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Abstract. Known algorithms for learning PDFA can only be shown to
run in time polynomial in the so-called distinguishability µ of the target
machine, besides the number of states and the usual accuracy and con-
fidence parameters. We show that the dependence on µ is necessary for
every algorithm whose structure resembles existing ones. As a technical
tool, a new variant of Statistical Queries termed L∞-queries is defined.
We show how these queries can be simulated from samples and observe
that known PAC algorithms for learning PDFA can be rewritten to access
its target using L∞-queries and standard Statistical Queries. Finally, we
show a lower bound: every algorithm to learn PDFA using queries with
a resonable tolerance needs a number of queries larger than (1/µ)c for
every c < 1.

1 Introduction

Probabilistic finite automata (PFA) are important as modeling formalisms as
well as computation models. They are closely related to Hidden Markov Models
(HMM’s) in their ability to represent distributions on finite alphabets and also
to POMDP’s; see e.g. [8, 17, 18] for background.

One of the main associated problems is that of approximating the distribution
generated by an unknown probabilistic automaton from samples. The problem
is relatively simple if the structure of the automaton is somehow known and only
transition probabilities have to be estimated, and much harder and poorly-solved
in practice if the transition graph is unknown. Probabilistic Deterministic Finite
Automata (PDFA) — in which the underlying automaton is deterministic but
transitions still have probabilities — have been often considered as a restriction
worth studying, even though they cannot generate all distributions generated by
PFA [8].

The grammatical inference community has produced a substantial number of
methods for learning (distributions generated by) PFA or PDFA, most of them
using so-called “state split-merge” or “evidence-driven” strategies; see the refer-
ences in [6, 17, 18, 7]. Many of these methods are only proved valid empirically,
but some have proofs of learning in the limit.

The problem has also been intensely studied in variants of the PAC model
adapted to distribution learning. Abe and Warmuth showed in [1] that hardness
is not information-theoretic: one can learn (distributions generated by) PFA



with samples of size polynomial in alphabet size, number of states in the target
machine, and inverses of the accuracy and confidence parameters (ε and δ); but
also that the problem is computationally intractable for large alphabet sizes,
unless RP = NP. Kearns et al. [13] showed that learning PDFA even over 2-
letter alphabets is computationally as hard as solving the noisy parity learning
problem, of interest in coding theory and for which only super-polynomial time
algorithms are known.

It was later observed that polynomial-time learnability is feasible if one allows
polynomiality not only in the number of states but also in other measures of the
target automaton complexity. Specifically, Ron et al. [16] showed that acyclic
PDFA can be learned w.r.t the Kullback-Leibler divergence in time polynomial
in alphabet size, 1/ε, 1/δ, number of target states, and 1/µ, where µ denotes
the distinguishability of the target automaton, to be defined in Sect. 2. Clark
and Thollard extended the result to general PDFA by considering also as a
parameter the expected length of the strings generated by the automata [6].
Their algorithm, a state merge-split method, was in turn extended or refined in
subsequent work [10, 15, 9, 4]. Furthermore, in [11] a PAC algorithm for learning
PFA was given, similar in spirit to [7], whose running time is polynomial in the
inverse of a condition parameter, intuitively an analog of µ for PFA.

Here we consider the dependence on the distinguishability parameter µ of
known algorithms. We know that the sample complexity and running time of the
Clark-Thollard and related algorithms is polynomially bounded on 1/µ (as well
as other parameters), but it is conceivable that one could also prove a polynomial
bound in another parameter, much smaller but yet unidentified. We rule out this
possibility for a large class of learning algorithms, intuitively those that proceed
by applying statistical tests to subsets of the sample to distinguish distributions
generated at different states of the target automaton. To this end, we define
a variant of Kearns’ statistical queries [12], called L∞-queries. We observe that
known algorithms for learning PDFA, such as Clark-Thollard and our variant [4],
can be rewritten accessing the target distribution only through L∞-queries (to
infer the structure) plus standard statistical queries (to approximate transition
probabilities). We then show that any algorithm that learns the class of PDFA
with a given distinguishability µ from L∞-queries and statistical queries with
reasonably bounded tolerance will require more than (1/µ)c queries for every
c < 1. Our result thus indicates that, if PDFA learning algorithms of complexity
substantially smaller than 1/µ do exist, they must use their input sample quite
differently from known algorithms.

While we introduce our L∞-queries as a technical concept to formulate a
lower bound, we believe they may deserve further study. Interestingly, the hard
targets that force our lower bound are essentially the noiseless parity functions,
which are learnable in time polynomial in the number of variables, but by our
result not from L∞-queries. Recalling that noisy parity functions seem compu-
tationally hard to learn, this suggests a connection to investigate between our
L∞-queries and noisy distribution learning, as there is one between SQ and noisy



concept learning. Additionally, we give several indications (not rigorous proofs)
that L∞-queries cannot be efficiently simulated by standard SQ.

