
Learning Read-Constant Polynomials of
Constant Degree Modulo Composites

Arkadev Chattopadhyay1, Ricard Gavaldà2,
Kristoffer Arnsfelt Hansen3, and Denis Thérien4

1 University of Toronto, arkadev@cs.toronto.edu
2 Universitat Politècnica de Catalunya, gavalda@lsi.upc.edu

3 Aarhus University, arnsfelt@cs.au.dk
4 McGill University, denis@cs.mcgill.ca

Abstract. Boolean functions that have constant degree polynomial rep-
resentation over a fixed finite ring form a natural and strict subclass of
the complexity class ACC0. They are also precisely the functions com-
putable efficiently by programs over fixed and finite nilpotent groups.
This class is not known to be learnable in any reasonable learning model.
In this paper, we provide a deterministic polynomial time algorithm for
learning Boolean functions represented by polynomials of constant degree
over arbitrary finite rings from membership queries, with the additional
constraint that each variable in the target polynomial appears in a con-
stant number of monomials. Our algorithm extends to superconstant but
low degree polynomials and still runs in quasipolynomial time.

1 Introduction

Understanding the computational power of computation over rings of the form
Zm, for an arbitrary composite number m, is a fundamental open problem.
A concrete and natural setting in which to explore this power is the model of
representing Boolean functions by low degree polynomials over such rings, in the
following sense [4]: an assignment to the variables is a 1 of the Boolean function
if and only if the polynomial on it evaluates to an element of a prespecified
accepting subset of the ring.

When the modulus is a prime number and the ring thus turns into a finite
field, our knowledge of representations is far better than the general case. For
instance, it is known that degree Ω(n) is required in order to represent the
Boolean function MODq by polynomials over the field Zp, when p is a prime and
q has a prime factor different from p. The stronger result that MODq remains
hard to even approximate well by such polynomials of low degree, is a key insight
in the celebrated lower bound of Razborov [22] and Smolensky [24] on the size
of bounded-depth circuits.

In contrast, we do not even know the exact degree of the Parity function
for polynomials over Zm, as soon as m is an odd number having two distinct
prime factors. In a beautiful work, Barrington, Beigel and Rudich [4] showed
that composite moduli give non-trivial advantage to polynomials as compared

to prime moduli. More precisely, they showed that the degree of the OR and
the AND function over Zm is O

(
n1/t

)
if m has t distinct prime factors. On the

other hand, it is well known that if m is a fixed prime, then this degree is Ω(n).
This surprising construction of Barrington et al. has found diverse applications.
Indeed, Efremenko [14] recently built efficient locally decodable codes from it.
Also, Gopalan [16] shows that several previously known constructions of explicit
Ramsey graphs can all be derived from this construction.

The best known lower bounds on the composite degree of any Boolean func-
tion is Ω(log n) (see for example [17, 25, 9] and the survey [13]). Proving anything
better is a tantalizingly open problem. In this work, we look at low degree poly-
nomials through the lens of computational learning theory. The motivation and
hope is that this approach will lead to new insights into the structure of these
polynomials, thus benefiting both the fields of learning theory and complexity
theory.

Given that we know degree lower bounds of Ω(log n), it is reasonable to hope
that we can learn functions represented by constant degree polynomials. We take
on this task in this paper in the setting where the learner is allowed to ask mem-
bership queries. The main difficulty that one faces is essentially the same that
confronts one when proving lower bounds on the degree: while computation by
the target polynomial takes place in the entire ring Zm, the information revealed
to the learner is just Boolean. That is, we learn only whether the polynomial
when evaluated on the chosen point yields an element of the unknown accepting
set. Although several equivalent low degree representations may exist for the
target concept, it is a non-trivial fact that polynomially many such queries are
able to isolate a unique function in the concept class that agrees with the an-
swers of the teacher. The computational challenge, of course, is to recognize this
unique function.

Our Result We consider the concept class of functions that have a represen-
tation by a constant degree polynomial in which every variable appears in a
constant number of monomials. We show that this class is exactly learnable in
polynomial time from the values of the target function at all input assignments
of Hamming weight bounded by another constant. These values can be obtained,
in particular, from membership queries. Additionally, our learning algorithm is
proper in the sense that it outputs a constant degree polynomial equivalent to
the target polynomial with respect to the Boolean function they compute. It is
worth remarking that there are very few instances in which concepts are known
to be properly learnable, especially when there is no guarantee of a unique rep-
resentation.

Overview of Our Techniques Our learning algorithm uses some novel ideas
exploiting the following structural property of low degree polynomials first dis-
covered in the work of Péladeau and Thérien [20] (see the translation [21]): for
every constant degree polynomial P over any fixed finite commutative ring with
identity, there exists a “magic set” of variables of constant cardinality such that

every value in the range of P can be attained by only setting a subset of variables
from the magic set to 1 and setting all other variables to 0. This property is very
convenient and in particular, implies that every Boolean function that can be
represented by a constant degree polynomial gets uniquely determined by the
values it takes on points of constant Hamming weight. It is worthwhile to note
that although the function gets fixed by knowing its behavior on all low weight
points, it is not clear how to efficiently determine the value of this function on
any other input point of the Boolean cube. This is the essential challenge that
the learning algorithm has to overcome.

