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Abstract

Population aging in developed countries brings an increased preva-
lence of chronic disease and of polymedication - patients with several
prescribed types of medication. Attention to chronic, polymedicated
patients is a priority for its high cost and the associated risks, and tools
for analyzing, understanding, and managing this reality are becoming
necessary.

We describe a prototype of a system for discovering, analyzing, and
visualizing the co-occurrence of diagnostics, interventions, and medica-
tion prescriptions in a large patient database. The final tool is intended
to be used both by health managers and planners and for primary care
clinicians in direct contact with patients (for example for detecting un-
usual disease patterns and incorrect or missing medication).

At the core of the analysis module there is a representation of di-
agnostics and medications as a hypergraph, and the most crucial func-
tionalities rely on hypergraph transversal / variants of association rule
discovery methods, with particular emphasis on discovering surprising
or alarming combinations. The test database comes from the primary
care system in the area of Barcelona for 2013, with over 1.6 million
potential patients and almost 20 million diagnostics and prescriptions.



1 Introduction

Healthcare systems are one of the pillars of welfare state. They are also, to-
gether with education, one of the largest expenses for public administrations.
The fact that most healthcare data is digitalized today opens vast possibili-
ties for improving people’s lives and rationalize resource usage: increase our
ability to predict and treat disease, select particularly vulnerable individuals
for preventive actions, and reduce waste, redundancies, and mistakes.

Many developed countries are experiencing increasing population aging,
which implies a large prevalence of chronic disease. Already today, in many
western countries, 5% of the population uses up to 50% of the health system
resources, uniformly across pharmacy, primary care, and hospitalary care.
This makes it even more necessary to optimize healthcare resources from the
economic point of view, but also with respect to patient safety and quality of
life. A particular concern is the phenomenon of polymedication, i.e. patients
that are prescribed several drugs (5, 10, 15, ...), which creates high costs,
secondary effects, patient confusion, and low adherence to treatments.

The Catalan Institute of Health (ICS, in short) manages the largest net-
work of ambulatory centers in Catalonia, providing primary health care to
about 7 million people, 85% of the Catalan population. One of its strategic
lines is innovation in the management of information, including specific pro-
grams to exploit electronic health records to improve quality of patient care
and sustainability. The vision is that the patient can benefit from a better
planning and personalized treatment, and the organization can reduce costs
and minimize mistakes, delays, and duplicities.

In this paper we describe the goals and a first prototype of a system de-
signed to allow both health planners and clinicians to analyze, visualize, and
put to use healthcare record data from patients, with emphasis on chronic
patients and their medication prescription. Health planners could use the
tool for understanding the patterns of diagnostics that actually occur in an
aging, chronic, polymedicated population, the interaction among different di-
agnostics and associated medication, temporal trends and geographical and
socioeconomic variations. Clinicians at the primary care centers could use
the tool for making personalized decisions about their patients, for example
by having the tool flag unusual combinations of diagnostics and/or medica-
tions (including possible prescription errors), searching for similar cases, or
displaying medication suggestions.

The core of the analytical engine of the system is the representation of



data as a hypergraph of diagnostics and medications, and hypergraph traver-
sals (variants of itemset and association rule mining), with emphasis on de-
tecting unexpected or alarming patterns. The situation has several pecu-
liarities with respect to standard frequent itemset mining scenarios, among
others the existence of two semantically very distinct types of items (diag-
nostics and medications), of a taxonomy or hierarchy among items, and the
amount of unreliable data (most notably, diagnostics that are never deleted
even though they are no longer present) that must be repaired somehow.

We developed the tool on the basis of a particular dataset, but hope
that it is applicable to many, possibly larger, datasets. It consists of the
healthcare annotations (demographics, diagnostics, clinical findings, ... ) and
medication prescriptions for the area of Barcelona during 2013, including
data from 1.6M patients and almost 20M annotations. We know only of a
handful of studies on larger datasets for comparable analysis [9, 12, 14|, and
either the goals were different or they used the much weaker graph (instead
of hypergraph) representation to represent associations.

