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Abstract We review methods for inference of probability distributions generated
by probabilistic automata and related models for sequence generation. We focus
on methods that can be proved to learn in the inference in the limit and PAC for-
mal models. The methods we review are state merging and state splitting methods
for probabilistic deterministic automata and the recently developed spectral method
for nondeterministic probabilistic automata. In both cases, we derive them from a
high-level algorithm described in terms of the Hankel matrix of the distribution to
be learned, given as an oracle, and then describing how to adapt that algorithm to
account for the error introduced by a finite sample.

1 Introduction

Finite state machines in their many variants are acceptedly one of the most useful
and used modeling formalisms for sequential processes. One of the reasons is their
versatility: They may be deterministic, nondeterministic, or probabilistic, they may
have observable or hidden states, and they may be acceptors, transducers, or gen-
erators. Additionally, many algorithmic problems (determinization, minimization,
equivalence, set-theoretic or linear-algebraic operations, etc.) are often computa-
tionally feasible for these models.

Learning from samples or observations of their behavior is one of the most im-
portant associated problems, both theoretically and practically, since good methods
for the task offer a competitive alternative to expensive modeling by experts. It has
been intensely studied in various communities, and particularly in the grammatical
inference one. Here we concentrate on learning probabilistic finite automata that
generate probabilistic distributions over strings, where more precisely the task is to
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come up with a device generating a similar distribution. We focus on two formal
models of learning (the identification in the limit paradigm and the PAC learning
models) rather than on heuristics, practical issues, and applications.

The main goal of the chapter is to survey known results and to connect the re-
search on merging/splitting methods, mainly by the grammatical inference commu-
nity, with the recently proposed methods collectively known as “spectral methods”.
The latter have emerged from several communities who present them in very differ-
ent lights, for example as instances of the method of moments, of principal compo-
nent analysis methods, of tensor-based subspace learning, etc. Our goal is to present
it as emerging as a relatively natural extension of the work on automata induction
that starts with Angluin’s L? method [3] for DFA and continues with the work by
Beimel et al. [11] on learning multiplicity automata from queries. The Hankel ma-
trix representation of functions and the generalization from probabilistic automata
to weighted automata are essential ideas here.

The chapter is organized as follows. Section 2 presents the preliminaries on lan-
guages, probability, finite-state machines, and learning models.

Section 3 surveys the existing results on identification-in-the-limit and PAC
learning. We discuss the evidence pointing to the hardness of PAC learning proba-
bilistic automata when the only measures of complexity of the target machine are
the number of states and alphabet size. We then indicate how PAC learning becomes
feasible if other measures of complexity are taken into account.

Section 4 introduces the two main notions on which we base the rest of our ex-
position: the Hankel matrix of a function from strings to real values, and weighted
automata, which generalize DFA and probabilistic automata. We present three re-
sults that link automata size and properties of the Hankel matrix: the well-known
Myhil-Nerode theorem for DFA; a theorem originally due to Schützenberger and
rediscovered several times linking weighted automata size and rank (in the linear
algebraic sense) of the Hankel matrix; and a similar characterization of the size of
deterministic weighted automata in terms of the Hankel matrix, which we have not
seen stated so far - although it may be known.

Section 5 presents a high-level algorithm for learning probabilistic deterministic
finite automata using the Hankel matrix which distills the reasoning behind many
of the state merging/splitting methods described in the literature. We then present
(variants of) the ALERGIA method [13, 14] and of the method by Clark and Thol-
lard [16] building on this formulation; additionally, we describe them using a re-
cently introduced notion of statistical query learning for distributions, which we
believe makes for a clearer presentation.

Section 6, in analogy with the previous one, presents a high-level algorithm for
learning weighted automata using the Hankel matrix. We then derive a formulation
of the spectral method as a way of dealing with the effect of finite size samples
in that high-level algorithm. We also discuss a few optimizations and extensions in
recent woks in Section 6.3.

Finally, Section 7 mentions a few open questions for further research. In an
Appendix we describe the well-known Baum-Welch heuristics for learning HMM.
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Even though it does not fit into the formal models we discuss, the comparison with
the other methods presented is interesting.

Since the literature in this topic is large, we have surely omitted many relevant
references, either involuntarily or because they were out of our focus (rigorous re-
sults in formal models of learning). For example, recent works using Bayesian ap-
proaches to learning finite automata have not been covered because, while promis-
ing, seem still far from providing formal guarantees. We have also omitted most
references to probability smoothing, a most essential ingredient in any implemen-
tation of such methods; information on smoothing for automata inference can be
found in [16, 23, 36, 42].

The reader is referred to the surveys by Vidal et al. [45, 46], Dupont et al. [24],
and the book by de la Higuera [18] for background on the models and results by
the grammatical inference community. A good source of information about spectral
learning of automata is the thesis of B. Balle [17] and the paper [9]. The 2012
and 2013 editions of the NIPS conference hosted workshops dedicated to spectral
learning, including but more general than automata learning.

2 Preliminaries

We denote by Σ ? the set of all strings over a finite alphabet Σ . Elements of Σ ? will be
called strings or words. Given x,y ∈ Σ ? we will write xy to denote the concatenation
of both strings. We use λ to denote the empty string which satisfies λx = xλ = x
for all x ∈ Σ ?. The length of x ∈ Σ ? is denoted by |x|. The empty string is the only
string with |λ |= 0. We denote by Σ t the set of strings of length t. A prefix of a string
x∈ Σ ? is a string u such that there exists another string v such that x = uv. String v is
a suffix of x. Hence e.g. uΣ ? is the set of all strings having u as a prefix. A subset X
of Σ ? is prefix-free whenever for all x ∈ X , if y is a prefix of x and y ∈ X then y = x.

Several measures of divergence between probability distributions are considered.
Let D1 and D2 be distributions over Σ ?. The Kullback–Leibler (KL) divergence or
relative entropy is defined as

KL(D1‖D2) = ∑
x∈Σ?

D1(x) log
D1(x)
D2(x)

,

where the logarithm is taken to base 2 and by definition log(0/0) = 0.
The total variation distance is L1(D1,D2) = ∑x∈Σ? |D1(x)−D2(x)|. The supre-

mum distance is L∞(D1,D2) = maxx∈Σ? |D1(x)−D2(x)|. While KL is neither sym-
metric nor satisfies the triangle inequality, measures L1 and L∞ are true distances.
We recall Pinsker’s inequality, L1 ≤

√
2KL, bounding the total variation distance in

terms of the relative entropy. Thus, as L1 obviously upperbounds L∞, the relative
entropy is, up to a factor, the most sensitive divergence measure among the ones
considered here to distribution perturbations, and convergence criteria based on the
KL value are most demanding.
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Frequently, machine descriptions are provided in terms of vectors and matrices
of real numbers and computations are defined by matrix products. We use square
brackets to denote an specific component of a vector or matrix. For instance, com-
ponent j of vector α is α[ j]. Row x of a matrix T is denoted by T [x, :] and column y
is T [:,y]. Vectors are always assumed to be columns. If α is a vector, a row vector αT

is obtained by transposing α .

2.1 Learning Distributions in the PAC Framework

We introduce the PAC model for learning distributions, an adaptation of Valiant’s
PAC model for concept (function) learning [44]. Let D be a class of distributions
over some fixed set X . Assume D is equipped with some measure of complexity as-
signing a positive number |D| to any D ∈D . We say that an algorithm A PAC learns
a class of distributions D using S(·) examples and time T (·) if, for all 0 < ε,δ < 1
and D ∈D , with probability at least 1−δ , the algorithm reads S(1/ε,1/δ , |D|) ex-
amples drawn i.i.d. from D and after T (1/ε,1/δ , |D|) steps outputs a hypothesis D̂
such that L1(D, D̂)≤ ε . The probability is over the sample used by A and any inter-
nal randomization. As usual, PAC learners are considered efficient if the functions
S(·) and T (·) are polynomial in all of their parameters.

Sometimes we will consider the relative entropy instead of the variation distance
as a measure of divergence, which creates a different learning problem. Which spe-
cific measure we are considering in each PAC result will be clear from the context.
Although the majority of PAC statements in the chapter are provided for L1 all of
them can be also shown for the KL divergence measure, at the cost of longer proofs.
As the main proof ideas are the same for both measures, we have chosen mainly L1
versions for simplicity.

