Tractable Clones of Polynomials over Semigroups

Víctor Dalmau
UPF, Barcelona
Ricard Gavaldà
Pascal Tesson
Denis Thérien
U. Laval, Québec
U. McGill, Montréal
11th Intl. Conference on
Principles and Practice of Constraint Programming
October 3rd, 2005

Setting

Finite domain D
Finite set of relations Γ over D
$\operatorname{CSP}(\Gamma)$: Constraint Satisfaction Problems with relations from Γ

Setting

6 Finite domain D
6 Finite set of relations Γ over D
6 $\operatorname{CSP}(\Gamma)$: Constraint Satisfaction Problems with relations from Γ

Question:
6 For which Γ is $\operatorname{CSP}(\Gamma)$ solvable in polynomial time?
6 Or: Find conditions on Γ which imply (in)tractability

The Algebraic Approach

A relation R is closed under function f if

$$
T_{1}, \ldots, T_{k} \in R \quad \longrightarrow \quad f\left(T_{1}, \ldots, T_{k}\right) \in R
$$

Fact. [Jeavons98]
The complexity of $\operatorname{CSP}(\Gamma)$ is completely determined by the set of functions f that close all relations in Γ

Several large classes of tractable Γ have been described in terms of "closure properties"

Some Tractable Operations

Near-Unanimity [JCG97]
Semilattices [JCG97]
Coset-Generating [FV93,JCG97]

Some Tractable Operations

Near-Unanimity [JCG97]
Semilattices [JCG97]

Coset-Generating [FV93,JCG97]

Block-group product [BJV02]
Malt'sev [Bulatov02]

GMM [Dalmau05]

Some Tractable Operations

Near-Unanimity [JCG97]
Semilattices [JCG97]

GMM [Dalmau05]

Coset-Generating [FV93,JCG97]

Block-group product [BJV02]
Malt'sev [Bulatov02]

Some Tractable Operations (2)

Coset-generating op.:
(D, \cdot) a group, Γ closed under $x \cdot y^{-1} \cdot z$
Semilattice op.:
(D, \cdot) a semilattice, Γ closed under $x \cdot y$

Some Tractable Operations (2)

Coset-generating op.:
(D, \cdot) a group, Γ closed under $x \cdot y^{-1} \cdot z$
Semilattice op.:
(D, \cdot) a semilattice, Γ closed under $x \cdot y$
Block-group op.:
(D, \cdot) a block-group, Γ closed under $x \cdot y$

Note: Closure under $x \cdot y$ implies closure under $x \cdot y^{-1} \cdot z$

Some Tractable Operations (2)

Coset-generating op.:
(D, \cdot) a group, Γ closed under $x \cdot y^{-1} \cdot z$
Semilattice op.:
(D, \cdot) a semilattice, Γ closed under $x \cdot y$
Block-group op:
(D, \cdot) a block-group, Γ closed under $x \cdot y$

Theorem. If (D, \cdot) is a block-group and Γ is closed under $x \cdot y^{\omega-1} \cdot z$, then $\operatorname{CSP}(\Gamma)$ is tractable.

A Unifying Result

Theorem. If (D, \cdot) is a block-group and Γ is closed under $x \cdot y^{\omega-1} \cdot z$ then $\operatorname{CSP}(\Gamma)$ is tractable.
ω : minimum such that $\left(x^{\omega}\right)^{2}=x^{\omega}$ Block group: Satisfies $\left(x^{\omega} y^{\omega}\right)^{\omega}=\left(y^{\omega} x^{\omega}\right)^{\omega}$

A Unifying Result

Theorem. If (D, \cdot) is a block-group and Γ is closed under $x \cdot y^{\omega-1} \cdot z$ then $\operatorname{CSP}(\Gamma)$ is tractable.

Proof idea:
6 Apply first Arc-Consistency, as for semilattices. This places every variable in one of the groups in (D, \cdot)

- Then apply the coset-generating technique within each group

Both techniques will not interfere in block-groups

Polynomials

Observation:
In the boolean domain, our algorithm solves instances containing e.g. (only) Horn clauses or (only) linear equations.

In larger domains, it solves problems that "decompose" as Horn then linear equations.

