PAC-Learning of Markov Models with Hidden State

Ricard Gavald} Philipp W. Kelle?, Joelle Pineat) Doina Precup

lUniversitat Politécnica de Catalunya, Barcelona, Spain
2McGill University, School of Computer Science, MontrealCQCanada

Abstract. The standard approach for learning Markov Models with Hid8&te
uses the Expectation-Maximization framework. While thigpmach had a sig-
nificant impact on several practical applications (e.g.esperecognition, bio-
logical sequence alignment) it has two major limitationsreiquires a known
model topology, and learning is only locally optimal. We pose a new PAC
framework for learning both the topology and the parametepartially observ-
able Markov models. Our algorithm learns a Probabilisti¢ePministic Finite
Automata (PDFA) which approximates a Hidden Markov ModeMi) up to
some desired degree of accuracy. We discuss theoretiaditioms under which
the algorithm produces an optimal solution (in the PAC-egasid demonstrate
promising performance on simple dynamical systems.

1 Introduction

Hidden Markov Models (HMMs) are widely used tools for preitin under uncer-
tainty. Successful applications of these technologiekiitec speech recognition (Ra-
biner, 1989) and DNA sequence alignment (Durbin et al, 1998his paper, we ad-
dress the issue of learning such models from data.

The standard approach at the moment is to estimate modehptaes directly from
trajectories of observations (or action-observationg)aising Expectation-Maximization
(EM) (Rabiner, 1989). This approach has proved successfulany applications, but
it also has some significant drawbacks. First, it assumeowaikiset of “real” hidden
statesS. In many domains, in particular in physical systems, thera hatural state
representation. For example, in speech recognition, thef ghonemes is the standard
choice of state representation, and in computational giglthe type of the subse-
quence (e.g., gene or promoter) is a natural choice. Howthere are many domains
where the choice of states is not at all obvious. For exanmpiéalogue modelling, the
state representation must somehow capture the user’s coitation goals. Similarly,
in medical diagnostic and adaptive treatment design, tie shust capture complex
information about the patient, his/her disease and traathistory. In these and similar
cases, the state is best represented by summary statigticthe set of past observa-
tions. Some recent research has focused on modeling jusbderved data (Jaeger et
al, 2006, Rosencrantz et al, 2004, Singh et al, 2003). Incts®e, knowing or defining
hidden states ahead of time is not necessary. The algorithmrepose in this paper
has a similar goal, although the methodology is differerg.Bild a learning algorithm
for probabilistic models which can simultaneously est@maigood state topology and
a corresponding set of parameters.



The second drawback of EM is that it converges to a locallynagdtsolution, and
there are no guarantees on the quality of the final solutiosome domains, this is very
problematic. The algorithm we propose has PAC-style guaemon the model learned,
using a polynomial amount of data.

We use Probabilisitc Deterministic Finite Automata (PDFA$tandard tool in com-
putational learning theory, as the basic representatidpetéearned. We show how
PDFAs can approximate HMMs. Our algorithm is based on a-sfaliting and merg-
ing technique, and is designed to be able to provide PAC gtesa. We illustrate the
algorithm on some example problems, and show promisingrécapiesults.

Some proofs and discussions are omitted in this versionelMetails can be found
in the technical report version, available from the firstaus homepage.

2 Background

We address the problem of learning the structure and paeasdta dynamical system,
directly from observational data generated by the systdra.data typically consists of
a set of trajectoried) = {d*,d?,...,d"}, each containing a finite sequence of observa-
tionsd = o0p0o1...0k. Different models have been used to capture this type of, idata
this paper, we focus on Hidden Markov Models and Probatuilishite Automata.

A probabilistic deterministic finite automaton (PDFAg a tuple(S 2, T,0,%),
whereSis a finite set of stateg, is a finite set of observations,: Sx X — Sis the
transition functionO : Sx £ — [0, 1] defines the probability of emitting each observa-
tion from each stateQ(s,0) = P(o; = 0| = s), ands € Sis the initial state. Note
that the transition to a new state is deterministic once aeation has been selected:
T(s,0) gives the next statg. A special symbol is reserved to mark the end of a string;
alternatively, one can interpret this as a stop state witbuigoing edges. A probabilis-
tic nondeterministic finite automaton (PNFA) is defined $amty except the transition
function is stochastict : Sx Z x S— [0,1], andT (s,0,5) = P(s+1 =95 =S,0t = 0).