2 Context and Project Overview

2.1 Aging, Chronic Disease, and Polymedication

The Catalan Institute of Health (ICS) is responsible for planning and pro-
viding healthcare assistance to a large majority of residents of Catalonia,
approximately 7 million people. Like in many other European regions, pop-
ulation aging and the increased prevalence of chronic diseases are the largest
challenges it faces in the long term. Consequently, one of its priorities is the
application of measures for improving chronic patient care, and rationaliz-
ing medication for polymedicated patients, favoring the participation of all
health professionals and patients themselves in the process.

Chronic diseases are not homogeneously distributed in the population;
factors such as geographical area, demographic and socioeconomic structure,
country of origin and ethnicity, and the structure of healthcare system itself
make it difficult to give uniformly useful indicators. While the volume of
available data is already quite large, ICS must be prepared for an immedi-
ate future where information collected in real-time and valuation of current
scenarios takes precedence over studies of information aggregated in the past
months or decades, including subtle trends and cause-effect relations that



may escape even the best-trained human experts. It will be necessary to
develop powerful and scalable analytical engines that go beyond traditional
statistics and can interact with the intuitions and expertise of health profes-
sionals.

Polymedication (or polypharmacy) is defined as the use of N or more
medications by a patient, where N varies among sources with a minimum
of 4. (For reference, patients with 8 and more prescribed medications are not
rare in our dataset, and we found one with a staggering 30). It is a result,
besides chronicity, of specialization: The cardiologist, the diabetologist, and
the hematologist of a single patient will each prescribe their medications,
without the time and expertise to study those prescribed by other specialists
and investigate possible interactions of redundancies. In addition, the general
practitioner does not feel comfortable deleting or modifying the prescription
of the specialist. All in all, the consequence is the addition of new drugs to
the previous ones, with no critical review of the global medication pattern. A
rational, global examination of a patient’s list of prescriptions usually leads
to alternative lists that are not only cheaper but also safer for the patient.
Additionally, studies show that polymedication creates distress and confusion
in patients and strongly reduces adherence (i.e., as patients are prescribed
more medications, they are more likely to stop taking them). It is thus clear
that polymedication puts the patient at risk, sometimes beyond the point of
diminishing returns, for a high cost for the system.

The main goal of the project we describe is to build a software system
that helps healthcare system managers build maps of diagnostics and pre-
scribed medications in the context of chronic diseases and polypharmacy.
This should help better understand a reality that is complex not only clini-
cally but socially, geographically, and economically, and design policies and
indicators of their efficiency. Furthermore, some of the knowledge derived
from the global panorama could be made available to the clinicians via a
dedicated subtool to e.g. offer orientations or raise alerts on specific patients.

In this paper we consider as source of data the clinical history of the pa-
tient, which is becoming fully digital across Europe. We focus on structured
and semi-structured information, ignoring for the time-being non-structured
information such as medical images as it requires a totally different set of
analytical techniques. At this stage of the work we are also not concerned
with issues such as privacy, security, confederation and interoperability, etc.,
which will be crucial and blocking if such a tool is to be used in practice.



2.2 The Dataset

The source of data used for the pilot phase of this project has been the
electronic clinical history of primary care assistance in the city of Barcelona,
and for the year 2013. It can be conceptually described as composed of three
kinds of tables:

e A table of recorded diagnostics for patients. These include many recorded
before 2013 but still considered active, most notably chronic diseases,
and refer to diseases, conditions, and clinical findings (such as the re-
sults of analytical tests).

e A table of pharmacy prescriptions, that is, medications prescribed by
primary care doctors to patients during their visits to healthcare centers
in 2013.

e Additionally, several small tables with basic demographic information
on patients (age, sex, area of residence) and catalogs of diagnostics and
pharmaceutical drugs.

We often refer to both diagnostics and pharmacy prescriptions as annota-
tions.