To be more specific, using this magic set we define an equivalence relation
among monomials of the same degree. We show that there always exists a polyno-
mial representing the same function that the teacher holds, in which all mono-
mials belonging to the same equivalence class have identical coefficients. The
number of equivalence classes is upper bounded by a constant and there is a
very efficient test of equivalence. These properties allow us to enumerate all pos-
sible values of coefficients and then choose any that satisfies the polynomially
many points of constant weight.

Relations to Existing Work Polynomials have been widely studied in learning
theory. When the learner can use evaluation queries returning the precise value of
the polynomial over the base ring or field, polynomials of arbitrary degree over
finite fields and even finite rings can be learned from evaluation+equivalence
queries [23, 8, 12]. On the other hand, when the accepting set of the target poly-
nomial is guaranteed to be a singleton set, it can be learned in the PAC model,
and also approximately from membership queries alone, by a variation of the
subspace-learning algorithm in [18] (see also [15]); this holds for all finite (and
many infinite) rings. For the field Zp, a standard use of Fermat’s little theorem
shows that every polynomial of degree d with an arbitrary accepting set can be
turned into an equivalent polynomial of degree d(p − 1) whose range is {0, 1};
this allows us to learn polynomials of constant degree over Zp both in the PAC
model, as above, and exactly from membership queries.

In this paper we make progress, for the first time to our best knowledge,
in the equivalent learning problem for the non-field case. Note however that the
problem was mentioned in [15], where the degree 1 case was solved by a technique
that does not seem to extend to higher degrees. The emphasis in [15] was the
classification of families of Boolean functions computed by programs over finite
monoids (cf. [3, 7, 6]), with respect to their learnability in different models. In this
setting, polynomials of constant degree over finite rings are equivalent in power
to programs over nilpotent groups (as shown in [20]) with degree-1 polynomials
corresponding to programs over Abelian groups. The class of functions computed
by such programs is a natural subclass of functions computable by programs over
solvable groups. Starting with the famous and surprising work of Barrington [3]
that showed the class of functions computed by polynomial length programs
over finite non-solvable groups is exactly the complexity class NC1, programs

over groups, or monoids in general, have been used (see for example [7, 6]) to
characterize natural subclasses of NC1.

2 Preliminaries

2.1 Polynomials over Finite Rings

Let R be a commutative finite ring with unit, and let P (x1, . . . , xn) be a poly-
nomial over R. We say P is a read -k polynomial, if every variable in P appears
in at most k monomials of P .

Consider a family of polynomials P = {Pi}∞i=1, where Pi is a polynomial in
i variables. We say the family P is read-constant, if there exist a k such that
every Pi ∈ P is read-k. Similarly, we say that P is constant degree if there exists
d such that every Pi ∈ P is of degree at most d.

In this work, we will restrict our attention to variables ranging over the set
{0, 1} ⊆ R, and as a consequence we can without loss of generality restrict our
attention to multilinear polynomials. Formally we consider the ring of polyno-
mials R[x1, . . . , xn]/N , where N is the ideal generated by the set of polynomials
{x2i − xi | i = 1, . . . , n}. Any function {0, 1}n → R is uniquely expressed by
such a polynomial. Define the range of P as range(P) = {r ∈ R | ∃x ∈ {0, 1}n :
P (x) = r}.

Equipping a polynomial P with an accepting set A ⊆ R, we say that the
pair (P,A) computes a Boolean function f : {0, 1}n → {0, 1} if it holds that
P (x) ∈ A if and only if f(x) = 1, for all x ∈ {0, 1}n.

Given a set of indices J ⊆ [n], we let χJ ∈ {0, 1}n denote the characteristic
vector of J . Conversely, for w ∈ {0, 1}n, define Iw = {i ∈ [n]} | wi = 1}. Thus
χIw = w and IχJ

= J . For u, v ∈ {0, 1}n, let u ∨ v ∈ {0, 1}n be defined by
Iu∨v = Iu ∪ Iv.

Consider now a degree d polynomial, P (x) =
∑
I⊂[n],|I|≤d cI

∏
i∈I xi. For a

subset S ⊆ [n] we define the polynomial PS of monomials from S by, PS(x) =∑
I⊆S,|I|≤d cI

∏
i∈I xi. For disjoint subsets S, T ⊆ [n] define the polynomial PS×T

consisting of cross terms between S and T :

PS×T (x) =
∑

I,J 6=∅;I⊆S,J⊆T ;|I|+|J|≤d

cI∨J
∏
i∈I∪J

xi .