Given an observation trajectoy= 0g01,...,0x emitted by a known PDFA, the
state at each time step can be tracked by starting from thialistatesy and fol-
lowing the labelled transitions according db Also, the probability of generating a
given trajectonyd = 001, ..., 0k from a states can be calculated recursively as follows:
O(S, 0001...0k) = O(S, Oo)O(T (S, 00),01...0k).

A Hidden Markov Models a tuple(S Z, T, O, bo), whereSis a finite set of states,
3 is a finite set of observation$s,s) = P(s;1 = S|s = s) defines the probability of
transitioning between state3(s, o) = P(0; = 6|s = s) defines the emission probability
of each observation on each state, bp) = P(sp = ) is the initial state distribution.
Given an observation trajectodyemitted by a known HMM, the probability distribu-
tion over states at any tim®, 1, can be estimated recursively by Bayesian updating:

bry1(s) O Zgeshi(s)O(s, 01)T (S 5) 1)

Several links have been established between HMMs and pitstiakautomata; a
comprehensive review is in (Dupont et al., 2005). From thatpaf view of this paper,
it is most important to note that an HMM can be transformed ar equivalent PNFA
with the same number of states. A PNFA can also be transfoimtecan HMM, but



not necessarily with the same number of states. Any PDFA (S X, T,0,5) can be
converted to an equivalent HMM' = (S, T’, O, by). The states il correspond to
pairs of states it among which a transition is possibl8:= {(s1,s) € Sx §30 €
2 s.t.T(s,0) = 9}. The probability distributions of the HMM are then built adléws:

B , B O(s,0)
bo((s0,8)) = 1/|S) O((ss),0) = S_s0(50)

T'((s9),(5,9") = %O(s’,o)é(T(s’,o),s”)

whered is an indicator function. All other parameters are 0. It isye#o show that
M’ defines a proper HMM, and th&t andM’ generate the same probability distribu-
tion over observation trajectories. Unfortunately, theerse is not true: there are finite
HMMs that can only be converted into PDFAs of infinite sizewdwer, we will now
show that any HMM can bapproximatedvith a finite PDFA up to any desired degree
of precision.

3 Approximating HMMS with PDFAs

Recalling that every HMM is equivalent to a PNFA (Dupont et24l05), we show that
every finite-size PNFA can be approximated by a finite-siz€/&D

Theorem 1. Let N be a PNFA and L be the expected length of strings gertelate
N. Then there exists a PDFA of size at mogta.that generates a distribution over
trajectories that is-close to the distribution generated by N, under thedistance.

Proof. Recall thatL,, measures the maximum difference between the corresponding
components of two vectors. Here, we will use it to measuraribgimum difference
between the probability assigned to the same string by tfferdnt distributions. Let
Sbe the set of strings having probability at least N. Note that there are at mostel
such strings, i.e., finitely many. It is easy to build a finiree-like PDFAM with |S]
leaves that generates exactly the stringS,iaach with the same probability &k and
no other string. Hence, the distributionsMfandN aree-close.

To explicitly bound the size of the tree, we observe that 4 S, then necessarily
|u| < L/e. LetSy be the random variable describing the string output by PNFAhen
by Markov's inequality we have
€ < Pr{Sy = u] < Pr{|Sy| = [uf] < E[|Su[]/[ul < L/]u|
which completes the proof.

This is a generic construction whose value is only to showfihde-size approx-
imation of PNFA (and HMM) by PDFA is always possible. Howewbe machine we
construct for the proof does not capture the internal sinecdf the PNFA/HMM. But
the fact that PDFAs can be used to approximate HMMs suggesésvaclass of al-
gorithms that could be used to learn HMMs. More preciselg oan think of trying
to learn a PDFA that approximates an HMM. The size of the PDIeAldr depend on
factors such as the desired degree of accuracy, and the &ofalata available.



PDFAs and PNFAs have been studied extensively in compugdtiearning the-
ory, especially in the context of PAC-learning. In this @it the goal of learning is
to find a model that approximates the true probability disttion over observation
trajectories,?. A learning algorithm will produce a model which generatedisiri-
bution over observation trajectorigs A model, or hypothesis, is calledgood, if the
distance betweem(?, ?) < &, wherem s a reasonable distance measure (e.gor
the Kullback-Leibler divergence) ared> O is the desired precision. Given observation
trajectories that are drawn i.i.d. from the system, an ggewsametee > 0 and a con-
fidence parametey € (0,1), a PAC-learning algorithm must output argood model
with probability at least 1- 8. A class of machines is called efficiently PAC-learnable
if there exists a PAC-learning algorithm whose time comityeis polynomial in Ve,
1/0 and the number of parameters of the target machine. A classcfiines is poly-
nomially PAC-learnable if the training sample (i.e. the faemof trajectories needed)
is polynomial in the same quantities.