2 Preliminaries

We consider several measures of divergence between distributions. Let D1 and
D2 be probability distributions on a discrete set X. The Kullback–Leibler (KL)
divergence is defined as

KL(D1‖D2) =
∑
x∈X

D1(x) log
D1(x)
D2(x)

, (1)

where the logarithm is taken to base 2. The KL is sometimes called relative
entropy. The supremum distance is L∞(D1, D2) = maxx∈X |D1(x) − D2(x)|,
and the total variation distance is L1(D1, D2) =

∑
x∈X |D1(x)−D2(x)|.

An algorithm learns a class of distributions D over some set X if for any
D ∈ D and ε > 0 it is given access to D through some oracle and outputs a
hypothesis D̂ that is ε-close to D w.r.t. the KL divergence, that is, KL(D‖D̂) < ε.

A PDFA A is a tuple 〈Q,Σ, τ, γ, ξ, q0〉 where Q is a finite set of states, Σ is the
alphabet, τ : Q×Σ −→ Q is the transition function, γ : Q× (Σ ∪{ξ}) −→ [0, 1]
defines the probability of emitting each symbol from each state (γ(q, σ) = 0
when σ ∈ Σ and τ(q, σ) is not defined), ξ is a special symbol not in Σ reserved
to mark the end of a string, and q0 ∈ Q is the initial state. It is required that∑
σ∈Σ∪{ξ} γ(q, σ) = 1 for every state q. Transition function τ is extended to

Q × Σ∗ in the usual way. Also, the probability of generating a given string xξ
from state q can be calculated recursively as follows: if x is the empty word
λ the probability is γ(q, ξ), otherwise x is a string σ0σ1 . . . σk with k ≥ 0 and
γ(q, σ0σ1 . . . σkξ) = γ(q, σ0)γ(τ(q, σ0), σ1 . . . σkξ). Assuming every state of A has
non-zero probability of generating some string, one can define for each state q a
probability distribution Dq on Σ∗: for each x, probability Dq(x) is γ(q, xξ). The
one corresponding to the initial state Dq0 is called the distribution defined by
A.

Definition 1. We say distributions D1 and D2 are µ-distinguishable when µ ≤
L∞(D1, D2). A PDFA A is µ-distinguishable when for each pair of states q1 and
q2 their corresponding distributions Dq1 and Dq2 are µ-distinguishable.

Given a multiset S of strings from Σ∗ we denote by S(x) the multiplicity of
x in S, write |S| =

∑
x∈Σ∗ S(x). To each multiset S corresponds an empirical

distribution Ŝ defined in the usual way, Ŝ(x) = S(x)/|S|.
A parity on n variables is a function h : {0, 1}n → {0, 1} of the form

h(x1, . . . , xn) =
∑
i aixi mod 2, for some (a1, . . . , an) ∈ {0, 1}n.

The following is a simple consequence of Chebyshev-Cantelli inequality that
will be used when proving the lower bound.



Lemma 1. Let X be a random variable with expectation µ and variance σ2. If
t > 2|µ| then:

P [|X| ≥ t] ≤ 2
σ2

t(t− 2|µ|)
. (2)

3 L∞-queries

In this section we present a new kind of query, the L∞-query, which we describe
as a call to an oracle DIFF∞. Roughly speaking, these queries can be used when-
ever the learning task is to approximate a probability distribution whose support
is contained in a free monoid Σ∗. This query is an abstraction of a pattern of
access to distributions appearing in algorithms that learn (distributions gener-
ated by) PDFA [3, 16, 6, 10, 15, 9, 4]. At some point, all algorithms described in
these papers use samples from suffix distributions to test for state-distinctness
w.r.t. the supremum distance.

Let D be a distribution over Σ∗, where Σ is a finite alphabet. If A ⊆ Σ∗ is
prefix-free, we denote by DA the conditional distribution under D of having a
prefix in A. That is, for every y ∈ Σ∗ we have

DA(y) =
D(Ay)
D(AΣ∗)

=
∑
x∈AD(xy)∑
x∈AD(xΣ∗)

, (3)

where D(xΣ∗) is the probability under D of having x as a prefix. The oracle
DIFF∞(D) answers queries of the form (A,B, α, β), where A,B ⊆ Σ∗ are (en-
codings of) disjoint and prefix-free sets, and α, β ∈ (0, 1) are real numbers. Let
µ denote the supremum distance between distributions DA and DB ; that is,
µ = L∞(DA, DB). Then oracle DIFF∞(D) must answer a query (A,B, α, β)
according to the following rules:

1. If either D(AΣ∗) < β or D(BΣ∗) < β, it answers “?”.
2. If both D(AΣ∗) > 3β and D(BΣ∗) > 3β, it answers some number µ̂ such

that |µ− µ̂| < α.
3. Otherwise, the oracle may either answer “?” or give an α-good approximation
µ̂ of µ, arbitrarily.