Each patient is associated with a unique code to identify it across tables.
The code is an encrypted version of the true patient identifier code used across
the health system, created for anonymization before the data was made avail-
able to us. Diagnostics and medications are identified by standardized codes
known respectively as ICD-10' and ATC codes?. We do not go into details
of the code structure, but it is important to know that they are hierarchical.
For example, gastric protector Omeprazol has ATC code A02BCO1; code
A02BC corresponds to proton pump inhibitors which includes other four ac-
tive ingredients. In turn, subcodes of A2BCO01 might indicate commercial
names for the medications containing that active ingredient. ICD-10 codes
have formats such as A79.1, where A79 indicates a diagnostic category and
.1 a subcategory. They are harder to aggregate than ATC codes because the
distinction between category and subcategory is somewhat fuzzy, and what
some professionals consider a single disease with variants may go e.g. from

lhttp://en.wikipedia.org/wiki/ICD-10
2http://en.wikipedia.org/wiki/Anatomical_Therapeutic_Chemical_
Classification_System



A50 to A64, so the classification must be entered manually; for the moment,
we have removed digits after the dot, i.e., have considered categories only.

The data contained 1.6 million potential patients (roughly speaking, res-
idents of Barcelona associated to ICS), 12.3 million diagnostics, and 7.7 mil-
lion prescriptions. It used originally 8.5 Gb (560 Mb after compression).
About 0.5M of the potential patients actually had some associated annota-
tion or prescription - meaning they had visited a primary care center dur-
ing 2013. We removed approximately 15% of annotations corresponding to
patients that did not appear in the main patient table, possibly transient
visitors to the area. After processing, we obtained a single table with pa-
tient information. For each patient we kept sex, age, residence area, a list of
diagnostics and a list of medication prescriptions.

Let us note some limitations of this dataset. First, it corresponds only to
primary care at the public network, so it does not include hospital visits and
private care centers. This clearly introduces a bias, as areas with different
economic levels will rely more or less on private healthcare, and e.g. patients
in different age ranges may visit hospitals with different frequency. Secondly,
we have data for one year only, which makes it virtually impossible to perform
temporal analyses such as evolution of patients or patient types over time;
ICS has reliably complete and sorted data since 2009, and we hope to obtain
access to it in the near future. Finally, data is entered in the system by
people, the health professionals, with procedures that are not completely
mechanized and create inconsistencies.

A particular case of inconsistency that we will deal with is what we call
open episodes. A patient visits his primary care center because of a health
condition, which is recorded in the system; the condition disappears after a
couple of visits and appropriate medication, so the patient stops going to the
center. Yet, the condition remains recorded as one of his/her diagnostics.
Even if the patient visits again, perhaps for another reason, the doctor may
not think of marking the previous condition as resolved. We have found pa-
tients with an arm broken for a year, and women that have been continuously
pregnant for over two years. These open episodes are in fact very frequent,
and need to be removed so that they do not distort statistics and analyses.

2.3 Project Goals

The long-term goals of the project described here are:



Contribute to determine the groups of health factors and diagnostics
that are most relevant in the population, where relevant depends on
prevalence, on impact on patient quality of life, and on impact on the
health system.

Determine the therapeutic areas (treatments, prescriptions) that are
most common for a given annotation, and determine their characteris-
tics for better matching with care and attention processes.

Define and study new indicators of population health that reflects the
complexity of current scenarios.

Define and study new indicators of the impact of health-related plans
and programs.

Facilitate sustainability of health-related processes, optimizing resources
and indicating unjustified duplicities.

Revert the knowledge obtained back to individual patients in order to
improve their safety and quality of life.

Contribute to involving first-line health professionals and patients in
this latter goal, by making them more aware of their situation within
the general population and of the potential effects of their personal
actions.

The specific goal which concerns us is to develop a data analysis tool that
basically helps ICS to “map the territory” before making decisions. In par-
ticular, we want to build a robust, flexible, and friendly software system that
supports the general goals with the following functionalities:

1.

Verify the quality and consistency of the data in electronic clinical
records.

Obtain maps of diagnostics, particularly of chronic diseases with high
prevalence, and their relations to patterns of polymedication.

Proactively identify anomalous cases of patient medication and diag-
nostic so that they can be studied by specialists.