Concerning the measure of complexity of distributions, standard practice is to fix
a formalism for representing distributions, such as finite-state machines, and then
consider the smallest, in some sense, representation of a given distribution in that
formalism (usually exactly, but possibly approximately). In the case of finite-state
machines, a seemingly reasonable measure of “size” is the number states times the
number of alphabet symbols, as that roughly measures the size of the transition ta-
ble, hence of the automaton description. A first objection is that transition tables
contain numbers, so this notion does not match well the more customary notion of
bit-length complexity. One could refine the measure by assuming rational proba-
bilities (who have reasonable bit-length complexity measures) or by truncating the
probabilities to a number of digits that does not distort the probability distribution
by more than about ε . We will see however that number of states and symbols alone
do not fully determine the learning complexity of probabilistic finite-state machines,
and that the bit-length of the probabilities seems irrelevant. This will motivate the
(non-standard) introduction of further complexity parameters, some defined in terms
of the finite-state machine, and some in terms of the distribution itself.
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2.2 Identification in the Limit Paradigm

An alternative framework for learning distributions is the identification in the limit
paradigm, originally introduced by Gold [27] for the setting of language learning.
Later, the model was adapted in [19] to the learning distributions scenario. Basi-
cally, the model demands that with probability 1, given an infinite sample from the
target, the learning algorithm with input the first m examples of the sample exactly
identifies the target distribution when m is large enough. We consider here a slightly
weaker definition, mainly because we consider state machines defined on real num-
bers instead of rational ones as in [19].

As before, let D be a class of distributions. We say that an algorithm A identifies
in the limit a class of distributions D if for all 0 < ε < 1 and D∈D , given an infinite
sample x1,x2, . . . of D

1. With probability 1, there exists m0(ε) such that for all m ≥ m0(ε) algorithm A
with input x1, . . . ,xm outputs a hypothesis D̂ such that L1(D, D̂)≤ ε .

2. A runs in polynomial time in its input size.

It is easy to check that any PAC learning algorithm also achieves identification in
the limit: Assume that identification in the limit does not occur. We have that with
probability δ > 0, there are arbitrarily large values m such that A with input x1, . . .xm
outputs a hypothesis D̂ such that L1(D, D̂)> ε . This implies that PAC learning does
not hold.

2.3 Probabilistic Automata

A probabilistic finite automaton (pfa) of size n is a tuple 〈Q,Σ ,τ,α0,α∞〉 where
Q is a set of n states, Σ is a finite alphabet, τ : Q× Σ ×Q → [0,1] is the tran-
sition probability function and α0 and α∞ are respectively [0,1]n vectors of ini-
tial and final probabilities. We require that ∑i∈Q α0[i] = 1 and, for every state i,
α∞[i] +∑a∈Σ , j∈Q τ(i,a, j) = 1. States i such that α0[i] > 0 (α∞[i] > 0) are initial
(final) sates. To each pfa D corresponds an underlying non-deterministic finite au-
tomaton (nfa) called the support of D, defined as 〈Q,Σ ,δ ,QI ,QF〉 where QI and QF
are respectively the set of initial and final states, and transition function δ is defined
as δ (i,a) = { j|τ(i,a, j)> 0}.

The transition probability function of a pfa D can be extended to strings in Σ ?.
Given x ∈ Σ ?, we define τ(i,xa, j) = ∑k∈Q τ(i,x,k)τ(k,a, j) and τ(i,λ , j) = 1 if
i = j and 0 otherwise. A probability mass can be assigned to words in Σ defining:

D(x) = ∑
i∈QI , j∈QF

α0[i]τ(i,x, j)α∞[ j].

Defining transition matrices Ta for each a ∈ Σ as Ta[i, j] = τ(i,a, j) and provided
x = x1 . . .xm where xt ∈ Σ for t = 1 . . .m, a more convenient expression in terms of
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matrix products for the probability mass of x is

D(x) = α
T
0 Tx1 · · ·Txmα∞

that we write in short by αT
0 Txα∞. Note that transition matrices are square |Q|× |Q|

and define the transition function. So, an alternative tuple description for a pfa D in
terms of transition matrices is 〈Σ ,{Ta}a∈Σ ,α0,α∞〉.

The probability mass induced by D defines a semi-distribution in Σ ?: it satisfies
0 ≤ ∑x∈Σ? D(x) ≤ 1. Whenever from every state i there is non-zero probability of
reaching a final state, D defines a true probability distribution, i.e. ∑x∈Σ? D(x) =
1. In the rest of the chapter we will consider only pfas defining true probability
functions. More generally, every state i of a pfa D defines a probability distribution
Di(x) = γT

i Txα∞ where γi is the i-indicator vector γi[ j] = 1 if i = j and 0 otherwise.
We have D(x) = ∑i∈Q α0[i]Di[x].

2.4 Probabilistic Deterministic Automata and Distinguishability

A probabilistic deterministic finite automaton (pdfa for short) is a pfa whose support
is a deterministic finite automaton (dfa). We note that for a pdfa we can assume
without loss of generality — in short, w.l.o.g.— that the initial probability vector
αT

0 is (1,0,0,. . . ,0) and each row of each transition matrix Ta has at most one non-
zero component.

It is known [24] that pfa cannot exactly compute all probability distributions
over Σ ?, and that there are pfa computing distributions that cannot be exactly com-
puted by any pdfa. That is, pfa are strictly more expressive than pdfa.

The following parameter will be useful to measure the complexity of learning a
particular pdfa. It appears in [16] as defined here, although a similar idea is implicit
in [36].

Definition 1. We say that distributions D1 and D2 are µ-distinguishable if µ ≤
L∞(D1,D2). A pdfa D is µ-distinguishable when for each pair of states i and j
their corresponding distributions Di and D j are µ-distinguishable. The distinguisha-
bility of a pdfa is defined as the supremum over all µ for which the pdfa is µ-
distinguishable.

The distinguishability parameter can sometimes be exponentially small in the
number of states. There exists reasonable evidence suggesting that polynomially
learnability of pdfa in the number of states alone may not be achievable [30, 41].
However, PAC results have been obtained [16] when the inverse of distinguishability
of the target is also considered, as we will see. We will also discuss parameters that
play similar roles in pfa learning.
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2.5 Hidden Markov Models

Hidden Markov models HMM are representations of choice for Markovian stochas-
tic processes whose latent states are non-observable but their effects are. Visible
effects are the observations arising from the process.

There are several formal definitions for HMM in the literature, but all of them are
equivalent up to a polynomially transformation [24]. Often, observations in HMM
are associated to states rather than transitions but for simplicity, we choose a defini-
tion closest to that of pfa. An HMM is a tuple 〈Q,Σ ,τ,α0〉 where the four parame-
ters have the same meaning that in the pfa definition. For any state i, it always holds
∑a∈Σ , j∈Q τ(i,a, j) = 1. Thus, one can see a HMM as a pfa having no stopping prob-
abilities, i.e. as an infinite duration process. Transition probability matrices {Ta}a∈Σ

are defined as in the pfa case, i. e. Ta[i, j] = τ(i,a, j).
An HMM defines, for each integer t ≥ 0, a probability distribution on Σ t . The

probability mass assigned to string x = x1 . . .xt is αT
0 Tx1 · · ·Txt 1 where 1 is the all-

ones vector. This is the probability that the machine generates an infinite string of
observations whose length-t prefix is x.

2.6 Weighted Automata

Weighted automata (wa) are the most general class of finite state machines we con-
sider. They encompass all the models we have introduced before. A weighted au-
tomaton T over Σ with n states is a tuple 〈Σ ,{Ta}a∈Σ ,α0,α∞〉 where Ta ∈ Rn×n

and α0 and α∞ are vectors in Rn. To each weighted automaton T corresponds a
real-valued function defined on Σ ?. Given x = x1 . . .xm ∈ Σ ?:

fT (x) = α
T
0 Tx1 · · ·Txmα∞ = α

T
0 Txα∞.