For a polynomial we associate the graph GP defined as follows. The set of
vertices of Gp is {1, . . . , n} and the set of edges is E(GP) = {(i, j) | xi and xj
appear together in some monomial of P } This will allow us to speak of the
distance between variables of P , namely as distances in the graph GP .

2.2 Structural Properties of Polynomials

Using an inductive Ramsey-theoretic argument, the following important struc-
tural result about constant degree polynomials over finite rings was proved by
Péladeau and Thérien [20].

Theorem 1 (Péladeau and Thérien). Let R be a finite commutative ring
with unity and let d be any number. Then there exists a constant c = c(R, d)
with the following property: For any multilinear polynomial P over R of degree
at most d and for any r ∈ range(P) there exists w ∈ {0, 1}n with |Iw| ≤ c such
that P (w) = r.

Remark 2. – The theorem as stated above is actually only implicitly given in
the proof of Lemma 2 of [20].

– In Sect. 4 we shall present with full proof a quantitative strengthening of the
theorem based on a result of Tardos and Barrington [25].

Two easy consequences of this theorem are given below. Our learning algo-
rithm will be heavily based on these results.

Corollary 3. There exists a constant s = s(R, d), such that for every multilin-
ear polynomial P over R of degree at most d, there exists a set J ⊂ {1, . . . , n}
with the following properties: (1). |J | ≤ s. (2). For every r ∈ range(P) there
exists w ∈ {0, 1}n with Iw ⊆ J such that P (w) = r.

Proof. Let s = |R|c(R, d), with c(R, d) as given by Theorem 1. We can then
simply take J to be the union of | range(P)| sets Iw provided by Theorem 1 for
each r ∈ range(P). ut

For a given polynomial P we will refer to the set J as guaranteed above to
exist as the magic set set of variables for P .

Corollary 4. There exists a constant c′ = c′(R, d) with the following property:
Let P and Q be polynomials of degree at most d with accepting sets A and B,
respectively. If the Boolean functions computed by the pairs (P,A) and (Q,B)
agree on all inputs w ∈ {0, 1}n with |Iw| ≤ c′, then the two Boolean functions
are identical.

Proof. We take c′ = c(R × R, d) as given by Theorem 1. Now, write P (x) =∑
cI
∏
i∈I xi and Q(x) =

∑
dI
∏
i∈I xi. Consider the polynomial (P×Q) over

R × R given by (P ×Q)(x) =
∑

(cI , dI)
∏
i∈I xi If (P,A) and (Q,B) do not

compute the same Boolean function there is (r, s) ∈ range(P × Q) such that
either r ∈ A and s 6∈ B or r 6∈ A and s ∈ B. Then by Theorem 1 and the
choice of c′ this would be witnessed by a w ∈ {0, 1}n with |Iw| ≤ c′ such that
(P×Q)(w) = (r, s). ut

3 Learning with Membership Queries

In this section we will present our algorithm for learning read-constant, constant
degree polynomials. For convenience we choose to present the algorithm as a
nondeterministic algorithm, that when terminating with success always output
a correct polynomial. Afterwards we will be able to convert this nondeterministic
algorithm into a deterministic algorithm simply by enumerating over all possible

sequences of guesses of the algorithm, arguing that there are only polynomially
many such sequences.

For ensuring that the nondeterministic algorithm always produces a correct
output we use a consistency check procedure, described as Algorithm 1.

Algorithm 1: Consistent(Q,A, f)

Input: Polynomial Q with accepting set A ⊆ Zm. Membership query
access to Boolean function f .

Output: Decides if the pair (Q,A) computes the function f .
1: Query f on all w ∈ {0, 1}n with |Iw| ≤ c′(R, d)
2: Return true if and only if for each queried w, f(w) = 1 if and only if
Q(w) ∈ A

The correctness of the procedure is immediate from Corollary 4.

3.1 Equivalence Relations Between Monomials

For our algorithm we need the following somewhat technical definition of param-
eterized equivalence relations of monomials. Intuitively, they serve the following
purpose: we want to learn an unknown polynomial, singling it out from exponen-
tially many possibilities. One way to reduce this huge search space is to deduce,
from membership queries, that some of the nO(d) coefficients must be the same,
as they can only have a constant (|R|) number of values. Equivalence among two
monomials, as defined below, is intended to suggest that they define isomorphic
subpolynomials of the target polynomial.

For example, if a target polynomial contains terms 2x1, 3x2, x1x2, 2x3, 3x4,
x3x4 we would like to say that monomials x1x2 and x3x4 are equivalent, and
when searching for coefficients for these monomials we can discard all settings
of coefficients where they differ.

The idea of the learning algorithm, to be explained in more detail in the next
section, is to first implement equivalent tests among all monomials and then, on
the basis of this information, actually find the values of all coefficients exploring
a polynomial search space rather than an exponential one.

For any monomial M , let IM = {i | xi appears in M}. Conversely, for any
set of indices I let MI denote the monomial Πi∈Ixi.