. Find patients that are similar, with respect to the maps built, to a

“patient under study”.



5. Perform differential analyses according to different criteria, such as de-
mographic or geographic. This should help expert analysis of best
practices and comparative analyses of macro- and micro- management.

6. Identify outliers such as districts, health professionals, and centers that
have in any sense atypical behaviors or results.

7. Create predictive and explanatory models for variable combinations of
interest.

8. Relatedly, project to the future the evolution of variables and popula-
tions under study.

9. Identify communities with similar behavior.

Functionalities 3 and 4 are intended for clinicians in direct contact with pa-
tients, while the others are more intended for health planners and managers.
In this paper we focus on functionalities 1, 2, and 3, as they are the ones
which have already been implemented and (partially) validated.

Additionally, the software should satisfy these non-functional require-
ments:

1. Visually present all of the above interactively so that health profes-
sionals with little experience in “big data” tools can use it fruitfully
and with little learning time. Users should be able to interactively
experiment and select/filter data as they go.

2. Integrate smoothly with the tools that health professionals are already
using.

3. Scale up to large volumes of data.

Visualization, integration, and an almost-flat learning curve are completely
crucial. Experience shows that many professionals will give a new software
at best one opportunity. If, on a first trial, they do not immediately find
it straightforward to use, consistent with the software they already use, and
useful for their packed day-to-day practice, chances are that they will not
give it a second chance.



2.4 Related Work

There are of course many studies in knowledge extraction from electronic
healthcare records (EHR). See e.g. [15, 19| for general discussions. We fo-
cus on those that resemble ours either because the goal is to understand
interaction among diseases, or because there is some underlying graph rep-
resentation.

Some generic studies aim at discovering patterns over the whole patient
set without preconceived hypotheses, hoping to find relevant ones that were
unnoticed before and suggest other more focused studies. This is the case of
[18], which finds new associations between diseases from the EHR of 667,000
patients. In essence, their system find association rules among diseases and
medications, like ours, but uses simple rule confidence as a measure.

The study [10] builds networks (graphs) of diseases from the EHR of
327,000 patients, then applies clustering to the networks in order to find those
diseases the often occur together in patients; a set of sophisticated heuristics
is then applied to highlight the reliable and interesting associations.

The Human Disease Network |9, 12] is the largest study resembling ours
that we have found. Roughly speaking, it builds a network (graph) of about
a few thousand diseases and genes from a database of over 30M patients. The
strength of associations among these items is then studied from the weights
of the edges, and the statistics of the network itself are studied with the usual
parameters in complex networks studies. The main differences of our work
with this one are 1) we consider medication prescriptions instead of “-omics”,
and 2) we use a hypergraph instead of graph, or in other words, explore
relations beyond binary ones. Similarly, the large study [14] used 15 years
of registries from the Danish health system, with over 6M patients. Their
emphasis is on obtaining temporal trajectories, e.g. evolution of patients and
diseases over time (a direction we certainly want to follow in the future); we
focus more on the description of associations, the relation to medications, and
eventually helping with the definition and evaluation of healthcare policies
and personalized patient care.

Many works mine Electronic Health Records with a specific purpose in
mind - we mention but a few examples. The study [21] analyzes EHR of
50,000 primary care patients to identify the documentation of the signs and
symptoms of heart failure in the years preceding its diagnosis. Mani et al.
[17] aim at building a method that identifies dementia better than methods
existing at the time, using data from EHRs and data mining techniques.
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Works such as [11, 22] deal with the detection of adverse drug effects from
EHR. Our system is intended to ease studies of the former category, namely,
facilitate open-ended exploration of the data by healthcare professionals to
gain understanding and intuition which may certainly, among others, suggest
in-depth studies of specific questions using other tools.

3 The Prototype: Structure and Functionali-
ties

This section describes the current prototype and typical usage workflows.
More details on the most interesting functionalities are given in later sections.