Polynomials

Why only $x \cdot y$ or $x \cdot y^{\omega-1} \cdot z$?

- Polynomial: an expression of the form

$$
x_{i_{1}}^{n_{1}} \cdot x_{i_{2}}^{n_{2}} \cdot \ldots \cdot x_{i_{m}}^{n_{m}}
$$

6 Interpret • is as product over a semigroup $S=(D, \cdot)$. Then the polynomial computes a function.

6 $\operatorname{Pol}(\Gamma)=$ set of functions that close all relations in Γ
© Study $\operatorname{CSP}(\Gamma)$ when $\operatorname{Pol}(\Gamma)$ is a "clone of polynomials"

Why Study Polynomials?

They alone explain several of the known tractable cases

- Based on semigroup operations ...
... and we have fine tools for decomposing / analyzing semigroups
- May indicate more ways to combine existing tractability paradigms

Intractable Clones of Polynomials

A condition on the semigroup:
Theorem. If S is not a block-group, then every clone of polynomials over S is NP-complete.

A condition on the clone:
Theorem. If a clone of polynomials \mathcal{C} is a d-factor then \mathcal{C} is NP-complete.

d-factors

η subgroup exponent of $S, d>1, d|\eta| \omega$

d-factors

- η subgroup exponent of $S, d>1, d|\eta| \omega$

ब $x_{i_{1}}^{n_{1}} \cdot x_{i_{2}}^{n_{2}} \cdot \ldots \cdot x_{i_{m}}^{n_{m}}$ is a d-factor iff all n_{i} but one are multiples of d

d-factors

ब η subgroup exponent of $S, d>1, d|\eta| \omega$
6 $x_{i_{1}}^{n_{1}} \cdot x_{i_{2}}^{n_{2}} \cdot \ldots \cdot x_{i_{m}}^{n_{m}}$ is a d-factor iff all n_{i} but one are multiples of d
E.g., not like $x y^{\omega-1} z$

d-factors

6 η subgroup exponent of $S, d>1, d|\eta| \omega$
6 $x_{i_{1}}^{n_{1}} \cdot x_{i_{2}}^{n_{2}} \cdot \ldots \cdot x_{i_{m}}^{n_{m}}$ is a d-factor iff all n_{i} but one are multiples of d
E.g., not like $x y^{\omega-1} z$

Condition preserved by composition and variable identification

d-factors

ब η subgroup exponent of $S, d>1, d|\eta| \omega$
(6) $x_{i_{1}}^{n_{1}} \cdot x_{i_{2}}^{n_{2}} \cdot \ldots \cdot x_{i_{m}}^{n_{m}}$ is a d-factor iff all n_{i} but one are multiples of d

6 E.g., not like $x y^{\omega-1} z$
6 Condition preserved by composition and variable identification
© Implies that there is a "hard" subuniverse of D preserved by \mathcal{C}, hence NP-completeness

Tractability within Block-groups?

\mathcal{C} clone of polynomials over a block-group
" C not a d-factor" necessary condition for tractability
For some block-groups, it is also sufficient:

- Commutative semigroups
- Nilpotent groups

Tractability within Block-groups? (2)

Theorem. If S is a commutative semigroup and \mathcal{C} a nontrivial, idempotent clone of polynomials over S, then the following are equivalent:

1) \mathcal{C} is tractable
2) \mathcal{C} is not a d-factor, for any d
3) \mathcal{C} contains $x \cdot y^{\omega-1} \cdot z$

Tractability within Block-groups? (3)

Theorem. If S is a nilpotent group and \mathcal{C} a nontrivial, idempotent clone of polynomials over S, then the following are equivalent:

1) \mathcal{C} is tractable
2) \mathcal{C} is not a d-factor, for any d
3) \mathcal{C} contains a Malt'sev operation

Summary

6 Polynomials over semigroups are a natural way of computing k-ary functions
The polynomial $x y^{\omega-1} z$ over block-groups is sufficient for tractability; this unifies two existing results: coset-generating and block-group product

- It is also necessary for tractability of commutative clones of polynomials
© Conjecture: Its generalization, Malt'sev, is necessary over clones polynomials over groups

