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Setting

Finite domain D

Finite set of relations Γ over D

CSP(Γ) : Constraint Satisfaction Problems with
relations from Γ
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Setting

Finite domain D

Finite set of relations Γ over D

CSP(Γ) : Constraint Satisfaction Problems with
relations from Γ

Question:

For which Γ is CSP(Γ) solvable in polynomial time?

Or: Find conditions on Γ which imply (in)tractability
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The Algebraic Approach

A relation R is closed under function f if

T1, . . . , Tk ∈ R −→ f(T1, . . . , Tk) ∈ R

Fact. [Jeavons98]

The complexity of CSP(Γ) is completely determined by
the set of functions f that close all relations in Γ

Several large classes of tractable Γ have been described in
terms of “closure properties”

Tractable Clones of Polynomials over Semigroups, CP’05 – p. 3/15



Some Tractable Operations

Near-Unanimity [JCG97]

Coset-Generating [FV93,JCG97]

Semilattices [JCG97]
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Some Tractable Operations

Near-Unanimity [JCG97]

Coset-Generating [FV93,JCG97]

Semilattices [JCG97]

Malt’sev [Bulatov02]

GMM [Dalmau05]

Block-group product [BJV02]
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Some Tractable Operations (2)

Coset-generating op.:
(D, ·) a group, Γ closed under x · y−1 · z

Semilattice op.:
(D, ·) a semilattice, Γ closed under x · y
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Some Tractable Operations (2)

Coset-generating op.:
(D, ·) a group, Γ closed under x · y−1 · z

Semilattice op.:
(D, ·) a semilattice, Γ closed under x · y

Block-group op.:
(D, ·) a block-group, Γ closed under x · y

Note: Closure under x · y implies closure under x · y−1 · z
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Some Tractable Operations (2)

Coset-generating op.:
(D, ·) a group, Γ closed under x · y−1 · z

Semilattice op.:
(D, ·) a semilattice, Γ closed under x · y

Block-group op.:
(D, ·) a block-group, Γ closed under x · y

Theorem. If (D, ·) is a block-group and Γ is closed under
x · yω−1 · z, then CSP(Γ) is tractable.
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A Unifying Result

Theorem. If (D, ·) is a block-group and Γ is closed under
x · yω−1 · z then CSP(Γ) is tractable.

ω: minimum such that (xω)2 = xω

Block group: Satisfies (xωyω)ω = (yωxω)ω
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A Unifying Result

Theorem. If (D, ·) is a block-group and Γ is closed under
x · yω−1 · z then CSP(Γ) is tractable.

Proof idea:

Apply first Arc-Consistency, as for semilattices.
This places every variable in one of the groups in (D, ·)

Then apply the coset-generating technique within each
group

Both techniques will not interfere in block-groups
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Polynomials

Observation:

In the boolean domain, our algorithm solves instances
containing e.g. (only) Horn clauses or (only) linear
equations.

In larger domains, it solves problems that “decompose” as
Horn then linear equations.
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Polynomials

Why only x · y or x · yω−1 · z?

Polynomial: an expression of the form

xn1

i1
· xn2

i2
· . . . · xnm

im

Interpret · is as product over a semigroup S = (D, ·).
Then the polynomial computes a function.

Pol(Γ) = set of functions that close all relations in Γ

Study CSP(Γ) when Pol(Γ) is a “clone of polynomials”
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Why Study Polynomials?

They alone explain several of the known tractable
cases

Based on semigroup operations . . .

. . . and we have fine tools for decomposing / analyzing
semigroups

May indicate more ways to combine existing tractability
paradigms
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Intractable Clones of Polynomials

A condition on the semigroup:

Theorem. If S is not a block-group, then every clone of
polynomials over S is NP-complete.

A condition on the clone:

Theorem. If a clone of polynomials C is a d-factor then C is
NP-complete.
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d-factors

η subgroup exponent of S, d > 1, d | η | ω
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d-factors

η subgroup exponent of S, d > 1, d | η | ω

xn1

i1
· xn2

i2
· . . . · xnm

im
is a d-factor iff all ni but one are

multiples of d
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xn1

i1
· xn2

i2
· . . . · xnm

im
is a d-factor iff all ni but one are

multiples of d

E.g., not like xyω−1z
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d-factors

η subgroup exponent of S, d > 1, d | η | ω

xn1

i1
· xn2

i2
· . . . · xnm

im
is a d-factor iff all ni but one are

multiples of d

E.g., not like xyω−1z

Condition preserved by composition and variable
identification
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d-factors

η subgroup exponent of S, d > 1, d | η | ω

xn1

i1
· xn2

i2
· . . . · xnm

im
is a d-factor iff all ni but one are

multiples of d

E.g., not like xyω−1z

Condition preserved by composition and variable
identification

Implies that there is a “hard” subuniverse of D
preserved by C, hence NP-completeness
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Tractability within Block-groups?

C clone of polynomials over a block-group

“C not a d-factor” necessary condition for tractability

For some block-groups, it is also sufficient:

Commutative semigroups

Nilpotent groups

Tractable Clones of Polynomials over Semigroups, CP’05 – p. 12/15



Tractability within Block-groups? (2)

Theorem. If S is a commutative semigroup and C a
nontrivial, idempotent clone of polynomials over S, then the
following are equivalent:

1) C is tractable

2) C is not a d-factor, for any d

3) C contains x · yω−1 · z
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Tractability within Block-groups? (3)

Theorem. If S is a nilpotent group and C a nontrivial,
idempotent clone of polynomials over S, then the following
are equivalent:

1) C is tractable

2) C is not a d-factor, for any d

3) C contains a Malt’sev operation
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Summary

Polynomials over semigroups are a natural way of
computing k-ary functions

The polynomial xyω−1z over block-groups is sufficient
for tractability; this unifies two existing results:
coset-generating and block-group product

It is also necessary for tractability of commutative
clones of polynomials

Conjecture: Its generalization, Malt’sev, is necessary
over clones polynomials over groups
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