At the core of the prototype there is the representation of a network
of associations among diagnostics and prescriptions as a hypergraph. More
precisely:

e There is a node for each diagnostic present in the database, and one
for each drug; as mentioned before, there is a prior choice of the level
of granularity in the hierarchies of diagnostics and drugs.

e An edge between two nodes is labeled by a “weight” computed from the
“strength” of the association between the items at the two nodes.

e In fact, this is generalized from pairs of vertices to unordered sets of
vertices, denoting the “strength” of the joint association between all the
vertices in the set. This turns the structure from a graph with binary
edges to a hypergraph with edges of arbitrary cardinality.

e Alternatively, we use the term itemset |1, 2| as synonym of hyperedge.
To be precise, only the itemsets corresponding to a certain minimum
strength in the database (the frequent itemsets) are retained, for effi-
ciency.

The exact definition of “weight” and “strength”, and the computation of hy-
peredges or itemsets will be discussed in Section 4.

The workflow of the prototype is summarized in Figure 1. Initially,
all data (diagnostic, prescription, and auxiliary tables) are read from the
database or from suitable text files. The frequent itemsets of diagnostics

11



and prescriptions (equivalently, the hypergraph whose vertices are diagnos-
tics and prescriptions) are computed, and the user enters the main menu. At
every moment, the options in the main menu apply to a current population,
for which the itemsets/hyperedges are already computed and which can re-
stricted by successive application of filters. Thus, the current population is
initially the whole population read from the DB.

The current options in the main menu of the application are:

e Display statistics on the current population (not shown in Figure 1).
These include age / sex descriptors and histograms, diagnostics fre-
quencies and histograms, prescription frequencies and histograms, etc.
Many more can be added in the future.

e Filter current population: retain only those that satisfy a boolean query
on the variables of interest (currently sex, age, geographical area, di-
agnostics, and prescriptions). Frequent itemsets (equivalently, the hy-
pergraph) of the new population are computed after the filter.

e Compute, prune, and export rules of interest on the current population,
from the itemsets already computed. Details are given in Section 4.

e Navigate the current hypergraph: The user can choose a diagnostic
or prescription, a node in the hypergraph, visually inspect the graph
around it, and navigate to neighboring nodes. Details are given in
Section 5.

Additionally, at any moment the user can save the current population (im-
plicitly, by the sequence of filters that define it) and associated itemsets
(hypegraph), or retrieve a previously saved population to continue working
on it.

4 Hypergraph Representation of the Data and
Rule Computation

As mentioned before, a first approach to understanding the data is to build
a network or graph where the nodes are annotations (diagnostics or drugs)
and edges represent associations between their endpoints. Edges may be
annotated with real-valued weights indicating the strength of the association.

12
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Figure 1: User workflow of the current prototype.
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To make the graph sparse and understandable, only edges with weight above
a certain threshold (indicating e.g. significant enough association) are kept.
A first definition for the strength of the association between nodes A
and B as simply the joint prevalence of A and B relative to the population
size. But that can be easily seen to be useless. Some medications such as
pain-killers or the already mentioned gastric protector Omeprazol are pre-
scribed very widely and for a large variety of conditions, so they would appear
strongly associated to many diagnostics in a very non-specific way. We have
considered three measures that are more informative of interesting associa-
tions: one based on odds ratios, one based on p-values, and Pointwise Mutual
Information (PMI). The latter was finally chosen as it gave most intuitively
appealing results. It is defined as:
Pr(A, B)
PMI(A, B) = logy, Pr(A)Pr(B)’
Thus, if two items tend to appear together they will have high PMI, items
that tend to appear separately will have low (negative) PMI, and items with
no particular relation will have PMI close to 0. As an example, if their PMI
is 2, we know that the probability of finding them together is 100 times
higher than one could expect by chance. This logarithmic scale is useful as
without it some values get very large; for example, medication for diabetes
is obviously extremely highly associated with diabetes.

Exploring the graph above certainly provides useful information and in-
sights, but also has clear limitations. For example, the joint prevalence of
three diagnostics {A, B,C} cannot in general be deduced from the joint
prevalence of the sets of diagnostics {A, B}, {A,C}, and {B,C}.