Several PAC-style results have been established over #rs ga the topic of learn-
ing PDFAs and HMMs. (see Dupont et al, 2005 for a compreherdiscussion). Of
particular relevance to our work is the result by Kearns e(18194) establishing that
the class of all PDFAs is in faatot efficiently PAC-learnable. However Ron et al.
(1995) argued that by restricting attention to the classfAs that are acyclic and
have adistinguishability criteriorbetween states, PAC-learning is possible.

Definition 1. Let m be a measure of the difference between two probabibtyitul-
tions. A PDFA hagligtinguishability p if for any two states s and,ghe probability
distributions over observation trajectories starting adusd ¢, 25 and 2y, differ by at
least p: n{Ps, Py) > W, Vs, S € S.

Intuitively, this class of machines does not have statesatea“too similar” in terms
of the probability distribution of trajectories followirthem. More recently, Clark and
Thollard (2004) provided an efficient PAC-learning alglnitfor this subclass of PDFAs
which requires an amount of data polynomial in the numbetadgs in the target, the
“distinguishability” of states and the expected length ings generated from any
state. In the next section, we build on their work to providearning algorithm for
PDFAs/HMMs with PAC-style guarantees, then analyze thgs@thm.

4 A PAC-learning algorithm

The algorithm builds a graph whose nodes intuitively repnépostulated states of the
target machine. We call these nodes “safe states”. Theitdgoalso maintains a list of
“candidate states” that will eventually be merged with gnissafe states or promoted
to be new safe states.

The algorithm uses both state splitting and state mergirgatipns. We begin by
assuming that the initial model is a trivial graph with a $éngafe state representing
the initial state of the target machine. In the inductiompstee refine the graph by
adding a new safe stass;, whenever the training data suggests that there is a sufficie
difference between the probability distribution over thegeictories observed frosw;
and the distribution observed from any safe swteSimilarly. if the distribution of



trajectories observed froso; and an existing safe stageare sufficiently similar, we
merge (or identify) these states. The remainder of this@edbrmalizes these basic
ideas, including the precise criteria for creating new s#d¢es and merging candidate
states into existing safe states.

We assume that the set of possible observatiaa&nown, and that we have a set of
training trajectorie®, with each trajectory being sampled i.i.d. from the cortamget.
The algorithm assumes the following input parametdrs; u whered is the desired
confidence (as in standard PAC-learning (Valiant, 1984)3, an upper bound on the
number of states desired in the model, @rid a lower bound on the distinguishability
between any two states. We assumelthaorm as the measure (see Definition 1).

We begin by defining a single safe st&e- {5}, labeled with anull observation.
Then we consider a set of candidate staesfor every observation € 2. With each
safe and candidate state, we associate a mulilgeind Dg; respectively, storing the
suffixes of all training trajectories that pass through 8tae (or a sufficient statistic
thereof).

For each given training trajectod/= 0p. .. 0j_10i0j,1 . .. Ok, We traverse the graph
matching each observatian to a state until either (1) all observationsdrhave been
exhausted (in which case we discdrdnd proceed to the next training trajectory), or (2)
a transition to a candidate state is reached. This occurs ahhé&ansitions up ta;_1
are defined and lead to a safe stgtbut there is no transition out afwith observation
;. In this case, we add the sub-trajectdpoy, 1 . ..ok} to the multiseDg, .

The next step is to decide what to do about candidate stat&here are three
possibilities: (1yetain it as a candidate state; (B)ergeit with an existing stats’ € S;
(3) promote it to be a new stat&= SU {so}. This step is the core of the algorithm.