We note that wa can be defined over semirings other than the real numbers, but
whether wa are learnable (in any particular learning model) strongly depends on the
semiring. For example, the high-level algorithms for real-valued wa that we present
in Sections 5.1 and 6.1 work in fact on any field, including finite fields. On the other
hand, wa over the boolean semiring (∨,∧,0,1) are at least as expressive as DNF
formulas, whose learnability in the PAC [44] or query [3] concept learning models
are major open problems in computational learning theory.

A weighted automaton is deterministic (in short, a dwa) when rows of its transi-
tion matrices have at most one nonzero value and its initial vector αT

0 is (1,0, . . . ,0).
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3 A Panoramic View of Known Results

Around 1970, Baum and Welch described a practical heuristic for learning Hidden
Markov Models generating infinite sequences; their properties were studied in [10],
where it was shown to perform hill-climbing with respect to maximum likelihood.
As such, it cannot be shown to learn in either of the two models we have presented
(identification in the limit and PAC) but, even today, it is possibly the most used
method in practice. Although it is described in many sources, we state it in our for-
malism in the Appendix for completeness and for comparison to the other methods
we review.

Rudich [37] was, to our knowledge, the first to prove that Hidden Markov Models
generating infinite sequences are identifiable in the limit. His method seems far from
the PAC criterion in the sense that not only there are no bounds on the the error
on a finite sample, but even processing each observation involves cycling over all
exponentially many possible state structures, hence is very inefficient.

A decade later, Carrasco and Oncina [13, 14] described ALERGIA, a practical
method for learning pdfa generating distributions on Σ ?. We will describe a slight
variant of ALERGIA which we name the Red-Blue algorithm in Section 5.2.1.
ALERGIA has been highly influential in the grammatical inference community.
Some of the (many) works that build on the ideas of ALERGIA to learn pdfa are Sec-
tion [20, 43, 31]. All these algorithms are efficient in the sense that they work in time
polynomial in the size of the sample, although no bounds are given on the number
of samples required to reach convergence up to some ε . Apparently independently,
[39] proposes the Causal State Splitting Reconstruction algorithm (CSSR) for infer-
ring the structure of deterministic Hidden Markov Models. Although the underlying
ideas are similar, their work differs in that the input consists of a single biinfinite
string, not a sample of finite strings.

Still in the paradigm of identification in the limit, we mention the work by Denis
and Esposito [21] who learn Residual Automata, a class strictly more powerful than
pdfa but less than general pfa.

If we move to the PAC paradigm, the first result to mention on learning pfa is
that of Abe and Warmuth [1], who show that they are PAC learnable in polynomial
space. The method essentially iterates over all (exponentially many) state structures
with a hypothesized number of states n, fitting probabilities in each according to the
sample, and producing the one which assigns maximum likelihood to the sample.
It can be shown that, for a sample of size polynomial in n, |Σ |, 1/ε , and log(1/δ ),
this hypothesis satisfies the PAC criterion of learning. The difficulty of learning pfa
is thus computation, not information.

The same paper [1] shows that it is NP-complete to PAC learn pfa when the
size of the alphabet Σ is unbounded, which in effect implies that all methods will
require time exponential in |Σ |. Kearns et al. [30] showed that the problem may be
hard even for 2-letter alphabets. They show that learning pdfa generalizes the noisy
parity learning problem, which has received a fair amount of attention and for which
all algorithms known so far take exponential time. Furthermore, only a small set of
simple probabilities are required in the reduction (say, {i/8 | i = 0 . . .8}). Terwijn
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[41] showed that indeed the problems of learning HMM and acyclic pdfa are hard
under plausible cryptographic assumptions.

The previous results paint a rather discouraging panorama with respect to PAC
learning of pfa and even pdfa. But note that, critically, these negative results all
imply the hardness when the complexity of the target distribution (hence, the poly-
nomiality of the PAC model) is defined to be number of states times alphabet size
for the smallest machine generating it. A line of research starting in [36] aims at
giving positive results by using other measures of complexity, in particular taking
other parameters of the distribution that may not even be directly observable from
a generating machine. Alternatively, one can view this line of research as design-
ing sensible algorithms for learning pdfa/pfa, then analyzing their running time in
search of the relevant features of the target distribution, instead of deciding, a priori,
what the bounds on the running time should look like.

To be precise, Ron et al. [36] gave an algorithm for learning acyclic pdfa that can
be shown to PAC learn with respect to the KL-divergence in time and sample size
polynomial in the inverse of the distinguishability of the target machine, besides the
usual parameters.

Later, Clark and Thollard [16] extended the result to cyclic automata; they intro-
duce an additional dependence on the expected length of the strings in the distri-
bution, L. We will describe the Clark-Thollard algorithm in detail in Section 5.2.2,
under the name of Safe-Candidate algorithm.

Extensions and variants of the Clark-Thollard algorithm include the following.
Palmer and Goldberg [35] show that the dependence on L can be removed if learning
only w.r.t. the L1 distance is required. In another direction, Guttman et al. [28] show
that PAC learning is still possible in terms of L2-distinguishability, which is more re-
strictive that the L∞-distinguishability we use here. The variations presented in [26]
and [15], while retaining the PAC guarantees, aim at being more efficient in practice.
In [5] the algorithm is extended to machines whose transitions have random dura-
tions, determined by associated probability distribution that must be learned too.
In [7], the algorithm is transported to the so-called data stream paradigm, where
data (strings) arrive in sequence and the algorithm is required to use sublinear mem-
ory and low time per item.

In substantial breakthroughs, Mossel and Roch [33], Denis et al. [22], Hsu et
al. [29], and Bailly et al. [4] gave algorithms having formal proofs of PAC learning
the full class of pfa. The sample size and running times of the algorithms depend
polynomially in the inverse of some quantity of a spectral flavor associated to the
Hankel matrix of the target distribution. This is, for example, the determinant in [33]
and the inverse of its n-th singular value in [29]. Denis et al. [22] do not explicitly
state a PAC learning result, but in our opinion they refrain from doing so only be-
cause they lack a proper name for the feature of the distribution that determines their
algorithms’ running time.
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4 The Hankel Matrix Approach

In this section we review the notion of Hankel matrix and weighted automata, which
will be the main tools for describing generic methods for learning pdfa and pfa.

The Hankel matrix [25] H f of a function f : Σ ?→ R is a matrix representation
of f in RΣ?×Σ?

defined as:

H f [x,y] = f (xy),∀x,y ∈ Σ
?.

Despite the fact that the Hankel matrix H f is a very redundant representation —
value f (z) is represented |z|+1 times—, the computability of f by finite state ma-
chines is determined by algebraic properties of H f .

Assume function f is a language, i.e. f : Σ ?→{0,1}. For each x∈ Σ we consider
the subset x−1 f = {y ∈ Σ ?| f (xy) = 1}. The well-known Myhill-Nerode theorem
claims that f is a regular language if and only if there are only a finite number of
different sets x−1 f when x varies on Σ ?. The number of different sets x−1 f also
determines the minimum dfa size required for computing f . Thus, translating this
theorem in terms of the Hankel matrix, we have:

Theorem 1. Function f : Σ ? → {0,1} is regular if and only if the Hankel matrix
H f has a finite number n of different rows. Moreover, the minimum size of a dfa
computing f is n.

A similar characterization can be shown for functions on Σ ?. Given a function
f : Σ ?→R, an equivalence relation on Σ ? can be defined as follows. Words x and y
are related —written x∼ f y— iff their corresponding rows in the Hankel matrix H f
are the same up to an nonzero scalar factor, i.e. H f [x, :] = cx,y H f [y, :] for some scalar
cx,y 6= 0. Let Σ ?/ ∼ f be the quotient set. When matrix H f has an identically zero
row, this set has a class —the zero class— representing all zero rows. We propose
the following theorem that characterizes the computability of f by deterministic
weighted automata in terms of the cardinality of the quotient set.

Theorem 2. Let f : Σ ? → R be any function. There is a dwa computing f if and
only if the cardinality of Σ ?/ ∼ f is finite. Moreover, the minimum size of a dwa
computing f is the number n of nonzero classes in Σ ?/∼ f .

Proof. We shorten ∼ f to ∼ in this proof. We prove first the if part. Assume that
words x and y are ∼-related and let cx,y be a scalar such that H f [x, :] = cx,y H f [y, :].
It is easy to see that

1. the value of cx,y is uniquely determined except when x and y are in the zero class,
in which case we define cx,y as 0, and

2. for any strings x1,x2,x3,u,v, if x1u ∼ x2 and x2v ∼ x3, then x1uv ∼ x3 and
cx1uv,x3 = cx1u,x2cx2v,x3 .

