMM, PNFA, PDFA

- $N=$ Nondeterministic: Each (state,letter) leads to many states
- $\mathrm{D}=$ Deterministic: Fixing (state,observation) fixes next state

HMM

PDFA

Relation between models

- HMM n states \rightarrow PNFA n states
- PNFA n states $\rightarrow \mathrm{HMM} n^{2}$ states
- Some finite-size PNFA/HMM only have infinite-size PDFA
- But:

For every PNFA M and every ϵ there is a finite-size PDFA that approximates M within precision ϵ in L_{∞} distance

Distribution distances

Definition

For two distributions D_{1}, D_{2},

$$
\begin{aligned}
L_{\infty}\left(D_{1}, D_{2}\right) & =\max _{x}\left|D_{1}(x)-D_{2}(x)\right| \\
K L D\left(D_{1} \| D_{2}\right) & =\sum_{x} D_{1}(x) \log \frac{D_{1}(x)}{D_{2}(x)}
\end{aligned}
$$

What do we mean by learning?

Definition

An algorithm PAC-learns PDFA if for every target PDFA M, every ϵ, every δ it produces a PDFA M^{\prime} such that

$$
\operatorname{Pr}\left[K L D\left(D(M) \| D\left(M^{\prime}\right)\right) \geq \epsilon\right] \leq \delta
$$

in time poly (size (M), $1 / \epsilon, 1 / \delta$).

Unfortunately this is impossible [Kearns et al05]

What do we mean by learning?

Definition

An algorithm PAC-learns PDFA if for every target PDFA M, every ϵ, every δ it produces a PDFA M^{\prime} such that

$$
\operatorname{Pr}\left[K L D\left(D(M) \| D\left(M^{\prime}\right)\right) \geq \epsilon\right] \leq \delta
$$

in time poly $(\operatorname{size}(M), 1 / \epsilon, 1 / \delta)$.

Unfortunately this is impossible [Kearns et al05]

What do we mean by learning?

- [Ron et al 96] Learning becomes possible by
- restricting to acyclic PDFA and
- considering distinguishability parameter μ
- [Clark\&Thollard 04] Works for cyclic automata if we consider a new parameter $L=$ bound on expected length of generated strings They learn in the KLD sense in time poly $(n, 1 / \epsilon, \ln (1 / \delta), 1 / \mu, L)$

Distinguishability

Definition

- States q and q^{\prime} are μ-distinguishable if

$$
L_{\infty}\left(D(q), D\left(q^{\prime}\right)\right) \geq \mu
$$

where $D(q)$ is the distribution of strings generated from q

- A PDFA is μ-distinguishable if every two states in it are μ-distinguishable

The C\&T algorithm: promise and drawbacks

It provably PAC-learns. But:

- Asks for parameters ϵ, δ, \ldots and n, μ, L (guesswork)
read parameters;
compute $m=\operatorname{polv}(\in, \quad n, \ldots, L)$ get sample of size m; - Always worst-case: as many samples as worst target PDFA!

The C\&T algorithm: promise and drawbacks

It provably PAC-learns. But:

- Asks for parameters ϵ, δ, \ldots and n, μ, L (guesswork)
- Requires full sample up-front: read parameters; compute $m=\operatorname{poly}(\epsilon, \delta, n, \mu, L)$; get sample of size m; build pdfa from sample

The C\&T algorithm: promise and drawbacks

It provably PAC-learns. But:

- Asks for parameters ϵ, δ, \ldots and n, μ, L (guesswork)
- Requires full sample up-front:
read parameters;
compute $m=\operatorname{poly}(\epsilon, \delta, n, \mu, L)$;
get sample of size m;
build pdfa from sample
- Always worst-case: as many samples as worst target PDFA!

The C\&T algorithm: promise and drawbacks

It provably PAC-learns. But:

- Asks for parameters ϵ, δ, \ldots and n, μ, L (guesswork)
- Requires full sample up-front: read parameters; compute $m=\operatorname{poly}(\epsilon, \delta, n, \mu, L)$; get sample of size m; build pdfa from sample
- Always worst-case: as many samples as worst target PDFA!
- Polynomial is huge:
for $n=L=3, \epsilon=\delta=\mu=0.1 \rightarrow m>10^{20}$
- Analysis certainly not tight. Is this cost unavoidable?