The decision of whether to merge, promote, or retain a caelistate depends on
the content of its multisdDs;. To better explain this step, we introduce some notation,
which applies both for safe and candidate states. We degoBpthe cardinality oDs
and byDs(d) the number of times trajectoryoccurs inDs. We denote byDs(0)| the
number of trajectories starting with observat®im multisetDs. Note thaiDs(d)|/|Ds|
can be regarded as an empirical approximation of the prbtyatbiat trajectoryd will
be observed starting from state

The decision of whether to retain a candidate is taken firstelstate is not retained,
we then consider whether to promote it or merge it with anteyjsstate. A candidate
stateso is declaredarge when:

" 3(1+w4) 2
(largeness conditionPgs| > e In 5 (2
whered = ﬁ. When a candidate state is declared large, it will not be methi
Intuitively, in this case there is enough information tomade or merge it correctly.

Suppose statss has been declared large. If there exists some safesssieh that

for every trajectonyd we have

Deo(d)]  [Dy(d)
Do Dg |=W? )

then we mergeo ands’: we therefore removes as a candiate state, we create a transi-
tion fromsto s labelled witho, and increase the counts|®fy (d)| by those 0fDg(d)|.




If, on the contrary, for every there is ad such that

[Dso(d)|  [Dg(d)]
Dsol IDs|

> /2

then we promotso to be a new safe state; we add a transition fedmso labelled with
o and add candidate stateso’ for every observation’ € Z. All trajectories inDg; are
moved appropriately to these new candidate states, asyitthe been observed from
0.

The graph built as described above can easily be transfoim@eé PDFA. Every
safe state becomes a state of the automaton. The set of atispst is the same. The
observation probability functio®(s, o) is calculated using the multiset statistics:

IDs(0)|
O(s5,0) = ————————(1—(|Z| +1)y) +V, 4
(50) == oy L [T+ W +y (4)
wherey < \Z\%l is a small smoothing probability (which can be set to 0 if sthoq is

not desired).
The only real question left is what to do about the candidites. Given a candi-
date stateso, we look for the safe sta that is most similar to it according to a chosen

distance metric. E.g., assumihg, we haves = argma@es(% — ‘E‘)é—ild‘)‘). We

then add an edge frosto s’ with label o to the automatoM and calculate the obser-
vation probability as in Equation 4. Finally, the transitimnction isT (s,0) = so.

Table 1.Learning Algorithm

M = PDFA-Learn ,D,d,n, L)
Initialize safe stateS= {sp} INITIALIZING
DSO =D _
Initialize candidate$= {s0|Vo € 2}
Dsyo = {02...0k|3d € Dg,,d = 005...0y}
While 3so € Swhich is large, as given by (2)
Removeso from S

If 35’ € Ssuch thatvd (3) is satisfied MRGING
Add transition fromsto s labelled byo
Dy = Dg UDgy

Else PROMOTING
s =s0
S=Su{s}
Ds = Dss

S=Su{sd’|Vo’ e 2}
Dy = {02...0¢|3d € Dg,d = 607...0y}
End if
End while
Construct the output graph representing the learned PDFA.




Table 1 summarizes the algorithm presented in this sed¥lote that, as presented
here, the algorithm works in batch mode. As such, there \ilessarily be a point at
which no candidate state meets the largeness conditiorthgnalgorithm terminates.
However, it is easy to imagine implementing this as an inemtal algorithm, in which
the graph is restructured after each trajectory is receilrethis case, the largeness
condition will be checked every time a new trajectory is atltte the multiset of a
state. It is important to note that if the algorithm runs ove] states can continue to
become large as more data is gathered, and the machine wilhae to grow. One
possibility to stop this is to limit the number of acceptadtigtes, using the parameter
In Appendix A, we discuss a different, sufficient terminatemndition for this case. Itis
based on using the precisiodesired in the approximation of the trajectory distribatio
and provides a strong improvement over the bounds of Clarkéllard (2004) .

It is in general not necessary to recover a true HMM from tlerled PDFA; we
will consider the learned PDFA to be an approximation of th&\W which can be used
to compute (approximately) the probabilities of differgmajectories. Not that an HMM
can be recoverred followinng the steps outlines in Sec. ¢hduld be noted that this
output HMM may be of larger size than the target machine.

5 Analysis

A full analysis of the algorithm should show that 1) afteriegea certain number of ex-
amples, the graph under construction becomes isomorptheatof the target machine,
except for low-probability states, and that 2) in additiafter some more examples, the
edge probabilities are close enough to the target onedthdistance in the probability
distribution over trajectories is small. In this sectionpvesent a sketch of these proofs,
highlighting the differences with results by Clark and Tlaad (2004).