Given a polynomial P and a set J of indices in {1, . . . , n}, we define a param-
eterized equivalence relation ∼d,J on tuples (M,�), where M ⊂ [n],M ∩ J =
∅, |M | = d, and � is a total ordering5 on [n], by induction on d. We say
(M,�1) ∼d,J (M ′,�2) if the following is satisfied:

1. For every assignment w, such that Iw ⊆ J , we have P (w ∨ χM) ∈ A if and
only if P (w ∨ χM ′) ∈ A.

5 Alternatively one could fix the same ordering, say 1, . . . , n for all monomials. However
we find it natural to identify monomials that that are identical up to a permutation
of the variables.

2. LetM1, . . . ,Md (andM ′1, . . . ,M
′
d) be the subsets ofM (M ′) of size d−1 listed

in the lexicographic order w.r.t �1 (�2). Then (Mi,�1) ∼d−1,J (M ′i ,�2),
for all i ≤ d.

For every pair of monomials M and M ′, each of degree d, with IM , IM ′ dis-
joint from J , we say that M ≡d,J M ′ if there exist �1 and �2 such that
(IM ,�1) ∼d,J (IM ′ ,�2).

3.2 Idea of the Learning Algorithm

Let P be a polynomial with accepting set A. Let Mrange(P) be the subgroup of
the additive subgroup of R generated by range(P) (i.e. the Z-module generated
by range(P)). Consider next the following equivalence relation on monomials of
a polynomial P

For tuples (M,�1) and (M ′,�2), where M,M ′ ⊂ [n] and �1 and �2 are
total orderings, we say (M,�1)∼̂d(M ′,�2) if the following is satisfied:

1. For every r ∈Mrange(P), r + P (χM) ∈ A if and only if r + P (χM ′) ∈ A.
2. Let M1, . . . ,Md (and M ′1, . . . ,M

′
d) be the subsets of M (M ′) of size d − 1

listed in the lexicographic order w.r.t �1 (�2). Then (Mi,�1)∼̂d−1(M ′i ,�2),
for all i ≤ d.

For every pair of monomials M and M ′, each of degree d, we say that M≡̂dM ′
if there exist �1 and �2 such that (IM ,�1)∼̂d(IM ′ ,�2).

Assume now (by induction) that in P , that for all monomial M1 and M2 of
degree s < r we have cM1 = cM2 , whenever M1≡̂sM2. Next consider monomials
M and M ′ with M≡̂rM ′, and let P ′ be the polynomial obtained from P by
replacing the coefficient of M ′ with the coefficient of M . By our (inductive)
assumption we have P (χM) = P ′(χM ′). Let x ∈ {0, 1}n be arbitrary. Now,
since P (x), P (χM ′) ∈ range(P) we have r = P (x) − P (χM ′) ∈ Mrange(P). We
then have r + P (χM) ∈ A if and only if r + P (χM ′) ∈ A. But r + P (χM ′) =
(P (x)−P (χM ′))+P (χM ′) = P (x) and r+P (χM) = (P (x)−P (χM ′))+P (χM) =
P (x)− P (χM ′) + P ′(χM ′) = P ′(x). Hence P (x) ∈ A if and only if P ′(x) ∈ A.

Thus, if we would be able to actually implement testing of the above equiv-
alence relation, we would be have a simple learning algorithm as follows: First
compute all equivalence classes. Then enumerate all candidate polynomials ob-
tained by all possible coefficients for these equivalence classes, and test for cor-
rectness using the Consistent procedure. We do not know how to accomplish
this. However using the notion of a magic set, we are in fact able to implement
(possibly a refinement of) this equivalence relation on P restricted to all but a
constant number of variables.

3.3 Properties of Polynomials Equipped with a Magic Set

Before stating our learning algorithm, we establish a number of properties to be
used later for polynomials P equipped with a magic set J .

Lemma 5. Let P (x) =
∑
I⊆[n],|I|≤d cI

∏
i∈I xi be any polynomial over R, with a

magic set J . Let N be the set of indices that (viewed as vertices in the graph GP)
are at distance at least 2 from J in GP . Then, r+

∑
I⊆N,|I|≤d λIcI ∈ range(P),

for all r ∈ range(P) and all λI ∈ {0, . . . , |R| − 1}.

Proof. We prove the statement by induction, first by induction on the degree
d, and then by further induction on the monomials of degree d. We take as our
induction hypothesis that r +

∑
I⊆N,|I|<d λIcI ∈ range(P) for all r and λI .