For deeper analyses, we move from graphs to hypergraphs, where hyper-
edges are arbitrary subsets of items, and this distinguishes our work from
many others that remain at the graph level. Note that the definition of PMI
above makes perfect sense when A and B are sets of annotations and not
single annotations.

To make the process feasible, we will only actually build the hyperedges
or subsets that have a minimum support (joint prevalence, in the case of
diagnostics) in the population. The problem of hypergraph traversal (or
equivalently, finding frequent itemsets) is fortunately well studied and rea-
sonably well solved algorithmically.

The functionalities implemented so far on this hypergraph are:

14



e Generating itemsets of frequently co-occurring diagnostics.

e Generating association rules mapping diagnostics to medications, and
vice-versa.

e Detecting patients with unexplained medication patterns.

e Detecting open episodes, defined in Section 2.2.

For generating frequent itemsets, we used the well-known implementation by
Borgelt [5] of the Apriori algorithm [2, 1], which we found to be fast and
convenient enough in our context. We did not use standard implementa-
tions that compute association rules from frequent itemsets, as we are only
interested in particular types of rules. To start with, we want only rules
whose antecedent contains only diagnostics and whose consequent is a drug,
or else whose antecedent is a single drug and whose consequent is a single
diagnostic. Additionally, for the first type of rules clinicians indicated that
in most cases the decision to prescribe a drug is made on the basis of a single
diagnostic (or at most two), which greatly simplifies the space of association
rules to investigate. Note that we still have to compute frequent itemsets
of any size for the first functionality desired, finding sets of diagnostics that
appear frequently together.

As is often the case, naively applied frequent itemset mining produces a
large set of redundant rules. Standard measures of rule interest (support,
confidence, leverage, lift, etc.) can to some extend be used to quantify their
interest. We filtered more aggressively the set of rules from diagnostics to
medication using the following rules:

e Discard a rule D — M if Pr[D, M| ~ Pr[D]- Pr[M] (equivalently, if lift
is close to 1 or PMI is close to 0). The reason is that when this condition
holds there is insufficient evidence that doctors prescribe medication M
because the patient has diagnostic D.

e Discard a rule D — M that has confidence o if there is a rule D — D’
(where D’ is also a diagnostic) with confidence o9 and a rule D" — M
with confidence o3 such that o; >~ 05-03. The intuition is that this way
we discard (only) rules that link an infrequent diagnostic with medica-
tions that are given for very frequent diagnostics such as diabetes. We
have verified that this is the case empirically.

15



Surely, other heuristics for discarding uninteresting rules can be applied,
and some will be suggested by the feedback from experts that examine the
outcomes of our system. We are planning to use existing research on prin-
cipled methods for obtaining non-redundant yet informative subsets of rules
13, 4, 7, 8, 13].

Once we have this set of frequent associations between medications and di-
agnostics, we can look back at the patient database and look for unexplained
diagnostics and prescriptions. If a patient’s record contains a diagnostic but
none of the medications associated to it, this may indicate either an omission
on the clinician’s part (a rare, but alarming event) or else that the patient
does not have the condition any more, although it remains in his/her record
(what we called an open episode). Unfortunately, if applied so naively, this
method produces a large number of false positives, cases where the doctor
correctly did not prescribe the standard medication. This happens often for
chronic conditions such as hypertension, for which doctors may not prescribe
the usual medication in moderate cases. Having access to longer histori-
cal records from the patient may help in distinguishing between these cases
and true open episodes, namely, checking whether some time in the past the
patient was actually medicated for the unexplained diagnostic.

Conversely, a drug prescription that is not the consequent of any rule
where the antecedent is a set of diagnostics recorded for the patient may
indicate either an omission to record a diagnostic or an incorrectly prescribed
medication. Both should be flagged as surprising or suspicious when the
patient is being prescribed.

5 Visualizing the Hypergraph

From the main menu, the user can also visualize and navigate in the hyper-
graph of annotations. S/he chooses a node on which to focus (selecting the
desired diagnostic or drug), a minimum weight and a “depth”, and the graph
of neighbors of the chosen node up to that depth or distance and with at
least that association weight are shown.