Our approach

Based on [C\&T04], but:

- No need to give L and ϵ as parameters if m is fixed;
- Improved analysis:
- separates time to get graph and time to tune parameters
- time to get state graph independent of ϵ, L
- this time smaller for "easier" graphs

Data structures

- Graph with "safe" and "candidate" states
- Safe state s : represents state where string s ends
- Candidate state: pair (s, σ) where $\operatorname{next}(s, \sigma)$ still unclear
- Invariant: all safe states are really distinct in target

Growing the graph

- A candidate state can be promoted to safe or merged with an existing safe state
- Keep a multiset $D_{s, \sigma}$ for each candidate (s, σ)
- $D_{s, \sigma}$ sample of distribution from state reached by $s \cdot \sigma$

Growing the graph

- A candidate state can be promoted to safe or merged with an existing safe state
- Keep a multiset $D_{s, \sigma}$ for each candidate (s, σ)
- $D_{s, \sigma}$ sample of distribution from state reached by $s \cdot \sigma$

Growing the graph

- A candidate state can be promoted to safe or merged with an existing safe state
- Keep a multiset $D_{s, \sigma}$ for each candidate (s, σ)
- $D_{s, \sigma}$ sample of distribution from state reached by $s \cdot \sigma$

Growing the graph

- A candidate state can be promoted to safe or merged with an existing safe state
- Keep a multiset $D_{s, \sigma}$ for each candidate (s, σ)
- $D_{s, \sigma}$ sample of distribution from state reached by $s \cdot \sigma$

The algorithm

1. define safe initial state, labelled with empty string;
2. define candidate states out of initial state, one per letter;

\square
ग. endwhile

The algorithm

1. define safe initial state, labelled with empty string;
2. define candidate states out of initial state, one per letter;
3. while there are samples left do
4. run next sample through current graph;
5. if it ends in a candidate state (s, σ) then
6. let w be the unprocessed part of sample;
7. \quad store w in $D_{s, \sigma}$;
8. if $D_{s, \sigma}$ large enough, either merge or promote (s, σ);
9. endif
10. endwhile

The algorithm

1. define safe initial state, labelled with empty string;
2. define candidate states out of initial state, one per letter;
3. while there are samples left do
4. run next sample through current graph;
5. if it ends in a candidate state (s, σ) then
6. let w be the unprocessed part of sample;
7. \quad store w in $D_{s, \sigma}$;
8. if $D_{s, \sigma}$ large enough, either merge or promote (s, σ);
9. endif
10. endwhile
11. build PDFA from current graph

Merging and promoting states

Largeness condition: $D_{s, \sigma}$ has size at least

$$
T=\frac{c}{\mu^{2}} \cdot \ln \frac{n|\Sigma|}{\delta}
$$

Assuming μ-distinguishable target, we can then decide reliably: if distributions observed at (s, σ) and some safe state s^{\prime} are
$\mu / 2$-close \rightarrow identify (s, σ) and s^{\prime}, i.e., set $\operatorname{next}(s, \sigma)=s^{\prime}$
else, (s, σ) is $\mu / 2$-far from all safe states \rightarrow
promote (s, σ) to safe state labelled $s \sigma$, create new candidate states

Merging and promoting states

Largeness condition: $D_{s, \sigma}$ has size at least

$$
T=\frac{c}{\mu^{2}} \cdot \ln \frac{n|\Sigma|}{\delta}
$$

Assuming μ-distinguishable target, we can then decide reliably:

- if distributions observed at (s, σ) and some safe state s^{\prime} are $\mu / 2$-close \rightarrow identify (s, σ) and s^{\prime}, i.e., set $\operatorname{next}(s, \sigma)=s^{\prime}$

Merging and promoting states

Largeness condition: $D_{s, \sigma}$ has size at least

$$
T=\frac{c}{\mu^{2}} \cdot \ln \frac{n|\Sigma|}{\delta}
$$

Assuming μ-distinguishable target, we can then decide reliably:

- if distributions observed at (s, σ) and some safe state s^{\prime} are $\mu / 2$-close \rightarrow identify (s, σ) and s^{\prime}, i.e., set $\operatorname{next}(s, \sigma)=s^{\prime}$
- else, (s, σ) is $\mu / 2$-far from all safe states \rightarrow promote (s, σ) to safe state labelled $s \sigma$, create new candidate states

Merging and promoting states

Largeness condition: $D_{s, \sigma}$ has size at least

$$
T=\frac{c}{\mu^{2}} \cdot \ln \frac{n|\Sigma|}{\delta}
$$

Assuming μ-distinguishable target, we can then decide reliably:

- if distributions observed at (s, σ) and some safe state s^{\prime} are $\mu / 2$-close \rightarrow identify (s, σ) and s^{\prime}, i.e., set $\operatorname{next}(s, \sigma)=s^{\prime}$
- else, (s, σ) is $\mu / 2$-far from all safe states \rightarrow promote (s, σ) to safe state labelled $s \sigma$, create new candidate states
- rerun strings in $D_{s, \sigma}$ from merged/promoted state

Building the PDFA from the graph

- Identify each remaining candidate states with a closest safe state;
- Compute transition probabilities in obvious way:

$$
\operatorname{Pr}\left[s \xrightarrow{\sigma} s^{\prime}\right]=\frac{\text { \#samples using }\left(s \xrightarrow{\sigma} s^{\prime}\right)}{\text { \#samples passing through } s}
$$

(maybe with some smoothing)

Main claim 1: time to learn topology

Lemma

Suppose a target state q is reachable by a path of length ℓ all whose edges have absolute probability $\geq p$. Then q has a corresponding safe state in the graph by time at most

$$
\frac{\ell}{p} \cdot O(T)=O\left(\frac{\ell}{\mu^{2} p} \cdot \ln \frac{n|\Sigma|}{\delta}\right)
$$

- Time depends on unknown ℓ and p : easier states are found faster
- No dependence on ϵ; on L, indirectly via p

Main claim 2: time to learn parameters

Lemma

Suppose the built graph is isomorphic to target graph; if we see

$$
\operatorname{poly}(n, 1 / \epsilon, \ln (1 / \delta), 1 / \mu, L)
$$

additional samples, the PDFA obtained from the graph satisfies the PAC-learning criterion
[proof basically as in Clark\&Thollard04]

Wrap-up

- Lemma 1 states time to identify non-negligible states
- Lemma 2 states time to approximate transition probabilities
- Together, we recover [Clark\&Thollard04] PAC-guarantees
- But with less parameters, faster in non-worst-case situations

Simple text generation

- alphabet $=\{a, b, \#\}, \#$ as word separator
- HMM generates only $\{a b b, a a a, b b a\}$

Simple text generation

- alphabet $=\{a, b, \#\}, \#$ as word separator
- HMM generates only $\{a b b, a a a, b b a\}$

Simple text generation

- alphabet $=\{a, b, \#\}$, \# as word separator
- HMM generates only $\{a b b, a a a, b b a\}$
- Noisy: flip letter with probability 0.1

Samples to achieve desired prediction

Cheese maze experiment

- observations: $a=1$ wall; $b=2$ walls; $c=3$ walls
- move to random neighbor
- task resets whenever we reach s10
- each state of learned PDFA has natural interpretation
- e.g. $N_{5}=$ "We're at $S 5$ or $S 7$, prob. 0.5 each"

S0	S1	S2	S3	S4
S5		S6		S7
S8			S10	
			S9	

Conclusions

- A PAC-learning algorithm for learning HMM as PDFA
- Learns state structure as well as transition probabilities
- \# samples order of 10^{5} where theory said $>10^{20}$
- Extend to distances other than L_{∞}
- Reduce number of samples (by tighter analysis)
- [Denis et al 06] PAC-learn full class of PNFA. Practical?

Conclusions

- A PAC-learning algorithm for learning HMM as PDFA
- Learns state structure as well as transition probabilities
- \# samples order of 10^{5} where theory said $>10^{20}$

Future work:

- Extend to distances other than L_{∞}
- No need to input μ
- Reduce number of samples (by tighter analysis)
- [Denis et al 06] PAC-learn full class of PNFA. Practical?