The last property uses the redundancy of the Hankel matrix, namely, for every z,
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H f [x1uv,z] = f (x1u · vz) = cx1u,x2 f (x2 · vz) = cx1u,x2 f (x2v · z)
= cx1u,x2cx2v,x3 f (x3 · z) = cx1u,x2cx2v,x3H f [x3,z]

from where, by definition of ∼, it is x1uv∼ x3 with scalar cx1uv,x3 = cx1u,x2 cx2v,x3 .
Let x1, . . .xn be representatives of the n nonzero classes of Σ ?/ ∼. W.l.o.g we

assume n≥ 1 —otherwise f is the null function — and x1 = λ . We define for each
a ∈ Σ the transition matrix Ta ∈Rn×n as Ta[i, j] = cxia,x j if xia∼ x j and 0 otherwise.
It is immediate to see that every row of Ta has at most one nonzero value.

Let γi be the i-indicator vector, with γi[ j] = 1 if i = j and 0 otherwise. We show
by induction on |w| that for any word w we have

γ
T
i Tw =

{
0 if xiw is in the zero class
cxiw,x j γT

j for the j such that xiw∼ x j otherwise.

The equality is obvious for |w| = 0, since Tw is the identity. Let w = au for some
alphabet symbol a. We consider two cases. In the first one we assume xia belongs to
a nonzero class represented by xk. Observe that by definition of Ta we have γT

i Ta =
cxia,xk γT

k . Assuming xku belongs to a nonzero class represented by x j, we have

γ
T
i Tau = γ

T
i TaTu = cxia,xk γ

T
k Tu = cxia,xk cxku,x j γ

T
j .

where the last equality follows from the induction hypothesis. By property (2)
above, xiau∼ x j and cxiau,x j = cxia,xk cxku,x j as required. If xku is in the zero class, by
transitivity xiau also belongs to the zero class. By the induction hypothesis

γ
T
i Tau = γ

T
i TaTu = cxia,xk γ

T
k Tu = cxia,xk 0 = 0.

as required. This concludes the inductive claim in the first case. For the second one,
note that γT

i Ta is the zero vector and the claim is obvious.
Consider the dwa T with matrices Ta defined above, initial vector α0 = γ1 and

αT
∞ = ( f (x1), . . . , f (xn)). Then for any string w, if w∼ xk,

T (w) = α
T
0 Tw α∞ = γ

T
1 Tw α∞ = c

λw,xk γ
T
k α∞ = cw,xk f (xk),

and then we have

f (w) = H f [w,λ ] = cw,xk H f [xk,λ ] = cw,xk f (xk) = T (w).

We consider now the only if part. Let 〈{Ta}a∈Σ ,α0,α∞〉 be a dwa of size n com-
puting a function f . We say that a matrix is deterministic when all rows have at
most one nonzero value. We note that the product of deterministic matrices is also
deterministic. So, for any string x, matrix Tx is deterministic and αT

0 Tx must be ei-
ther cxγT

j for some nonzero scalar cx and integer j ∈ {1 . . .n} or the zero vector.
Let h be an integer function on Σ ? such that h(x) = j when αT

0 Tx = cxγT
j for some

nonzero scalar cx and h(x) = 0 when α0 Tx is the zero vector. Note that the cardinal-
ity of the range of h is at most n+1. We show that if h(x) = h(y) then rows x and y
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of the Hankel matrix H f are the same up to a nonzero factor. The result is obvious
when h(x) = h(y) = 0. Assume h(x) = h(y) = j > 0. For any string z,

H f [x,z] = α
T
0 Tx Tz α∞ = cxγ

T
j Tzα∞ = (cx/cy)cyγ

T
j Tzα∞

= (cx/cy)α
T
0 Ty Tz α∞ = (cx/cy)H f [y,z].

Thus, up to nonzero scalar factors, the Hankel matrix of f has at most n nonzero
rows. ut

As an example, consider Σ = {a} and function f defined on Σ ? having values
f (λ ) = 0 and f (ak) = 1/2k when k ≥ 1. It is easy to check that, up to nonzero
scalar factors, the Hankel matrix H f has only two different rows, (0,1/2,1/4, . . .)
and (1/2,1/4,1/8, . . .) corresponding, respectively, to words λ and a. Following the
proof of Theorem 2 the dwa defined by αT

0 = (1,0), αT
∞ = (0,1/2) and matrix Ta

having rows (0,1) and (0,1/2) computes function f .
Finally, the full class of weighted automata can be also characterized by an al-

gebraic parameter, in this case the number of linearly independent rows —i.e. the
rank— of the Hankel matrix. The characterization of weighted automata in terms of
the rank has been shown by several authors [11, 12, 25, 38]. We follow the exposi-
tion in [11].

Theorem 3. Let f : Σ ?→R be a function with Hankel matrix H f . Function f can be
computed by a weighted automaton if and only if the rank n of H f is finite. Moreover,
the minimum size of a wa computing f is n.

Proof. Only if. Let 〈{Ta}a∈Σ ,α0,α∞〉 be a weighted automaton of size n comput-
ing f . We define backward an forward matrices B ∈R∞×n and F ∈Rn×∞ with rows,
respectively columns, indexed by words in Σ ? as:

B[x, :] = α
T
0 Tx,

F [:,y] = Tyα∞.

From the fact that H f [x,y] = α0TxTyα∞ = B[x, :]F [: y] we conclude that H f = BF
and therefore rank(H f )≤ rank(F)≤ n.

For the if part let x1, . . . ,xn be words in Σ ? indexing n linearly independent rows
of H f . W.l.o.g. we can assume x1 = λ , as otherwise f is the null function. We
consider the weighted automaton of size n defined by vectors αT

0 = (1,0, . . . ,0),
αT

∞ = ( f (x1), . . . , f (xn)) and transition matrices Ta ∈ Rn×n for a ∈ Σ with values
Ta[i, j] = ai

j satisfying:
H f [xia, :] = ∑

j
ai

jH f [x j, :].

These values exist because by hypothesis, H f is a rank n matrix and strings x j for
j = 1, . . . ,n are indexes of n linear independent rows.

We show that f (xiv) = γT
i Tvα∞ for i = 1, . . . ,n, where γi is the i-indicator vector.

Once the proof is completed, the if part of the theorem follows from considering
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the equality for i = 1. We induct on the length of v. When |v| = 0 the equality is
immediate. Assume v = au for some a ∈ Σ . We have:

f (xiv) = f (xiau) = H f [xia,u] = ∑
j

ai
jH f [x j,u] = ∑

j
ai

j f (x ju).

By induction hypothesis, f (x ju) = γT
j Tuα∞. Thus,

f (xiv) = ∑
j

ai
j(γ

T
j Tuα∞) = (∑

j
ai

jγ
T
j )Tuα∞ = (γT

i Ta)Tuα∞ = γ
T
i Tvα∞. ut

We remark that Theorems 2 and 3 work on any field, not just the real numbers. We
would like to see a derivation of Theorem 2 as a consequence of Theorem 3 plus the
assumption of determinism, instead of having to reprove it from scratch.

5 Learning PDFA

5.1 An Oracle Algorithm for Learning DWA

In this subsection we present a high-level algorithm for learning Deterministic
Weighted Automaton assuming that we have oracle access to the function f : Σ ?→
R. This model differs from the one considered so far for probabilistic automata in
that we receive the exact probabilities of strings instead of estimating them from
a sample, and that learning must be exact and not approximate. Furthermore, this
model allows discussing functions other than probability distributions, for which
estimating function values from samples does not even make sense, and even func-
tions mapping strings to finite fields. At the end of the subsection, we will discuss
how to turn this high-level algorithm into a sample-based one for the case of pfa,
and give specific (and more efficient) implementations in the following subsections.

The high-level algorithm is given in Figure 1. To clarify the implementation of
line 3, initially set X ′ = {λ} and repeatedly pick any z ∈ X −X ′ such that H[z, :]
differs from all H[x, :] with x ∈ X ′, while such a z exists, and add it to X ′. It is clear
that the final X ′ is as desired. It is also clear that, excluding the time required to
answer oracle queries, the algorithm runs polynomial time in |Σ | and the sum of the
lengths of strings in X and Y .