Figure 2 shows an example screenshot with the focus on K20, Esophagitis
(diagnostic and drug names show in Catalan), with depth 3 and minimum
weight 1.3. Edges from the focus to their immediate neighbors are shown in
black, and other edges are lighter so as not to obscure the view. The panel
on the right lists immediate neighbor nodes in decreasing PMI order. For

16
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example, one can see that in the current population Esophagitis is most as-
sociated to “Other congenital malformations of upper gastrointestinal tract”
(PMI 2.463), “Diaphragmatic hernia” (PMI 2.232), etc.

When the focus is on a node, the user may click on any other visible node
to move the focus to it.

In order to investigate non-binary associations (i.e., visualize the hyper-
graph), we have implemented the ability to merge nodes. The user may
click on an edge linking two nodes A and B and select to merge them. The
nodes are removed and replaced with a new node A-B representing the joint
occurrence of A and B. An edge from A-B to another node C has weight
PMI({A, B},C).

Note that this value cannot be deduced simply from the itemset frequen-
cies for binary associations between A, B, and C that were already com-
puted. A recomputation of frequent itemsets restricted to patients whose
annotations contain {A, B} is required. This is currently implemented as a
sequential scan of the current population to retrieve these patients (which
takes 5-10 seconds on our current implementation and the full DB), then a
new call to Apriori on this subpopulation (which takes less than 1 second).
In a future version we will investigate indices that help efficiently retrieve
the patients with {A, B} and improve the interactivity of the exploration of
large populations.

Figure 3 shows the result of merging diagnostics K20 (Esophagitis) and
K29 (Gastritis and Duodenitis) into K20-K29, and Figure 4 shows the result
of further merging K20-K29 with Q40 (Other congenital malformations of
the upper gastrointestinal tract) into a new node K20-K29-Q40. One can see
on the right panel that new associated nodes may appear because of their
PMI has increased, such as here D51 - Anemia due to B12 vitamin deficiency.

6 Implementation

The prototype contains a server and a web client. The server contains the
actual data and implements the functionalities described; it is implemented
in Java. The client lets the user issue commands, including filters for data
selection, and present results; it is implemented in Javascript, initially using
the ngraph library [16] for graph visualization and later using D3.js [6].

As mentioned, we used Borgelt’s implementation [5] of the Apriori algo-
rithm for itemset mining [2, 1], which was fast enough for our case. Even on
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Figure 3: Example screenshot: Result after merging K20 (Esophagitis) and

K29 (Gastritis and Duodenitis).
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Result after merging K20-K29 with Q40

(Other congenital malformations of the upper gastrointestinal tract).

Figure 4: Example screenshot:
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the full data and relatively low supports (well below 1%) running time on a
standard laptop was in the order of a few minutes. Thus, interactive analysis
on subpopulations of interest may be within reach.

The system is designed in three layers: data, logic, and visualization.
Two implementations of the data layer are provided now: In one, the data
is kept in RAM; in a standard PC, RAM was barely sufficient to hold the
current dataset, but would not scale e.g. to a larger population or larger
time frame. The other uses the Sparksee graph-oriented database [20]; the
graph maintains nodes representing patients, diagnostics, and medications,
and edges their relations. Note that the hypergraph we build using Apriori
does not contain patient nodes, but the external database does, because the
transactions on which Apriori has to be applied are the patients. Observe
that patients are the bulk of information of the database; the hypergraph of
(only) diagnostics and drugs is likely to be small enough to fit in RAM even
for large databases.

7 Preliminary Results

7.1 Execution on the Dataset

We mostly worked with a support of 0.05%, corresponding to a minimum of
800 cases in the general population. This leads to a graph with 918 different
diagnostics and 268 different medications. Fixing minimum support to 0.05%
and minimum confidence to 10% and after pruning with the heuristics dis-
cussed, we get 4051 diagnostic-to-medication rules involving 537 diagnostics
and 101 medications, and 2253 medication-to-diagnostic rules involving 201
medications and 115 diagnostics.