The base case d = 0 trivially holds. Consider now for the inductive step the
case d + 1. Enumerate all

(|N |
d

)
subsets of N of cardinality d, and let Ii denote

the ith set in this enumeration. We shall now further induct on k to show that
r +

∑
I⊆N,|I|<d λIcI +

∑k
i=1 λIicIi ∈ range(P) for every r ∈ range(P). The

k = 0 base case trivially holds. For the inductive step, we want to show that r+∑
I⊆N,|I|<d λIcI +

∑k
i=1 λIicIi + λcIk+1 ∈ range(P). By induction hypothesis,

there exists u with Iu ⊂ J such that P (u) = r+
∑
I⊂L,|I|<d λIcI +

∑k
i=1 λIicIi =

r0. Then clearly, P (u∨χIk+1) = r0+
∑
I⊂Ik+1 cI+cIk+1 = r1 ∈ range(P). Hence,

there is u1 with Iu1
⊆ J such that P (u1) = r1. Continuing in this way for λ

times we see that rλ = r0+λ ·(
∑
I⊂Ik+1 cI)+λcIk+1 ∈ range(P). Applying once

more our outer induction hypothesis, we conclude rλ + (|R|− λ)(
∑
I⊂Ik+1 cI) =

r0 + λ · cIi ∈ range(P). This completes the inner and outer induction. ut

For a polynomial P with accepting set A we can always obtain equivalent
polynomial in which the constant term is 0 by shifting the accepting set according
to the constant term. Thus in the following assume the constant term of P is 0.
Let J be a magic set of P . Let N be the set of indices that are at distance 2 or
more from J in GP . Let PN be the polynomial obtained from P by fixing to 0
every variable indexed in the set [n] \N .

The crucial insight required for limiting the amount of nondeterministic
guesses in our learning algorithm is expressed in the following lemma.

Lemma 6. Let P be any polynomial of degree d with accepting set A and a
magic set J , and let r ≤ d. Assume that for all monomials M1 and M2 in
PN of degree s < r we have cM1

= cM2
whenever M1 ≡s,J M2. Consider now

monomials M and M ′ of degree r in PN such that M ≡r,J M ′. Let P ′ be the
polynomial obtained from P by replacing the coefficient of M ′ with the coefficient
of M . Then the polynomials P and P ′ compute the same Boolean function.

Proof. Since M ≡r,J M ′, we have (IM ,�M) ∼r,J (IM ′ ,�M ′) for some �M and
�M ′ . Let us enumerate lexicographically the subsets of IM and IN according to
�M and �M ′ . Let Mi and M ′i be the monomial corresponding to the ith such
subsets and let di denote their degree. By definition we have Mi ≡di,J M ′i, and
so by assumption the coefficients of Mi and M ′i are the same. We thus have
that P (χM) = P ′(χM ′).

To prove that P and P ′ with accepting set A compute the same Boolean
function, let x ∈ {0, 1}n be arbitrary. Obviously, P (x) ∈ range(P). By Lemma 5
we then have that also P (x)− P (χM ′) ∈ range(P). It follows there exist u with
Iu ⊆ J such that P (u) = P (x)−P (χM ′). Since M ≡r,J M ′ we have P (u∨χM) =

P (u) + P (χM) ∈ A if and only if P (u ∨ χM ′) = P (u) + P (χM ′) ∈ A. But
P (u) +P (χM) = P (x)−P (χM ′) +P (χM) = P (x)−P (χM ′) +P ′(χM ′) = P ′(x)
and P (u) + P (χM ′) = P (x). Hence we can conclude that P (x) ∈ A if and only
if P ′(x) ∈ A. ut

3.4 The learning Algorithm

We are now finally in position to state our algorithm.

Algorithm 2: Learn-Poly(f)

Input: Membership query access to Boolean function f .
Output: Returns pair (Q,A) computing the function f , or fail.

1: Nondeterministically guess the following:
A magic set J ⊆ [n], |J | ≤ s(R, d) and polynomial QJ .
The set K ⊆ [n] at distance 1 in GP from J and polynomials QK and
QK×J .
The set L ⊆ [n] at distance 2 in GP from J , and polynomial QK×L.
An accepting set A ⊆ R for Q.

2: Let N = [n] \ (J ∪K).
3: Query f on all inputs (w ∨ x) where Iw ⊆ J , Ix ⊆ [n] \N , and |Ix| ≤ 2d.
4: Compute the equivalence classes of ≡r,J , for all r = 1, . . . , d, over

monomials MI with I ⊆ N and |I| ≤ d.
5: Nondeterministically guess an element of R for each equivalence class.
6: Construct polynomial
Q = QJ +QK +QJ×K +QK×L +

∑
I⊂N,|I|≤d cI ·MI , where cI ∈ R is the

element guessed for the equivalence class of monomial MI .
7: If Consistent(Q,A,f), output (Q,A), otherwise output fail.

Theorem 7. Let R be a fixed commutative finite ring with unit. Let F be the
class of Boolean functions that can be computed by read-constant and constant
degree polynomials. Learn-poly non-deterministically learns exactly any func-
tion f ∈ F in polynomial time.