Following the proof of Theorem 2, it is now easy to prove that the algorithm is
correct if it is given “right” sets X and Y .

Theorem 4. If the cardinality of X ′ is at least the number of nonzero rows of H f up
to nonzero scalar factors, then the dwa generated by the algorithm computes f .

We do not discuss here the question of how to find suitable sets X , Y that provide
a large enough X ′ in the oracle model. We instead move to the problem of translat-
ing this algorithm to the setting in which f is a probability distribution and all the
information about f is given by some sample S, a multiset of strings.
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1. Choose any two finite sets X ,Y ⊆ Σ ? with λ ∈ X ∩Y , in some way not specified
by the algorithm;

2. Build the submatrix H = H f [X ∪XΣ ,Y ] of H f by asking oracle queries on f ;
3. Find a minimal X ′ ⊆ X such that λ ∈ X ′ and for every z ∈ X , H[z, :] is a multiple

of H[x, :] for x ∈ X ′;
4. Build a dwa from H, X , Y , X ′ as follows. Say X ′ = {x1 = λ ,x2, . . . ,xn}, then

α
T
0 = (1,0, . . . ,0)

α
T
∞ = ( f (x1), . . . , f (xn))

Ta[i, j] = v if H[xia, :] = vH[x j, :], and 0 otherwise;

Fig. 1 Learning dwa with an oracle

The obvious choice is to set X = prefixes(S), Y = suffixes(S), and then create
an approximation Ĥ of H by Ĥ[x,y] = empirical probability of xy in S. Note that
although X and Y are sets, the approximation Ĥ[x,y] is still computed taking into
account the possible repetitions of xy in the multiset S. Now, the question “is H[x, :]
a multiple of H[z, :]?” becomes a statistical question on Ĥ for a finite S. If the answer
is “no”, it will become clear as S grows in size, but if the answer is “yes” no finite
amount of information will prove it conclusively. Let the algorithm use a statistical
test that will return the right yes/no answer with probability tending to 1 as the sam-
ple size tends to infinity. (Different statistical tests have been used in the literature
for specific instantiations of this general algorithm). For sufficiently large samples,
representatives of all equivalence classes of rows will appear in the sample and fur-
thermore the test will correctly answer all the finitely many row equivalences. It is
now easy to argue that the algorithm above endowed with such a statistical test will
identify the target probability distribution in the limit.

In the PAC paradigm, however, tests should be sufficiently reliable for samples
of polynomial size and be computationally efficient. Unfortunately, such tests may
not exist if the target machine complexity is defined as number of states times size
of the alphabet. This is precisely what the negative results in [1, 30, 41] formalize. It
may become possible if one restricts the class of target machines in some way, such
as requiring a minimum L∞-distinguishability among states; alternatively, letting the
inverse of the distinguishability be also a parameter of complexity. This will be the
case for e.g. the method by Clark and Thollard [16].

Most methods for learning pdfa described in the literature conceptually rely on
the dwa construction described above, with a number of refinements towards prac-
ticality. For example, they tend to identify states not in one shot from the matrix H,
but instead by iteratively splitting or merging simpler states. This has the advantage
that once several strings (rows) have been merged, their statistical evidence accu-
mulates, allowing for sounder decisions from then on. Additionally, they are able to
come up with a pdfa when it is guaranteed that the target is a pdfa - while our con-
struction here may return dwa which are not pdfa. Finally, they differ in the precise
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statistical tests for state identification and in the smoothing policies to account for
unseen mass, both of which may make a large difference in practice.

5.2 State-merging learning algorithms

State-merging algorithms form an important class of strategies of choice for the
problem of inferring a regular language from samples. Basically, they try to dis-
cover the target automaton graph by successively applying tests in order to discover
new states and merge them to previously existing ones according to some similarity
criteria.

We show below two adaptations of the state-merging strategy to pdfa learning,
the Red-Blue [14] and the Safe-Candidate [16] algorithms. Both infer gradually ele-
ments of the target graph, i.e. states and transitions, and estimate their corresponding
probabilities. The Red-Blue algorithm starts by inferring a prefix tree acceptor and
then merges equivalent states. The Safe-Candidate algorithm alternates between in-
ferring and merging new elements. While the first one achieves learning in the limit,
the second one has PAC guarantees whenever a polynomial dependence on an addi-
tional parameter —the target distinguishability— is accepted.

The usual description of these algorithms considers the learning from exam-
ples paradigm. In contrast, following [6, 17], the exposition below assumes a query
framework: algorithms get information on the target by asking queries of possibly
different kinds instead of analyzing a sample. Proceeding in this way, many details
concerning probability approximation issues can be abstracted, and a more compact,
clear and elegant presentation can be provided.

The query model we use allows two type of queries, so-called respectively statis-
tical and L∞-queries, that can be solved, with high probability, by drawing a sample
of the target distribution. Thus, learning algorithms in this query setting can be eas-
ily moved to standard learning from examples.

Given a distribution D on Σ ? a statistical query for D is a tuple (X ,α) where X is
an efficiently decidable subset of Σ ? and 0<α < 1 is some tolerance parameter. The
query SQD(X ,α) returns an α-approximation p̂ of D(X) such that |p̂−D(X)|< α .

Let X be a prefix-free subset of Σ ?. Function DX (y) = D(Xy)
D(XΣ?) defines a probabil-

ity distribution on Σ ? that corresponds to the distribution over suffixes conditioned
on having a prefix in X . An L∞-query is a tuple (X ,Y,α,β ) where X and Y are
efficiently decidable, disjoint and prefix-free subsets of Σ ?, and 0 < α,β < 1 are,
respectively, the tolerance and threshold of the query. Query DIFFD

∞(X ,Y,α,β ) is
answered by the oracle according to the following rules:

1. If either D(XΣ ?)< β or D(Y Σ ?)< β it answers ‘?’.
2. If both D(XΣ ?)> 3β and D(Y Σ ?)> 3β , it answers with some α-approximation

µ̂ of L∞(DX ,DY ).
3. Otherwise, the oracle may either answer ‘?’ or give an α-approximation of

L∞(DX ,DY ).
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Both query types can be easily simulated with high probability with a sample of
distribution D. The following result holds.

Proposition 1. For any probability distribution D, a statistical query SQD(X ,α)
can be simulated using O(α−2 log(1/δ )) examples from D. A DIFFD

∞(X ,Y,α,β )
query can be solved using Õ(α−2β−2 log(1/δ )) examples. In both cases, the error
probability is less than δ .

5.2.1 The Red-Blue algorithm

State merging algorithms were initially proposed for the regular language inference
problem. Gold [27] had shown that regular languages are identifiable in the limit
from positive and negative data, but consistency with the input sample was not guar-
anteed when the sample does not contain some crucial information —the so called
characteristic set—. Oncina and Garcı́a [34] proposed a state merging algorithm
for inferring regular languages that overcomes this drawback. The algorithm always
returns a dfa that is data consistent and, provided a complete presentation is given,
achieves identification in the limit.

Carrasco and Oncina in [14] adapted the dfa state merging learning algorithm
to the stochastic setting. The new algorithm, so-called ALERGIA, was shown to
identify in the limit any pdfa provided stochastic examples of the target are given.
We present here a version of ALERGIA in the query model we have just introduce
that considers statistical and L∞-queries. We rename this version as the Red-Blue
algorithm.

Given an integer m as input, Red-Blue starts by building a prefix tree acceptor
representing significant prefixes by calling the Pta function on parameters m and λ ,
see Figures 2 and 3. On these values, Pta returns a prefix tree dfa whose leaves
at level j correspond to prefixes of probability at least 2 j/m. Thus, the resulting
tree dfa has depth at most dlogme. In order to decide whether a prefix has enough
probability to be represented, Pta makes statistical queries.