In approximately 10% of patients we obtained alerts for prescriptions
without diagnostics that explain them from the mined rules. This is actually
lower than expected, because the system from which the dataset was ex-
tracted does not require the clinician to link a prescription with a diagnostic.

Conversely, in about 16% of patients we found open episodes, health
problems with no prescription among those that are strongly associated to
them in the mined rules. As expected, these cases mostly correspond to
trivial or non-specific health problems (flu, sprained ankle) for which a short-
duration prescription is issued; the patient does not return for retest so the
diagnostic is not removed from the history.
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7.2 Clinical Significance

The preliminary sets of rules obtained are currently being examined by expert
clinicians as well as pharmacists. A first observation is that the rules with
largest support appear, as was to be expected, highly prevalent diagnostics
such as hypertension, diabetes, and obesity. Those with largest confidence
relate e.g. diabetes with medication for diabetes, again as expected. Less
expected ones link e.g. diabetes with statins (a widely used medication for
reducing cholesterol).

A second observation is that, as usual in data mining, the association
obtained can be informally grouped in three categories. We give one or two
preliminary examples of each:

1. Well known, not surprising, but still reassuring that they were discov-
ered by the program: the association between diabetes and retinopathy,
or the fact that that gastric protectors (such as Omeprazol) are pre-
scribed for basically every nontrivial health problem, not because of
the health problem itself, but because of the medication prescribed due
to it.

2. Unknown and believable (“never thought of it, but it makes perfect
sense”): strong association between bedsores (pressure sores) and Alzheimer’s
disease. The health manager in our team immediately observed that
there was no particular prevision for dealing with bedsores in Alzheimer’s
patients, and that of course there should be one.

3. Unknown and surprising (“never thought of it, and can’t think why it
came out”): the fact that retinopathy is more strongly associated with
hypertension than with diabetes.

The above were obtained on the whole population, so no spectacular dis-
covery can be expected. The hope is that specialists can reveal new and
interesting knowledge by exploring subpopulations defined by specific diag-
nostics or features. Detailed analyses of the clinical findings are out of the
scope of this paper and will be published elsewhere.

8 Conclusions and Future Work

Our system, even at this early stage, seems well able to identify the patterns
of joint diagnostics and associated drugs. PMI seems like a valid measure for
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detecting interesting associations between annotations. A deeper validation
and analysis of the results is the main work we require from our associated
medical experts in the near future. Also, whether the heuristics for detecting
suspicious patients (with mismatching medications and diagnostics) and open
episodes are sufficient or need further refinement will have to be investigated.

The testing clinicians are satisfied with the tool for detecting inconsisten-
cies. Not surprisingly, they request a friendlier interface, and more validation
rules for filtering alerts.

Besides implementing the pending features, several avenues for further
research have opened up during this phase of the project. Some include:

e Deal with taxonomies in diagnostics and medications. Taxonomies in
frequent itemset mining has received some attention in the past.

e Study patient “trajectories” over time, i.e., how patients and their sets
of diagnostics and medications tend to evolve over time [14].

e Study the graph of associations from the point of view of network anal-
ysis: investigate powerlaw distributions, small-world phenomena, mea-
sures of centrality and influence (betweenness, pagerank), clustering
coefficients and transitivity, community structures, etc.

e Incorporate “viewpoints” for clinicians: Display statistics on patients
similar to the current one; display courses of actions taken by other
clinicians on similar patients; predict possible evolutions of the patients
(probability of recovery and of complications), using predictive models
learned from past data.

e In a perhaps distant future, when they become available, link these
data with genetic data for improved analysis and prediction.

As a final, non-technical, conclusion we remark the need for cross-disciplinary
teams in this kind of transversal projects. Our team includes two computer
science faculty members working on data mining, two computer science un-
dergraduate students, a clinician (Ph.D.) working at a primary care center
with daily contact with patients, a medical doctor specializing in healthcare
information systems and project management, a pharmacist (Ph.D.) involved
in planning and deployment of prescription policies, and an economist spe-
cialized in healthcare economics at ICS.
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