Proof. Take a computation path of Learn-poly in which it made right guesses
in step 1. Then using Lemma 6, we maintain an equivalent polynomial if the
guesses for coefficients of each equivalence class is correct. If incorrect guesses
result in a wrong candidate polynomial it will be detected by the Consistent
procedure. ut

It is easy to see that a deterministic variant of Learn-poly can be derived
and it runs in poly-time. This can be done by simply going through all possible
guesses. Since cardinality of J is bounded by a constant (using Corollary 3)
determined by the degree of the polynomial, there are only polynomially many
sets to guess. Since P is read-k for some constant k, |K| ≤ k(d − 1)|J |, and
the number of guesses for K is at most

(
n

k(d−1)|J|
)
, which is again polynomial

in n. Observe that the size of K is also bounded by a constant. Thus, guessing

PJ , PK , PJ×K involves at most |R|s guesses, where s is the number of monomials
of degree at most d involving variables indexed by set K∪J . A similar argument
shows that polynomially many guesses are needed to get the correct L for each
possibleK and then constantly many guesses for a given K and L are involved for
PK×L. Since the equivalence relation ≡d,J is finite indexed for each d, constantly
many guesses have to be enumerated to also make this deterministic and we are
done.

4 Extensions to Higher Degrees

For a Boolean function f on n variables, define ∆(f,R) to be the minimal degree
of a polynomial over R computing f . Consider a family of Boolean functions
f = {fn}∞n=1, one for each input length. Define ∆(f,R, n) = ∆(fn,R). Define
Λ(f,R, d) as the maximal n such that ∆(f,R, n) ≤ d.

The notion of the degree of the Boolean AND function allows the following
quantitative version of Theorem 1.

Proposition 8. c(R, d) ≤ Λ(AND,R, d)

Proof. Let P be a multilinear polynomial of degree d over R in n variables.
Let r ∈ range(P). We will find w ∈ {0, 1}n with |Iw| ≤ Λ(AND,R, d) such
that P (w) = r. If P (0) = r, we are done. Otherwise, pick w ∈ {0, 1}n such
that |Iw| is minimal with P (w) = r. Consider now the restriction P ′ of P to
the variables indexed by Iw. By minimality of |Iw|, we have that P ′ computes
the AND function with accepting set {r} on |Iw| variables. Thus it follows that
|Iw| ≤ Λ(AND,R, d). ut

As a consequence we obtain the following bounds for s(R, d)-the size of the
magic set for polynomials over R of degree d, and c′(R, d)-the Hamming weight
of assignments that uniquely identify a Boolean function represented by such a
polynomial, in terms of Λ(AND,R, d) as well, following the proofs of Corollary 3
and Corollary 4.

Corollary 9. s(R, d) ≤ |R|Λ(AND,R, d) and c′(R, d) ≤ Λ(AND,R×R, d).

Thus lower bounds for the degree of the AND function implies upper bounds
on the above quantities. The degree of the AND function have been inten-
sively studied over the ring Zm [4, 25]. Let in the following m = pk11 · · · pkrr
have r distinct prime factors, and let qmin = min(pk11 , . . . , p

kr
r) and qmax =

max(pk11 , . . . , p
kr
r). With these definitions, Tardos and Barrington [25] obtained

the following lower bound, which is currently the best known.

Theorem 10 (Tardos and Barrington).
∆(AND,Zm, n) ≥ ((1/(qmin − 1)− o(1)) log n)1/(r−1).

Equivalently, Λ(AND,Zm, d) ≤ 2(qmin−1+o(1))dr−1

For the purpose of our learning algorithm we are interested in bounds for the
ring R = Zlm. In fact, without loss of generality we may assume that R is of this
form. We can transfer the above results to this ring using standard methods. Let
m′ = p1 · · · pr. Let pmin = min(p1, . . . , pr).

Lemma 11. ∆(AND,Zm′ , n) ≤ l(qmax − 1)∆(AND,Zlm, n).
Equivalently, Λ(AND,Zlm, d) ≤ Λ(AND,Zm′ , l(qmax − 1)d).

Proof. Let P be a polynomial over Zlm of degree d computing the AND func-
tion. Without loss of generality, the accepting set is {0}. Let P1, . . . , Pl be the
l coordinate polynomials. Consider a fixed j, and the polynomials P1, . . . , Pl
modulo p

kj
j . By well known arguments (see e.g [25]) we can find polynomials

Qj1, . . . , Q
j
l of degree at most (p

kj
j − 1)d such that Qji (x) ≡ 0 (mod pj) if and

only if Pi(x) ≡ 0 (mod p
kj
j), and furthermore (Qji (x) mod pj) ∈ {0, 1} for all

x.
Define Qj(x) = 1 −

∏l
i=1(1 − Qji (x)). We then have Qj(x) ≡ 0 (mod pj) if

and only if Pi(x) ≡ 0 (mod p
kj
j) for all x and i. Note the degree of Qj is at most

l(p
kj
j − 1)d.