We first state how long it takes for a candidate state to bedarge. Observe that
the more frequent a state is, the sooner it will be identifiedontrast, typical PAC ap-
proaches require a lower bound on the desired frequ@eynd run in time polynomial
in 1/P even if most states have frequency much larger haNo such parameter is
required by our algorithm. This adaptive behavior showsdgoatential for the practi-
cality of our approach.

Let |Ds| denoteE[|Ds|] and|Ds(d)| denoteE [|Ds(d)]].

Theorem 2. (1) Let s be a candidate or safe node. At the time when s is dekcla
large we have|Dg| — |Ds|| < |Ds|- (1/4) with probability 1 — & That is, |Ds| is an
approximation tdDs| up to a multiplicative factor of 4.

(2) Let o5 be a candidate node, and- pbe the expected value tﬁ)so| at time t
Then @ is declared large at most

3(1+p/4) 2
A-waWa?p 8

steps after it was created, with probability at ledst &'.

The proof is technically similar to some used in (Lipton analuighton, 1995) in the
context of databases. The details are omitted here, butrasemqted in the associated
technical report.



Theorem 3. The largeness condition in Equation (2) guarantees thatafoy large
state s, R
[Ds(d)| _ [Ds(d)]

vd -
Ds| |Ds|

M
<1z (5)
with probability1 — &.

The proofis essentially given in Section 6.1 of (Clark ana/fdrd, 2004).

From this claim, one can argue that the decisions to mergewrdote candidate
states are correct with high probability. Indeed, suppbatadt any point we decide to
mergeso with . This is becausss has become large and

[Dso(d)| _ [Dg(d)]

vd,
|Dgs| IDy/|

‘gu/Z-

Then by the claim and the triangle inequality we have

a0y,
Dss|  [Ds|

Under the assumption that any two states in the target machp-distinguishable,
we conclude thato ands' indeed reach the same state in the target machine.

Similarly, suppose that we decide to promsteto be a new safe state. This is
because for every there is some such that

[Dss(d)|  [Dg(d)]
|Dgs| D¢ |

‘ > /2.

Then by the claim and the triangle inequality we have

B0 Sy
|Dss|  [Dg

So, assuming-distinguishability, we know thado reaches a state not reached by any
safes in the target machine.

Finally with these claims one can make the following argutrm&uppose that every
state in the target machine can be reached by some pathrdogtanly transitions of
probability> p. Then, every candidate state will be either promoted or etbegrrectly
intime T, whereT is given by Theorem 2. Therefore, by time at most, no candidate
state is left and the graph constructed is isomorphic to taplgof the target machine.

In other words, if any candidate states remain after tim@&, they should have
probability less tham. Thus we can show that for sufficiently logy these nonfrequent
states can be ignored without introducing large errors.

Finally, putting all these steps together, we obtain thiefahg result:

Theorem 4. For every PDFA M with n states, with distinguishabilty-L0, such that
the expected length of the string generated from every stéges than L, for ang > 0
ande > 0, the PDFA-Learn algorithm will output a hypothesis PDFA $uich that, with
probability greater tharl — 6, the maximum difference in the probability assigned by
the PDFA to any string is at most



Using the previous result on approximating PNFAs with PDF#sd the fact that
HMMs can be mapped to PNFAs, we now have a PAC-learning a@kgorivhich will
enable us to learn a good approximation of an HMM.

6 lllustration

We consider a few examples to illustrate the empirical behewof the algorithm. Con-
sider first a synthetic text generator with a simple alphabet{a, b,#}, which is de-
signed to generate only three wordls= {abb,aaa bba} and where # indicates word
termination. We can make a generative model for this texeggnr using an HMM as
shown in Figure 1. All observations are deterministic, $iions are also deterministic,
except froms10, and the initial state distribution is the same as traomstfromsi10.

Fig. 1. A simple text-generation HMM (left) and the learned modéil{t)

We generate a number of trajectories from this HMM and appdyaigorithm pre-
sented in Section 4 (using= 0.05,n = 8, u= 0.1). The right panel in Figure 1 shows
the model that is learned. Nodes represent safe statess Bdgannotated by an obser-
vation and its probability (zero probability observati@me not shown).

