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Context

Catalan Institute of Health - ICS

I Provides primary healthcare for 80% of 7.5M people

I Hospitalary healthcare for about 20%

I Electronic Health Records almost fully digital since 2009
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Context

The concerns:

I 5% of patients use 50% resources

I Aging

I Complex, chronic disease

I Polymedication

I Increasingly heterogeneous population
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The Project and Intended Users

Health managers and planners at ICS:

1. Understand “the landscape” of complex, chronic disease

2. and polymedication - prescription patterns

3. Rationalize prescription patterns - costs and patient safety

4. Analyze diversity, find outliers
I geography, demography, among healthcare centers . . .

5. Plan: Define indicators and policies, assess costs, allocate
resources, make projections to future scenarios
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The Project and Intended Users

Healthcare researchers:

1. Support hypothesis generation and intuition

2. Discover and explore subpopulations of interest

3. Mine interesting rules and interactions among variables

4. Create predictive and explanatory models
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The Project and Intended Users

First-line clinicians and prescribers:

1. Alert of unusual diagnostic/prescription combinations

2. Support case-based reasoning
I Retrieve patients similar to this one
I Get recommendations for diagnostic & treatment
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The Dataset

I ICS primary care visits, Barcelona, 2013
I 3 tables: patient basic info, health annotations,

prescriptions
I 1.6M potential patients, 0.5M actually present
I 12M health annotations (diagnostics, tests, findings)
I 7M medication prescriptions

Limitations:

I Only primary care, no hospital data
I Only public network, no private care
I Only one year
I Potential inconsistencies - e.g. open episodes
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The Project. Novelty

I Unfocused, exploratory. Many studies focus on one
research problem

I predicting one disease, cluster patients for one goal, find
drug side-effects, . . .

I Tripartite graph patients - diagnostics - medications
I other studies used e.g. diagnostics and genes

I k -ary, not binary, associations – Hypergraphs, not graphs

I Hierarchical itemsets - diagnostic codes and medications

I Detection of open episodes
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The Prototype so Far

I Generate k -ary diagnostic combinations
I Generate rules diagnostics - prescriptions
I Flag patients with unusual (alarming?) combinations
I Flag open episodes or prescription errors
I Navigate hypergraph of diagnostics and prescriptions
I First try at automatic predictor building
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The Prototype - Workflow
Itemset = Subset of diagnostics ∪ Prescriptions
Maintain frequent itemsets of current subpopulation
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Exploring the Hypergraph

Nodes: Sets of diagnostics and medications

Edges: Strength of association; Pointwise Mutual Information

PMI(A,B) = log10
Pr(A ∧ B)

Pr(A)Pr(B)

Nodes can be collapsed (set union)
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Exploring the Hypergraph
Graph around K20 (Esophagitis)
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Exploring the Hypergraph
Graph around K20-K29 (Esophagitis + Gastritis/Duodenitis)
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Exploring the Hypergraph
Graph around K20-K29-Q40
(Esophagitis + Gastritis/Duodenitis +
Other malformations of upper GI tract)
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Implementation

I Client - server
I Borgelt’s Apriori to find itemsets
I Custom association rule finder on top

I Two implementations of patient/diagnostic/prescription DB
I RAM
I Sparksee graph database

I But itemsets and hypergraph always in RAM
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Some Results

With support 0.05% ' 800 patients, confidence 0.1,

I Hypergraph with 918 diagnostics and 268 medications
I 4051 diagnostic-to-medication rules
I 2253 medication-to-diagnostic rules
I Prescriptions without diagnostics for about 10% of patients

I Lower than expected: application does not require
diagnostic for prescription

I Diagnostics without usual medications for about 16%
patients

I Many are indeed open episodes
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Clinical Significance

Under evaluation. 3 types of “discoveries”
I Well known, not surprising, but reassuring the program

found them
(Diabetes↔ retinopathy)
(Omeprazol for most everything)

I Unnoticed before, but believable
(Bedsores for advanced Alzheimer)

I Unnoticed and surprising
(Retinopathy more strongly associated to hypertension than
to diabetes)
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First Prediction Trial

(not in proceedings)

Factors that predict Hip Fracture

I Linear regression and odds ratio
I 7 out of 10 highest scorers reported in specialized literature
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Conclusions

I System is well able to interactively find associations
diagnostics / medications

I Clinicians satisfied with initial interactions
I Detailed clinical study in course

I There’s no such thing as “user-friendly enough”
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Future Work (lots!)

I Improve rule pruning
I Improve interpretation of rule exceptions
I Taxonomies of diagnostics and medications
I Temporal evolution. Trajectories
I Predictive model building
I Patient clustering
I Differential analysis (geographic, demographic)
I Retrieve similar cases
I Suggest diagnostic/treatment
I Privacy, information sharing
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Advertising

Looking for:

I Research partners
I Data partners
I Project partners
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Rule Mining

Find all rules
A1 . . .Ak → B1 . . .B`

with given support and confidence

Heuristics to purge rules (improvable):
I Low lift: remove AB → C if A→ C same confidence
I Implied by transitivity:

remove A→ C/(σ1 · σ2) if A→ B/σ1 and B → C/σ2

I Removals make sense to clinicians
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Open Episodes and Unusual Patients

From the rules we find patients with:

I Medication not justified by recorded diagnostics
I Diagnostics without any of its usual medication

I Open episode?
Recording error?
Clinician error?
Conscious clinician decision?

I More heuristics and larger timespan data to decide
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