Considering all such polynomials, Q1, . . . , Ql, from the Chinese Remainder
Theorem we may find a polynomial Q, of degree at most l(qmax − 1)d such that
Q(x) ≡ 0 (mod m′) if and only if P (x) = 0 for all x. ut

Combining Proposition 8, Theorem 10, and Lemma 11 we obtain the follow-
ing concrete bounds (following the proofs of Corollaries 3 and 4):

Proposition 12.

c(Zlm, d) ≤ Λ(AND,Zlm, d) ≤ 2(pmin−1+o(1))(l(qmax−1)d)r−1

.

s(Zlm, d) ≤ |Zlm|c(Zlm, d) ≤ ml2(pmin−1+o(1))(l(qmax−1)d)r−1

.

c′(Zlm, d) ≤ c(Z2l
m, d) ≤ 2(pmin−1+o(1))(2l(qmax−1)d)r−1

.

We now provide a brief analysis of the running time of the deterministic
version of our algorithm Learn-Poly, presented in the last section, in terms
of parameters s(R, d) and c′(R, d). The algorithm asks membership queries on
points of Hamming weight at most c′(R, d) + 2d. Thus, O(nc

′+2d) many mem-
bership queries are asked in total. The algorithm runs over all possible choices
of a magic set J of size s = s(R, d), the set K, of size ks(d − 1), of variables
that are at distance 1 from the set J and set L, of size k2s(d− 1)2, at distance

2 from J . Thus the total number of such choices is at most nk
2sd2 . For each

such choice of J,K,L, the algorithm considers all possible degree d polynomials

of variables indexed in J ∪K ∪ L. Thus, it has to consider at most |R|d(k2sd2)d

many polynomials. Further, for each choice of J,K,L it does equivalence testing
for monomials that are free of variables indexed by J or K. There are at most
dnd such monomials and the test for each involves 2s assignments of variables
in J . Thus, equivalence testing takes O

(
dnd · 2s

)
time. It is not hard to see that

degree d monomials split up into at most |R|2d equivalence classes. Thus, one
has to consider all possible ways of coloring equivalence classes with elements of

R giving rise to |R|d|R|2
d

such choices. Finally having guessed an entire candi-
date polynomial, the algorithm invokes procedure Consistent that verifies the
consistency of the polynomial with all weight c′ = c′(R, d) assignments. This
requires O

(
nd · cnc′+1

)
time. Summing these up, the total running time is

O(2|R|)×O(nO(k2sd2))×O(|R|d(k
2sd2)d)×O(dnd2s)×O(|R|d|R|

2d

)×O
(
nd·cnc

′+1
)

Using Proposition 12, we see that for each R = Z`m with a fixed m and `, there

exists a constant γ such that s(R, d), c′(R, d) ≤ γdr−1

, where r is the number of
distinct prime factors of m. Hence, combining the above observations we get the
following:

Theorem 13. Let m and ` be any fixed positive numbers. The class of Boolean
functions representable by read-k polynomials of degree d over Z`m are exactly
learnable from membership queries by a deterministic algorithm of running time

O
(
nk

2γdrd2×γk2dγdr×γγ2d)
, where γ = γ(m, `) is a constant and r is the number

of distinct prime factors of m.

Theorem 13 gives us a range of super-constant k and d for which we get sub-
exponential running time. For instance, if we choose k = o(log log n), and d =

o(log log log n), the running time is n(logn)
o(1)

.

5 Future Work

While the progress we make is limited from a learning theory perspective, the
combinatorics involved is unexpectedly delicate, and suggests some further ques-
tions in understanding the structure of polynomials over rings of the form Zm.

The obvious next question is to remove the read-constant restriction in our
result. Read-constant restrictions have been used, on several occasions, both in
complexity theory and in learning theory. For example in complexity theory,
Barrington and Straubing [5] proved superlinear bounds on the length of read-
constant branching programs of bounded-width. Very recently, several works
have been concerned with constructing pseudorandom generators for read-once
branching programs of small width [10, 11, 19]. In learning theory, read-constant
conditions have been sometimes shown to be unavoidable for efficient learning.
For example, read-once Boolean formulas can be learned efficiently from mem-
bership and equivalence queries [2]. On the other hand, under cryptographic
assumptions, even read-thrice Boolean formulas are impossible to learn no mat-
ter what polynomially-evaluatable hypothesis class is used (i.e., hard to learn in
a representation-independent way).

In other cases, read-constant conditions for learning a target concept class
can be removed at the expense of moving to a larger hypothesis class, which by-
passes some computational bottleneck. For example, Aizenstein et al. [1] showed

that read-k, satisfy-j DNF formulas6 are learnable (as DNF formulas). Without
the read-k condition, satisfy-j DNF formulas are not known to be learnable as
DNF, but they can be learned as Multiplicity Automata, as pointed out in [8].
Analogously, it is possible that constant degree polynomials over finite rings can
be learned (in some reasonable learning model) by not insisting that the output
is itself a constant degree polynomial.

Acknowledgments A. Chattopadhyay is partially supported by a Natural
Sciences and Engineering Research Council (NSERC) postdoctoral fellowship
and research grants of Prof. T. Pitassi. R. Gavaldà is partially funded by the
Spanish Ministry of Science and Technology contract TIN-2008-06582-C03-01
(SESAAME), by the Generalitat de Catalunya 2009-SGR-1428 (LARCA), and
by the EU PASCAL2 Network of Excellence (FP7-ICT-216886).