We now modify the HMM to produce noisy observations and réfiesexperiment.
We assume each state in Figure 1 generates the character alitv® = 0.9, and gen-
erates the other character (i.e. “b” instead of “a” and wieesa) withP = 0.1. In this
case, as shown in Figure 2, our algorithm learns a slightlyensomplex model to ac-
count for the greater number of possible trajectories.dtisy to verify that the models
shown in Figures 1 and 2 generate the observation stringpstiagtsame probability as
the corresponding HMM.

The right panel in Figure 2 shows the bound on the number opkrequired
as a function of the desired model precision. The increaatal r@quirement with low
€ values are natural, since the size of the model must growhaeee this increased
precision. As expected, greater amounts of data are rehwinen learning with noisy
observations.

Next, we learn a model for a maze navigation domain callece€hgillustrated in
the left panel of Figure 3. We modify the original problenghlily as follows. We as-
sume the agent randomly starts in statesr s7. We assume a single actifioaatwhich



x10°

107 107 107" 10°

epsilon

IS

num. samples
N w
P +
P z
o
@
<
I
=
=<

-

Fig. 2. Learned model with noisy observations (left) and the nunoibeamples predicted by the
PAC bounds for achieving the desired model precision (yigFtte noisy observation case is in
blue.

moves the agent to any adjacent cell with equal probabilitg task resets whenever
the agent gets te10. Observations are generated deterministically andespand to
the number of walls in each state (“a"=1 wall, “b"=2 walls;’*8 walls), with the ex-
ception ofs10 which produces a distinct terminal observation (“#").

SO S1| S2 S3

S5 S6

S8 S10

Fig. 3. Cheese maze (left) and the corresponding learned modket)(rig

The right panel of Figure 3 shows the results of applying earting algorithm.
It is interesting to note the particular structure learngabr model. The states can be
seen to represent core beliefs of the HMM after effmdt action (and before the obser-
vation is seen). For example, the states of the learned niotiet figure represent the

following:

No: Pr(s5) = Pr(s7) =0.5;

Nip: Pr(s8) = Pr(s0) = Pr(s4) = Pr(s9) = 0.25;

No: Pr(s5) = Pr(sl) = Pr(s3) = Pr(s7) = 0.25;

N3: Pr(s8) = Pr(s9) = 0.125,Pr(s0) = Pr(s4) = Pr(s2) = 0.25;
Ng: Pr(sl) = Pr(s3) = Pr(s6) = 0.333;

(
Ns: Pr(s0) = Pr(s4) = Pr(s10) = 0.0833,Pr(s2) = 0.5;
Ng: end of trajectory.
This confirms that the graph learned is not arbitrary and h@iseastructural interpre-
tation.



7 Discussion and future work

There is considerable literature devoted to learning foofithe models introduced
above. In HMMs, most of the existing work uses expectatioximeation, like the
ones described in (Rabiner, 1989) . In these algorithmstingber of hidden states is
assumed known. The algorithm starts with a guess about ttaengters of the model
and modifies this guess in such a way as to improve the liketitod the observed data.

Several papers have looked at removing assumptions abeuhdlel topology.
State splitting/merging approaches exist for learning ROECarrasco and Oncina,
1994; Ron et al, 2005; Thollard et al, 2000) and HMMs (Stolekal, 1992, Osten-
dorf et al, 1997). However the criterion for splitting/marg is typically heuristic or
Bayesian in nature and does not provide correcteness gaasan

More recent procedures rely on finding a minimal linear bsishe space of pos-
sible trajectories, by using techniques similar to singutdue decomposition or princi-
pal component analysis (Jaeger et al, 2006,Singh et al,, F@®ncrantx et al, 2004).
These procedures aim to find a globally or locally optimausoh in the sense of the
L, norm. Usually, very large amounts of data are required foo@dgsolution, and no
PAC-style guarantees exist yet. A procedure very similénéamne we propose has been
devised very recently by Holmes and Isbell (2006), but onlydeterministic systems.
In the future, we will explore more the connections with theork.

To summarize, we developed an algorithm that learns a PDBRAapproximates
an HMM. The algorithm addresses the problem of joint topglagd parameter infer-
ence in Markov models with hidden state. We provided impddheoretical guarantees
for PAC-learning of PDFAs from data, and described a natexénsion to learning
HMMs and POMDPs. This paper highlights important connextibetween the litera-
ture on learning automata and the problem of HMM and POMDHleg. Preliminary
empirical results suggest that the algorithm learns comeels for simple HMMs.
Further experiments will be conducted to better investig@nerality and scalability of
the approach.