Once the the tree acceptor is built, Red-Blue colors the initial state as red and
its direct descendants as blue, leaving other states uncolored, and starts merging
compatible states. Two states are considered merge-compatible when a call to the
DIFFD

∞ oracle returns a numerical value not exceeding 1/m, meaning that there
is not strong evidence that they define different distributions. Specifically, we de-
fine for each state q a prefix free subset H[q] consisting of words x such that
τ(q0,x) = q and for any prefix y of x it holds x = y or τ(q0,y) 6= q. Asking the query
DIFFD

∞(H[q1],H[q2],α,α) we get information about how different the distributions
defined by states q1 and q2 are.

The merging flow proceeds as follows. For an arbitrarily chosen blue state, ei-
ther there is a red state that is merge-compatible with it or no red state is. In the first
case, both states are merged and the result colored red. This may introduce nondeter-
ministic choices, which are eliminated by further merging in the merge procedure.
Note that every merge always involves a blue state. On the other hand, if there is
no merge-compatible red state for this blue state, it is promoted to red and new blue
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input: integer m
output: pdfa H
algorithm Red-Blue

H← Pta(m,λ )
Red←{qλ};
Blue←{τ(qλ ,σ),σ ∈ Σ}
Let α ← 1/m
while Blue 6= /0

pick some state b ∈ Blue
if there is r ∈ Red with DIFFD

∞(H[r],H[b],α,α)≤ α

H←Merge(r,b,H)
else Red← Red∪{b}
Blue← Blue−{b}∪{τ(b,σ)|σ ∈ Σ and τ(b,σ) is uncolored}

for q ∈ H
γ(q,ξ )← SQD(H[q],α)/SQD(H[q]Σ ?,α)
for σ ∈ Σ such that τ(q,σ) is defined

γ(q,σ)← SQD(H[q]σΣ ?,α)/SQD(H[q]Σ ?,α)
return H

Fig. 2 Red-Blue algorithm

input: integer m and string w ∈ Σ ?

output: tree dfa H
algorithm Pta

Set a initial state qw of H
Let α ← 1/m
for each σ ∈ Σ

if SQD(wσΣ ?,α)> 3α

Hσ ← Pta(dm/2e,wσ)
Set a new transition τ(qw,σ) = qwσ

return H

Fig. 3 Pta algorithm

states are generated from it. When the set of blue states is empty, Red-Blue stops
merging and a pdfa is returned by setting transition probabilities of H according to
prefix probability approximations obtained by issuing statistical queries.

Figures 2 and 4 show the Red-Blue and the merge algorithms. Let H be the re-
sulting automaton after some iterations of Red-Blue. Red states of H and transitions
between them represent the the part of the graph we trust as correct, based on pro-
cessed information. An invariant of the algorithm is that non-red states are always
roots of trees in H and blue states are always direct successors of a red state.
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input: dfa H and states q and q′ of H
output: dfa
algorithm Merge

Replace each occurrence q′ in the description of H by q
while H contains a nondeterministic transition

Let p and p′ be target states of a nondeterministic choice
Merge(p, p′,H)

return H

Fig. 4 Merge function

Assuming unit time for oracle calls, the complexity of Red-Blue is O(m2). More-
over, if m is large enough that every state or transition of D has a counterpart in
the tree dfa returned by the Pta algorithm and such that 2/m is less than the distin-
guishability of the target machine, the algorithm on input m learns a pdfa hypothesis
whose graph agrees with the target graph. As probability estimations of states and
transitions will improve as m is larger, we have:

Theorem 5. The Red-Blue algorithm learns every pdfa in the identification in the
limit paradigm.

This result appears (for the equivalent ALERGIA algorithm) in [13, 14]. But from
this point it is easy to argue that Red-Blue also learns in the PAC model if the
complexity of the target pdfa is taken to number of states times alphabet size times
the inverse of the distinguishability.

5.2.2 The Safe-Candidate algorithm

We describe a variant of the algorithm in [16], which was the first one to claim any
formal PAC guarantee. Our version fits the query framework in [6, 17], which makes
the exposition easier and simplifies correctness arguments.

The main differences of the presentation below with respect to the description
in [16] are two. First, as said, the algorithm gets information on the target distribu-
tion asking statistical and L∞-queries defined above instead of analyzing a sample.
Second, it guarantees a good L1 approximation, a weaker requirement than the good
relative entropy approximation guaranteed in [16]. The latter choice avoids some
rather subtle points in [16] by the fact that L1 is a true distance unlike KL.

The Safe-Candidate algorithm works in two stages. In the first one, it builds
a transition graph that is isomorphic to the target subgraph formed by important
elements —these are sates and transitions whose probability of being visited while
generating a random string is above a threshold defined by the input parameters—.
The construction uses both statistical and L∞-queries. The second stage consists of
converting the learned graph into a pdfa by estimating the transition and stopping
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input: n,µ,Σ ,ε , oracles DIFFD
∞ and SQD

output: A graph H
algorithm Safe-Candidate
α ← µ/2; β ← ε/24n|Σ |
initialize the graph H with a safe qλ and candidates qσ

λ
for σ ∈ Σ

while H has candidates
choose a candidate q maximizing SQD(H[q]Σ ?,β )
foreach safe q′

make a call to the oracle DIFFD
∞(H[q],H[q′],α,β )

if the answer is ’?’
remove q from the candidate list
break

if the answer µ̂ < µ/2
merge q and q′

remove q from the candidate list
break

if q is still a candidate
promote q to safe
add candidates qσ for each σ ∈ Σ

Fig. 5 Safe-Candidate graph construction

probabilities corresponding to each state. This is similar to the estimation step in the
Red-Blue algorithm performed once the set of blue states is empty, see Fig. 2. In
this stage, only statistical queries are necessary.

Figure 5 shows the code for the graph construction stage. The algorithm keeps
two set on nodes, the set of safe nodes and the set of candidates. Safe nodes and tran-
sitions between them are known to be correct. Initially, there is only a safe state qλ

corresponding to the empty word and one candidate qσ

λ
for each σ ∈ Σ . Each candi-

date represents a still unknown transition in the graph H. In each iteration, statistical
queries are performed to choose the most informative candidate q and, after that,
L∞-queries are issued in order to decide if the candidate is either insignificant at all,
it is an already known safe node q′ or it is a new safe one. In the latter case, when
a candidate is promoted to safe, new candidates are considered representing unde-
fined transitions leaving the new safe node. The algorithm finishes when there are no
candidates left. An inductive reasoning proves that the resulting graph is isomorphic
to the target subgraph containing significant states and transitions.

The following theorem summarizes the performance of Safe-Candidate.

Theorem 6. Let M denote an n-state pdfa computing a distribution D over Σ ?, L
denote the expected length of D, and π be the smallest nonzero stopping probability
in M. Then the execution of Safe-Candidate on a sample from D satisfies:

1. It runs in time poly(n, |Σ |, log(1/π)).
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2. It asks O(n2|Σ |2 log(n/π)) statistical queries with tolerance Ω̃(ε3π2/n3|Σ |3L).
3. It asks O(n2|Σ |) L∞-queries with tolerance Ω(µ) and threshold Ω(ε/n|Σ |).
4. It returns a pdfa H such that L1(D,H)≤ ε .

A short and complete proof of this theorem is in [17]. A similar theorem without
any dependence on L and π is shown in [35] but the proof is more complex. The
proof in [16] that shows PAC learnability under the KL-divergence measure is much
longer.

6 Learning PFA

In this section we discuss algorithms having formal guarantees of learning the whole
class of pfa. Similarly to the PDFA case, we first give an algorithm that has access to
the target function as oracle, and can exactly learn the class of Weighted Automata
when the right set of prefixes and suffixes is provided. Then, we specialize the algo-
rithm to pfa and the case in which the input is a randomly drawn finite sample. We
discuss the solutions given by Denis et al. [22] on the one hand and, on the other, by
Mossel and Roch [33], Hsu et al. [29], and Bailly et al. [4]. The latter leads to the
spectral method, which we expose in more detail following mostly the presentation
in [9]. We finally mention a few of the most recent works extending the spectral
method in several directions.

6.1 An Oracle Algorithm for Learning WA

The algorithm in Figure 6 encapsulates the main idea for learning general Weighted
Automata in the oracle model. It resembles the algorithm given by Beimel et. al [11]
that learned instead from Evaluation and Equivalence queries.