References

1. H. Aizenstein, A. Blum, R. Khardon, E. Kushilevitz, L. Pitt, and D. Roth. On
learning read-k-satisfy-j dnf. SIAM J. Comput., 27(6):1515–1530, 1998.

2. D. Angluin, L. Hellerstein, and M. Karpinski. Learning read-once formulas with
queries. J. ACM, 40(1):185–210, 1993.

3. D. A. M. Barrington. Bounded-width polynomial-size branching programs recog-
nize exactly those languages in NC1. J. Comput. Syst. Sci., 38(1):150–164, 1989.

4. D. A. M. Barrington, R. Beigel, and S. Rudich. Representing boolean functions as
polynomials modulo composite numbers. Comput. Complexity, 4:367–382, 1994.

5. D. A. M. Barrington and H. Straubing. Superlinear lower bounds for bounded-
width branching programs. J. Comput. Syst. Sci., 50(3):374–381, 1995.

6. D. A. M. Barrington, H. Straubing, and D. Thérien. Non-uniform automata over
groups. Inform. and Comput., 89(2):109–132, 1990.

7. D. A. M. Barrington and D. Thérien. Finite monoids and the finite structure of
NC1. J. ACM, 35(4):941–952, 1988.

8. A. Beimel, F. Bergadano, N. Bshouty, E. Kushilevitz, and S. Varricchio. Learning
functions represented as multiplicity automata. J. ACM, 47:506–530, 2000.

9. J. Bourgain. Estimation of certain exponential sums arising in complexity theory.
C. R. Acad. Sci. Paris, 340(9):627–631, 2005.

10. M. Braverman, A. Rao, R. Raz, and A. Yehudayoff. Pseudorandom generators for
regular branching programs. In 51th Annual IEEE Symposium on Foundations of
Computer Science, pages 40–47. IEEE Computer Society, 2010.

11. J. Brody and E. Verbin. The coin problem, and pseudorandomness for branching
programs. In 51th Annual IEEE Symposium on Foundations of Computer Science,
pages 30–39. IEEE Computer Society, 2010.

12. N. Bshouty, C. Tamon, and D. Wilson. Learning matrix functions over rings.
Algorithmica, 22:91–111, 1998.

13. A. Chattopadhyay. Multilinear polynomials modulo composites. Bulletin of the
European Association on Theoretical Computer Science, Computational Complex-
ity Column, 100, February 2010.

6 A DNF formula is read-k if every variable appears at most k times; a DNF formula
is satisfy-j if no assignment satisfies more than j terms simultaneously

14. K. Efremenko. 3-query locally decodable codes of subexponential length. In 41st
Annual Symposium on Theory of Computing, pages 39–44. ACM Press, 2009.

15. R. Gavaldà and D. Thérien. An algebraic perspective on boolean function learning.
In ALT 2009, LNCS, pages 201–215. Springer, 2009.

16. P. Gopalan. Constructing ramsey graphs from boolean function representations.
In 21st Annual IEEE Conference on Computational Complexity, pages 115–128.
IEEE Computer Society, 2006.

17. V. Grolmusz. On the weak mod m representation of boolean functions. Chicago
J. Theoret. Comput. Sci., 1995.

18. D. P. Helmbold, R. H. Sloan, and M. K. Warmuth. Learning nested differences of
intersection-closed concept classes. Machine Learning, 5:165–196, 1990.

19. M. Koucký, P. Nimbhorkar, and P. Pudlák. Pseudorandom generators for group
products. In 43rd Annual ACM Symposium on Theory of Computing. ACM Press,
2011. (to appear).

20. P. Péladeau and D. Thérien. Sur les langages reconnus par des groupes nilpotents.
C. R. Math. Acad. Sci. Paris Sér I Math., 306(2):93–95, 1988.

21. P. Péladeau and D. Thérien. On the languages recognized by nilpotent groups (a
translation of ”sur les langages reconnus par des groupes nilpotents”). Electronic
Colloquium on Computational Complexity (ECCC), 8(40), 2001.

22. A. A. Razborov. Lower bounds on the size of bounded-depth networks over a
complete basis with logical addition. Math. Notes of the Acad. of Sci. of USSR,
41(3):333–338, 1987.

23. R. E. Schapire and L. Sellie. Learning sparse multivariate polynomials over a field
with queries and counterexamples. J. Comput. Syst. Sci., 52(2):201–213, 1996.

24. R. Smolensky. Algebraic methods in the theory of lower bounds for boolean circuit
complexity. In 19th Annual ACM Symposium on Theory of Computing, pages
77–82. ACM Press, 1987.

25. G. Tardos and D. A. M. Barrington. A lower bound on the MOD-6 degree of the
OR function. Comput. Complexity, 7(2):99–108, 1998.