Acknowledgements

Ricard Gavalda was supported in part the EU PASCAL Netwdrkxaxellence, IST-
2002-506778, and by MOISES-TA, TIN2005-08832-C03. Phikller, Joelle Pineau,
and Doina Precup were supported in part by grants from NSERICC#I.

References

Carrasco, R. and Oncina, J. “Learning stochastic regukangrars by means of a state merging
method”. LNAI 862. 1994.

Clark, A. and Thollard, F. “PAC-learnability of Probabiiis Deterministic Finite State Au-
tomata”. Journal of Machine Learning Research, 5. 2004.

Dupont, P., Denis, F. and Esposito, Y. “Links between Prdiséilb Automata and Hidden
Markov Models”. Pattern Recognition, 38 (9). 2005.

Durbin, R., Eddy, S.R., Krogh, A., Mitchison, G.J. “Biol@gil Sequence Analysis: Probabilistic
Models of Proteins and Nucleic Acids”. Cambridge Univeréiress. 1998.



Holmes, M. and Isbell, C. “Looping Suffix Tree-Based Infererf Partially Observable Hidden
State ". InProceedings of ICML2006.

Jaeger, H., Zhao, M. and Kolling, A. “Efficient estimation@OMs”. In Proceedings of NIPS
2005.

Kearns, M., Mansour, Y., Ron, D., Rubinfeld, R., SchapireERand Sellie, L. “On the learn-
ability of discrete distributions”. ACM Symposium on thed&dry of Computing. 1995.

Lipton, R.J. and Naughton, J.F. “Query size estimation lpéde sampling”, J. Computer and
System Sciences 51, 1995, 18-25.

Ostendorf, M. and Singer, H. “HMM topology design using nmaxim likelihood successive state
splitting”. Computer Speech and Language, 11. 1997.

Rabiner, L. R. “A tutorial on Hidden Markov Models and SetstApplications in Speech Recog-
nition”. Proceedings of the IEEE, 77(2). 1989.

Ron, D., Singer, Y. and Tishby, N. “On the learnability an@ges of acyclic probabilistic finite
automata”. InProceedings of COLT995.

Rosencrantz, M., Gordon, G. and Thrun, S. “Learning Low Disienal Predictive Representa-
tions”. In Proceedings of ICM|2004.

Singh, S., Littman, M. L., Jong, N. K., Pardoe, D. and Stone,"Bearning Predictive State
Representations”. IRroceedings of ICML2003.

Stolcke, A. and Omohundro, S. M. “Hidden Markov Model Indantby Bayesian Model Merg-
ing”. In Proceedings of NIPS993.

Thollard, F., Dupont, P. and Higuera, C. de la. “Probahdi§&iFA Inference using Kullback-
Leibler Divergence and Minimality”. IfProceedings of ICM]2000.

Valiant, L. “A theory of the learnable” Communications o€tACM, 27(11). 1984.

Appendix A: A termination condition for on-line learning

Suppose that the target modét would not only let us sample trajectoridsbut also
provide their true probability of occurringy+(d). We can let the PDFA construction
algorithm proceed until the distance between the targeetidtiand the current model
M is estimated to be less than a desired error pararae@early, this step, and hence
the running time of the algorithm, depend on the chosen natfaistance.

We propose the following test, based on thedistance. For a suitably defin&]
drawB trajectories fronM*, and obtain their probabilitiepy-(d). For every trajectory
d, compute its probability using the learned model soga(d). If there is somel such
that|pm(d) — pm=(d)| > €, consider that..(M,M*) > € and let the learning continue.
Otherwise, consider that,(M,M*) < € and terminate.

We setB = W%Z -In&. We will now show that this test gives the correct answer

wheneverLo(M,M*) < €/2 or Lo(M,M*) > 3¢/2, i.e., when the_., is at a certain
distance frone either way.

Claim. Let D1 andD> be the two probability distributions to which the test is kg
With probability 1— 8, if L.(D1,D2) > 3¢/2 then the test above says “distance greater
thane”, and if if Lo (D1,D2) < €/2 it says ‘distance less thah

The proof is easy and omitted in this version. It can be furttege shown as in
Clark and Thollard (2004) that the distance between hymidhend target machines
will be belowe in a number of steps polynomial in the parameteys; 1/, In(1/9),

n, as well as the expected length of strings generated at apyLst