There are two nondeterministic steps in this algorithm: One is the choice of sets X
and Y ; like for pdfa, we do not discuss how to choose them in the oracle model. The
other one is the choice of a factoring QR of H ′, which represents the choice of an
arbitrary basis for the rows of the Hankel matrix. The construction of the wa in the
proof of Theorem 3 is the special case in which R = H ′ and Q the identity, but it
is easy to see that the correctness of the special case implies the correctness of the
general QR case. Indeed, the value of the automaton for any word w is

α
T
0 Twα∞

= (H ′[λ , :]R−1)(Q−1H ′w1
R−1)(Q−1H ′w2

R−1) . . .(Q−1H ′wmR−1)Q−1H ′[:,λ ]

= H ′[λ , :]H ′−1H ′w1
H ′−1H ′w2

. . .H ′wmH ′−1H ′[:,λ ]

which is the value computed for R = H ′ and Q the identity. The reason for the more
general presentation will be clear later. It is also clear that the algorithm runs in time



Learning probability distributions generated by finite-state machines 21

1. Choose any two finite sets X ,Y ⊆ Σ ? with λ ∈ X ∩Y , in some way not specified
by the algorithm;

2. Build the submatrix H = H f [X ∪XΣ ,Y ] of H f by asking oracle queries to f ;
3. Find two minimal subsets X ′ ⊆ X , Y ′ ⊆ Y such that λ ∈ X ′ and H ′ = H[X ′,Y ′]

has the same rank as H; note that |X ′|= |Y ′|, say n, and H ′ has full rank;
4. Let Q,R ∈ Rn×n be any two matrices factoring H ′, i.e., H ′ = QR;
5. For each symbol a, let H ′a = H f [X ′a,Y ′] = H f [X ′,aY ′];
6. Build a wa from Q, R, and {Ta}a as follows.

α
T
0 = H ′[λ , :]R−1

α∞ = Q−1H ′[:,λ ]
Ta = Q−1H ′aR−1

Fig. 6 Learning wa with an oracle

polynomial in Σ and the sums of lengths of strings in X ∪Y . Following the proof of
Theorem 3 we have:

Theorem 7. Let f be computed by some wa. If the cardinality of X ′ is at least the
rank of H f then the wa built in this way computes f .

Proof. The algorithm defines matrices Ta by H ′a = TaH ′; they are uniquely defined
as H ′ has full rank. Furthermore, since the rank of H ′ is that of the whole Hankel
matrix H of f , these matrices must also satisfy Ha = TaH. Therefore, the automaton
constructed by the algorithm is exactly the one built in the proof of Theorem 3,
which by the theorem computes f . ut

Consider now the adaptation of the algorithm to the case in which f is a probability
distribution and we are given a finite sample S. As in the pdfa case, we take X =
prefixes(S), Y = suffixes(S), and then create an approximation Ĥ of H by Ĥ[x,y] =
empirical probability of xy in S. We know that the unperturbed H has rank at most n,
the number of states of the smallest wa for f but, because rank is so fragile under
perturbations, Ĥ will probably have maximal rank, even if |S| is large.

The solution taken by [22] can be intuitively described as follows: Compute a
subset X ′ ⊆ X such that |X ′| = n and every row of Ĥ[X , :] is “close to” a linear
combination of rows indexed by X ′. For sufficiently small choice of “close to” (de-
pending on the distribution), X ′ will be as in the algorithm above, and lead to a
correct solution.

The solution taken by e.g., [33, 29, 4], which leads to the spectral method, is less
combinatorial and more algebraic, less local and more global, and can be phrased as
follows: Let us instead find a matrix H ′ that 1) is easy to compute 2) has the same
dimensions as H, but rank at most n, and 3) is “as close as possible” to Ĥ under
some metric, with this rank constraint. One particular way of computing such H ′

(among, perhaps, other possibilities) is the spectral method described next.
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6.2 The Spectral Method

An important tool for the spectral method is the Singular Value Decomposition the-
orem; see e.g. [40].

Theorem 8. (SVD theorem) Let H ∈Rp×q. There are matrices U ∈Rp×p, D∈Rp×q

and V ∈ Rq×q such that:

• H =UDV T

• U and V are orthonormal: UTU = I ∈ Rp×p and V TV = I ∈ Rq×q

• D is a diagonal matrix of non-negative real numbers.

The diagonal values of D, denoted σ1, σ2, . . . , are the singular values of H, and col-
umn vectors of U are its left singular vectors. It follows that rank(A) = rank(D) is
the number of non-zero singular values. W.l.o.g. by rearranging rows and columns,
the diagonal values in D are nondecreasing, i.e. σ1 ≥ σ2 ≥ . . . . The SVD decompo-
sition can be computed in time O(pq2).

The Frobenius norm of a matrix H is

‖H‖F =

(
∑
i, j

H[i, j]2
)1/2

.

As this norm is invariant by unitary products, the square of the Frobenius norm of H
is the sum of the squares of its singular values. It follows that from the singular
value decomposition H = UDV of H, we can compute a low rank approximation:
Fix n≤ rank(H), and define H ′n as

H ′n =

u1 . . . un 0





σ1
. . .

σn

0





v1
...

vn

0


.

The following is the crucial fact:

Fact. H ′n has rank n and minimizes ‖H−G‖F among all rank-n matrices G.

Now we would like to use H ′n to find a full rank submatrix H ′ of H, since H ′n will
not in general have full rank and cannot be inverted. Alternatively, there is a notion
of pseudoinverse matrix that satisfies what we need for the algorithm, and is easily
computable from the SVD decomposition.

The Moore-Penrose pseudoinverse of A, denoted A+, admits many different def-
initions. The most algorithmic one is perhaps:

• If A ∈ Rp×q is a diagonal matrix, A+ ∈ Rq×p is formed by transposing A, and
taking the inverse of each non-zero element.
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1. get n and sample S;
2. X = preffixes(S); Y = suffixes(S);
3. define H[X ,Y ] ∈ Rp×q and set H[x,y] = empirical probability of xy;
4. define Ha[X ,Y ] ∈ Rp×q and set Ha[x,y] = empirical probability of xay;
5. Let QR be a rank-n factorization of H, that is:

• Q ∈ Rp×n and R ∈ Rn×q, both having rank n,
• H = QR,

for instance, take Q to be the first n left singular vectors of H;
6. output the WA M such that

α
T
0 = H[λ , :]R+, α∞ = Q+H[:,λ ], Ta = Q+HaR+

Fig. 7 Spectral learning of pfa

• In the general case, if A =UDV T then A+ =V D+UT .

Some of its many interesting properties are:

• In general, AA+ 6= I and A+A 6= I.
• But if A is invertible, A+ = A−1.
• If columns of A are independent, A+A = I ∈ Rq×q.
• If rows of A are independent, AA+ = I ∈ Rp×p.

With this artillery in place, the spectral method for learning probability distributions
generated by wa is described in Figure 7. The following PAC result was shown
in [29] and reformulated in [9].

Theorem 9. [29, 9] Let S be a sample of a probability distribution D such that HD
has rank n. Let σn be the nth largest singular value of HD, and M the wa produced
by the algorithm in Figure 7 on input S. There is a polynomial p such that if |S| ≥
p(n, |Σ |,1/σn,1/ε, log(1/δ )), with probability at least 1−δ :

∑
|x|=t
|D(x)−M(x)|< ε.

Observe that σn 6= 0 if and only if rank(HP) ≥ n, so 1/σn makes sense as a com-
plexity parameter. Observe also that the output of the algorithm is not necessarily
a pfa, even under the assumption that P is a probability distribution. It may assign
negative values to some strings, and not add up to exactly 1. However, by the the-
orem, such oddities tend to disappear as the sample size grows. Converting a wa
known to compute (or approximate) a probability distribution to a pfa is, in general,
uncomputable. The problem is discussed in detail in [22]. Both [33] and [2] give
partial solutions by considering somewhat restricted machine models.
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6.3 Variations and Implementation of the Spectral Method

Several variations of the spectral method have been introduced in order to improve
its sample-efficiency or to extend it to wider settings. We point out below a couple
of recent proposals.