To be precise, the algorithm asking a query will provide A and B in the form of
oracles deciding the membership problems for AΣ∗ and BΣ∗.

Similarly to oracles answering statistical queries [12], the price an algorithm
has to pay for a call to DIFF∞(D) depends on the parameters of the query. As
will be seen in the next section, a call to DIFF∞(D) with a query (A,B, α, β)
can be simulated with Õ(α−2β−2) samples from D. Accordingly, we make the
following definition.

Definition 2. An algorithm for learning a class of distributions D over Σ∗

using L∞-queries will be called sample efficient if there exists polynomials p, q, r
such that for each D ∈ D the algorithm makes at most r(1/ε, |D|) queries with
α > 1/p(1/ε, |D|) and β > 1/q(1/ε, |D|) for each query, where |D| is some
measure of complexity, and it outputs a hypothesis D̂ which is ε-close to D.



Remark 1 (The role of β). An algorithm asking an L∞-query does not know a
priori the probability under D of having a prefix in A. It could happen that
the region AΣ∗ had very low probability, and this might indicate that a good
approximation of D in this region is not necessary in order to obtain a good
estimate of D. Furthermore, getting this approximation would require a large
number of examples. Thus, β allows a query to fail when at least one of the
regions being compared has low probability. This prevents a learner from being
penalized for asking queries whose answer might be irrelevant after all.

Remark 2 (Representation of A and B). From now on we will concentrate on the
information-theoretic aspects of L∞-queries. Hence, only the number of samples
needed to simulate queries and the number of such queries needed to learn a
specific class of distributions will be taken into account. We are not concerned
with how A and B are encoded or how membership to them is tested from the
code: the representation could be a finite automaton, a Turing machine, a hash
table, a logical formula, etc.

3.1 Relation with Statistical Queries

Although L∞-queries compute a value which is statistical in nature, it is not
clear whether they can be simulated by statistical queries (or the other way
round). Indeed, we provide some evidence suggesting that they cannot, at least
efficiently.

To begin with, one has to say what would be the equivalent of statistical
queries when the target of the learning process is a distribution instead of a
concept. Recall that in the usual statistical query model one asks queries of the
form (χ, α) where χ : X × {0, 1} → {0, 1} is a predicate and 0 < α < 1 is
some tolerance. If D is a distribution over X and f : X → {0, 1} is a concept, a
query (χ, α) to the oracle SQ(f,D) answers with an α-good approximation p̂χ
of pχ = Px[χ(x, f(x)) = 1], where x is drawn according to D. Kearns interprets
this oracle as a proxy to the usual PAC example oracle EX(f,D) abstracting the
fact that learners usually use samples only to obtain statistical properties about
concept f under distribution D. Note that oracle SQ(f,D) can be simulated
online using EX(f,D): seeing one example (x, f(x)) at a time, check whether
χ(x, f(x)) = 1 and discard it, only keeping track of the number of examples seen
so far and how many of them satisfied the predicate. An obvious adaptation of
statistical queries for learning distributions over X is to do the same forgetting
about labels. Then χ : X → {0, 1} is again a predicate, and the oracle SQ(D)
returns an α-good approximation of Px[χ(x) = 1]. Since χ is the characteristic
function of some subset of X, learners can ask the oracle for an approximation
to the probability of any event. We assume that this is the natural translation
of statistical queries for distribution learning.

As in the case of concept learning, statistical queries for distributions can
be simulated online with essentially constant memory: just count elements in
the sample satisfying the predicate. Now, this does not seem possible for L∞-
queries, where in order to compute the supremum distance between two empirical



distributions one needs to collect sets of examples, estimate the probabilities of
elements in the sets and compare these probabilities to see which one defines
the maximum difference. This indicates that a single statistical query can not
be used to simulate a L∞-query. However, this does not preclude the possibility
that L∞-queries can be simulated with a larger number of statistical queries.

An obvious such simulation is: given access to oracles SQ(DA) and SQ(DB),
obtain approximations of DA(x) and DB(x) for each x in the support and then
return the largest difference |DA(x)−DB(x)|. This is not feasible when the sup-
port is infinite, although for most reasonable classes of distributions with infinite
support the string defining the supremum distance cannot be very long. But even
for statistical queries that return exact probabilities, this approach amounts to
finding a string where the supremum distance between two distributions is at-
tained. A problem that was shown to be NP-hard for the case of distributions
generated by probabilistic automata in [14]. On the other hand, when one is not
asking for particular probabilities, but samples from the distributions are avail-
able instead, the empirical supremum distance is usually a good approximation
of the actual distance provided enough examples are available. This is the topic
of next section.

