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Frequent Itemset Mining

The model
@ Fix a set of possible items
@ An itemset is a set of items

@ A sequence of itemsets is a transaction database

The frequent itemset mining problem

Given a transaction database, find all the itemsets appearing (as a subset
of) at least x% of transactions

E.g. In a supermarket, bread, butter, and jam often bought together
x% = minimum support
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Formal Definition

Transaction database D:

trans. 1D
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o Let 7 be the set of items and 7 be the set of
transactions.

@ Aset X ={Xi,...,Xp}, X CZis called an
itemset.

@ The fraction of transactions in D that contain
X is called its support.

support(ab)=4/6, support(bcd)=2/6
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Examples of Application

Market Basket Analysis: Placement in shelves, pricing policies
Click-streams in web pages
Credit card bank fraud detection

Real-time failure detection in sensor networks
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On Data Stream Mining

Data arrive as a stream of itemsets at high speed
Can't store all of it, not even in secondary memory
Each itemset can be processed once

Needs to provide accurate answers at all times

Data distribution evolves over time: Concept drift

Mined itemsets must be created, revised, possibly dropped
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Goal of this project

A robust, efficient algorithm for frequent itemset mining on streams

@ Publicly available
@ Usable for practical applications

@ Reference for future research
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Massive Online Analysis (MOA)

Open-source environment for stream mining
http://moa.cms.waikato.ac.nz/

@ Closely related to WEKA, also by U. of Waikato, New Zealand
Java for portability and extendability
Command line, GUI, and API interfaces

o
o
@ Several classification and clustering algorithms over data streams
o

No frequent pattern mining capabilities
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.
Frequent Closed ltemsets

Definition A frequent itemset X is closed if it has no frequent superset

with the same support.

For example, for minsupp = 3/6,

trans. 1D

items

1
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abde
bce @ abde is a frequent closed itemset (support = 3)
abde
abce
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@ abd is frequent, but not closed (abde has the
same support)
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Mining Frequent Closed Itemsets

Closed itemsets are a complete and non-redundant representation

Compact representation
Reconstruct the support information of every itemset (also frequent)

Less itemsets in output

Save memory and computations in Frequent ltemset mining!!!
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Algorithms considered

Restricted to frequent closed itemset stream miners

Exact MOMENT [Chi+ 06], NEWMOMENT [Li+ 09],
CLOSTREAM [Yen+ 11]

High computational cost for exactness

Approximate IncMine [Cheng+ 08], CLAIM [Song+ 07]

Maybe more efficient at the expense of false positives and/or
negatives
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The IncMine Algorithm [Cheng,Ke,Ng 08]

Delete oldest segment

Insert new segment

I Snm

[ ¥

Some features:

@ Approximate algorithm, controlled by relaxation parameter
@ Drops non-promising itemsets: may have false negatives

@ Inverted FCI index to keep updated itemsets within window

Se

@ Requires a batch method for finding FCI in new batch
— we chose CHARM [Zaki+ 02]
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Accuracy

Precision and recall w.r.t. exact ECLAT [Zaki 00]
T40I10D100K dataset. Sliding window of size 10 x and 500 trans./batch
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Figure: Fixed minsupp. Variable Figure: Variable minsupp. Fixed
relaxation rate relaxation rate
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Throughput

Average number of transactions processed per second
IncMine (Java) is compared with MOMENT(C++)

Figure: Fixed minsupp. Variable Figure: Variable minsupp. Fixed
relaxation rate relaxation rate
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Memory usage

@ Average memory consumption of the JVM

intensive task

Garbage collector skews results (no comparison with MOMENT)
Lower minsupp, higher memory usage

Larger window size, higher memory usage

o | Total Memory Usage(MB) | Data Structures Size(MB)
0.02 225.2 23.1
0.04 226.6 3.1
0.06 217.8 0.9
0.08 198.3 0.5
0.10 187.2 0.3
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Concept Drift

Concept Quantity we are going to mine (target variable)

Drift Change over time in unforeseen ways

Usually concept drifts are classified in:
@ Sudden, or abrupt, drifts
o Gradual drifts
Drift detected monitoring:
@ The total number of frequent itemsets (in synthetic data streams)

@ The number of added/removed frequent itemsets (in real data
streams)
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Introducing Concept Drift

Given two concepts (streams), to introduce the drift we use a sigmoid
probability function.

f(t)

Figure: f(t) = 1/(1 4 e—s(t=%))

Probability that a new instance of the stream belongs to the second
concept.

@ tp is the point of change

@ s =4/L, where L is the length of the change
Frequent Itemset Mining in MOA CCIA 2013, Vic, oct. 24th 16 / 23



]
Reaction to Sudden Drift

T40I10kD1MP6 drifts to TS50I10kD1MP6CO5 dataset (Zaki's IBM Datagen
Software).
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@ Reaction time grows linearly with window size
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Reaction to Gradual Drift

2000
1800 J
1800 8 =
o
1400
H
2 1200
H J‘ JL*LW.«G it
% st ol WinSize = 20
s 10007 WinSize = 50
z WinSize = 100
% so0-
£
E
500
400
200
T T T T T 1
7.0e+005 7524005 8.02+005 8.56+005 0.0£+005 9524005 1.02+008

Transaction Number

@ Fast reaction with small windows
@ Stable response with big windows
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Analyzing MOVIELENS (1)

About 10 million ratings over 10681 movies by 71567 users
e Static data set for movie rating (from 29 Jan 1996 to 15 Aug 2007)
@ Movies grouped by rating time (every 5 minutes)
@ Transactions passed in ascending time to create a stream
@ Stream of 620,000 transactions with average length 10.4
Results:
@ Evolution of popular movies over time

@ Unnoticed with static dataset analysis
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Analyzing MOVIELENS (1)

date Frequent Itemsets
16 Jul 2001 Lord of the Rings: The Fellowship of the Ring, The (2001); Beautiful Mind, A (2001).
Harry Potter and the Sorcerer’s Stone (2001); Lord of the Rings: The Fellowship of the Ring, The (2001).
23 Jul 2002 Spider-Man (2002); Star Wars: Episode Il - Attack of the Clones (2002).
Bourne Identity, The (2002); Minority Report (2002).
29 Dec 2002 Lord of the Rings: The Fellowship of the Ring, The (2001); Lord of the Rings: The Two Towers, The
(2002).
Minority Report (2002); Signs (2002).
15 Jul 2003 Lord of the Rings: The Fellowship of the Ring, The (2001); Lord of the Rings: The Two Towers, The

(2002).

Lord of the Rings: The Two Towers, The (2002); Pirates of the Caribbean: The Curse of the Black Pearl
(2003).
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N —
Conclusions

Perfect integration with MOA
Good accuracies and performances compared with MOMENT
Good throughput and reasonable memory consumption

Good adaptivity to concept drift

Usable in real contexts
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Future Works

@ Bypass memory consumption of frequent closed itemset batch mining
@ Self-adaption: a general problem in Data Mining
o ADWIN [Bifet 07] to control window size
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