Let D be a distribution on Σ ?. Derived from D, we define function Dp assigning
to each string x the probability of the set xΣ ?, i.e. Dp(x) = ∑y D(xy). Similarly, we
also consider function Ds that on input x evaluates to the expected number of times x
appears in a random string w. It turns out that if any of these three functions has wa,
then all three functions have wa. Moreover, wa descriptions can be obtained from
original wa parameters of one of them. The following lemma is shown in [17]:

Lemma 1. Let 〈{Tσ}σ∈Σ? ,α0,α∞〉 be a wa and define S =∑σ Tσ , α̃0 =αT
0 (I−S)−1

and α̃∞ = (I−S)−1α∞. Then the following are equivalent

1. 〈{Tσ}σ∈Σ? ,α0,α∞〉 computes D.
2. 〈{Tσ}σ∈Σ? ,α0, α̃∞〉 computes Dp.
3. 〈{Tσ}σ∈Σ? , α̃0, α̃∞〉 computes Ds .

Thus, besides using statistics of full strings in order to approximate the Hankel ma-
trix from a sample we can also try to use statistics from prefixes and substrings in or-
der to learn functions Dp and Ds. Experimentally, this yields more sample-efficient
algorithms.

The use of statistics on prefixes instead of full strings in the spectral method
was already proposed by Hsu et al. [29]. Later, Luque et al. [32] take advantage
of substring statistics when applying the spectral method to learn non-deterministic
split head-automata grammars, a hidden-state formalism for dependency parsing.

Recently, the spectral method in combination with matrix completion techniques
has been also applied to a more general learning setting [8]. Here, the learning prob-
lem is to infer a weighted automaton from a sample of labeled examples but, in con-
trast with the standard paradigm, the sample is provided according to an arbitrary
unknown distribution. Note that, for this type of learning problem, it is not guaran-
teed that a full approximation of a convenient Hankel submatrix can be achieved.
This is because the input sample can lack of information for many submatrix entries
and now it can not be assumed that the wa function value must be close to 0 there,
as one can in the standard probability setting. In [8], matrix completion techniques
are used to fill the gaps in the Hankel submatrix and then the spectral method is
used to infer the target wa. They prove formal learning guarantees for some of the
completion techniques under mild conditions on the distribution.

7 Future Work

Let us mention a few open questions or future lines of research. Concerning the
spectral method, it is clearly in an early stage and further extensions and applications
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will keep appearing. Making it generally practical and competitive is certainly of
interest. Most spectral methods produce weighted automata with negative transition
values when learning pfa; this may somewhat hinder their application in contexts
where interpretability of the learned model is important.

At a more theoretical level, we would like to find some geometric or algebraic
interpretation of pdfa distinguishability; this might explain its role in pdfa learning
as a particular case of the spectral values that come up in learning pfa.

As mentioned, it is known that pdfa cannot exactly compute all distributions
computed by pfa [22]. But, to our knowledge, it is not known whether pdfa can
reasonably approximate distributions computed by pfa, say with a number of states
polynomial in 1/ε for the desired approximation ε in the L1 distance (a rather direct
result for L∞ is given in [26], which extends to every Lp for p > 1). If such approx-
imability is true, then it may be possible to transfer PAC learnability results for pdfa
to pfa with a polynomial overhead.
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5. Borja Balle, Jorge Castro, and Ricard Gavaldà. Learning pdfa with asynchronous transitions.
In 10th Intl. Coll. on Grammatical Inference (ICGI), volume 6339 of Lecture Notes in Com-
puter Science, pages 271–275. Springer, 2010.

6. Borja Balle, Jorge Castro, and Ricard Gavaldà. A lower bound for learning distributions gen-
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Appendix: The Baum-Welch Method

The Baum-Welch algorithm [10] is one of the most popular methods to infer a hid-
den Markov model from observed data. Despite the fact that there are no bounds
on convergence time and that it may get trapped in local optima, it is intuitively
attractive since it has a clear focus — maximizing the observed data likelihood —
and performs a simple step-by-step hill climbing progress to this goal. However, we
think that as new techniques based on spectral methods progress and gain popular-
ity, Baum-Welch may lose its status as first option. Theoretically, spectral methods
will obtain global optima, come with performance guarantees in time and accuracy,
and tend to work faster at least on large samples.

The Baum-Welch algorithm starts by guessing some hidden Markov model; this
is frequently done using problem-specific heuristics. Provided with a sequence of
data observations x = x1 . . .xm, the algorithm continues by iterating a process where
parameters of the last built model H are updated according to a posteriori state and
transition probability values. Iteration finishes either when a parameter convergence
criterion is achieved or there is a loss of prediction accuracy. The learning algorithm
is shown in Figure 8. Specifically, let H = 〈{Ta}a∈Σ ,α0〉 the last hypothesis built.
Backward and forward probability vectors for t = 0 . . .m are, respectively:

β
T
t = α

T
0 Tx1 · · ·Txt ,

φt = Txt+1 · · ·Txm1.

Component j of the backward vector βt is the probability of generating prefix
x1 . . .xt and being in state j just after emitting xt , i.e. βt [ j] = Pr[x1 . . .xt ∧S(t) = j].
On the other hand, component j of the forward vector φt is the probability of emit-
ting suffix xt+1 . . .xm from state j, φt [ j] = Pr[xt+1 . . .xm|S(t) = j]. Let S(t) denote
the state at time t and O(t) the observation at time (whose realization is thus xt ).
Given data x = x1 . . .xm, the a posteriori state visit probability of state j is:

α
′
0[ j] =

1
m+1

m

∑
t=0

Pr[S(t) = j|x] = 1
m+1

m

∑
t=0

βt [ j]φt [ j]
β T

t φt
=

∑
m
t=0 βt [ j]φt [ j]

(m+1)(α0Tx1)
. (1)

Similarly, the a posteriori probability of transition a from state i to j is:

T ′a [i, j] =
∑t|xt=a ξ

i, j
t

∑
m
t=1 ξ

i, j
t

(2)

where

ξ
i, j
t = Pr[S(t−1) = i∧S(t) = j∧O(t) = xt |x] =

βt−1[i]Txt [i, j]φt [ j]
α0Tx1

.

Thus, ξ
i, j
t denotes the probability that provided observed data x, state i is reached

just after processing length t−1 prefix of x and xt moves from state i to state j.
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input: data observation x = x1 . . .xm and some initial HMM guess H = 〈{Ta}a∈Σ ,α0〉
output: updated H, locally maximizing sample likelihood
algorithm Baum-Welch
repeat

compute backward βt and forward φt probability vectors for t = 0 . . .m
compute a posteriori state visit and transition probabilities α ′0 and {T ′a}a∈Σ

H← 〈{T ′a}a∈Σ ,α
′
0〉

until stopping condition

Fig. 8 The Baum-Welch algorithm

The following theorem shows that the iterated updating procedure in the Baum-
Welch algorithm either increases the sample likelihood or, at local maxima, keeps it
unchanged. We follow the presentation in [47].

Theorem 10. [10, 47] Let x = x1 . . .xm be a sample and let H = 〈α0,{Ta}a∈Σ 〉 and
H ′ = 〈α ′0,{T ′a}a∈Σ 〉 be the hidden Markov models defined above. Then, H ′(x) ≥
H(x) with equality at local maxima.

Proof. (sketch) Let s = s0 . . .sm be a sequence of states in machine H and consider
conditional distributions H(s|x) and H ′(s|x). Starting from the KL divergence for-
mula and expanding conditional probabilities, it is easy to derive the relations

0 ≤ KL(H(·|x),H ′(·|x))

= ∑
s

H(s|x) log
H(s|x)
H ′(s|x)

= log
H ′(x)
H(x)

+∑
s

H(x∧ s)
H(x)

log
H(x∧ s)
H ′(x∧ s)

.

Defining function Q as

Q(x,H,H ′)=̇∑
s

H(x∧ s) logH ′(x∧ s),

the last inequality can be rearranged to show that

Q(x,H,H ′)−Q(x,H,H)

H(x)
≤ log

H ′(x)
H(x)

.

Thus, H ′(x)> H(x) when Q(x,H,H ′)> Q(x,H,H). We obtain a hill climbing pro-
cedure by finding H ′ maximizing the Q(x,H, ·) function. Using Lagrange’s method
to find critical points of Q subject to stochastic constraints (H ′ must define a prob-
ability function) results in values for α ′0 and {T ′a}a∈Σ defining H ′ as the ones dis-
played in Equations (1) and (2). ut