We currently have a candidate class of distributions which we believe can
rule out the possibility of simulating L∞-queries using a polynomial number of
statistical queries.

3.2 Simulation

In this section we show how to simulate calls to DIFF∞(D) using examples from
D provided by the classical PAC example oracle EX(D). Our fist lemma says
that the supremum distance between two arbitrary distributions over Σ∗ can be
approximated with a moderate number of examples provided a similar number
of examples from both distributions is available.

Let DA and DB be two distributions over Σ∗. Let SA be a sample of size nA
from DA and SB a sample of size nB from DB . Define µ = L∞(DA, DB) and
its empirical estimation µ̂ = L∞(ŜA, ŜB). Fix some error probability 0 < δ < 1,
an approximation factor 0 < α < 1, and an arbitrary constant 0 < c < 1. Now
define

N1 =
6
α2c

ln
24
α2cδ

. (4)

Lemma 2. If nA, nB ∈ [cN,N ] for some N > N1, then |µ̂ − µ| ≤ α with
probability at least 1− δ/2.

The proof is based on Chernoff bounds and is omitted.
Now we describe a simulation of L∞-queries using the usual EX(D) oracle

from the PAC model. For any distribution D, each call to EX(D) takes unit
time and returns an example drawn according to D. As it is usual in the PAC
model, the simulation will have some error probability to account, among other
things, for the fact that with low probability examples provided by EX(D) can
be unrepresentative of D.



Let D be a distribution over Σ∗. Fix some L∞-query (A,B, α, β) and some
error probability δ. Now DA and DB will be suffix distributions of D; that
is, conditional distributions obtained when words have a prefix in A or B. Let
pA = D(AΣ∗) (respectively, pB = D(BΣ∗)) denote the probability that a word
drawn according to D has a prefix in A (respectively, in B). As before, µ will be
the supremum distance between DA and DB .

Given a sample S from D, a sample SA from DA is obtained as follows. For
each word x ∈ S, check whether x = yz with y ∈ A. If this is the case, add z to
SA. The multiset obtained,

SA = {z : yz ∈ S and y ∈ A} , (5)

is a sample from DA. Note that since A is prefix-free, each word in S contributes
at most one word to SA, and thus all examples in SA are mutually independent.
Similarly, a sample SB fromDB is obtained. Let nA and nB denote the respective
sizes of SA and SB .

In order to simulate a call to DIFF∞(D) with query (A,B, α, β), draw a
sample S of size N from D using EX(D). Then, build samples SA and SB

from S and obtain approximations p̂A = nA/N and p̂B = nB/N of pA and
pB , respectively. If either p̂A < 2β or p̂B < 2β, return “?”. Otherwise, return
µ̂ = L∞(ŜA, ŜB).

The following theorem shows that Õ(α−2β−2) samples are enough for the
simulation to succeed with high probability.

Theorem 1. For any distribution D over Σ∗, a L∞-query (A,B, α, β) to the
oracle DIFF∞(D) can be simulated with error probability smaller than δ using
N > N0 calls to the oracle EX(D), where

N0 = max
{

3
α2β

ln
12
α2βδ

,
1

2β2
ln

8
δ

}
. (6)

Proof. It follows from Chernoff bounds that p̂A and p̂B will both be β-good
approximations with probability at least 1 − δ/2 if N > (1/2β2) ln(8/δ). Thus,
the simulation will answer “?” correctly with high probability. On the other side,
if both p̂A ≥ 2β and p̂B ≥ 2β, then by Lemma 2 with c = 2β the estimate µ̂ will
be α-good with probability at least 1− δ/2. ut

Remark 3 (Running time of the simulation). Although the number of examples
required by the simulation bounds its running time from below, this number does
not completely determine how long the simulation will take. In fact, the time
required to check if x ∈ Σ∗ belongs to AΣ∗ or BΣ∗ affects the total running time.
Furthermore, depending on the representation of A and B, checking whether
x has a prefix in one of them may depend on its length |x|. Thus, if TA(m)
and TB(m) represent the time needed to check if a string of length m has a
prefix in A and B, respectively, the expected running time of the simulation
using N examples is O(N Ex(max{TA(|x|), TB(|x|)})). Note that if A and B are
represented by automata, then TA(m), TB(m) ≤ cm for some constant c. In this



case, the expected running time of the simulation is O(NL), where L = Ex[|x|]
is the expected length of D. This justifies the appearance of L in running time
bounds for algorithms learning PDFA in the PAC model.

4 Lower Bound

In this section we prove that no sample efficient L∞-query algorithm satisfying
some restrictions can learn a certain class of distributions Dn. Since this class is a
subclass of all PDFA with Θ(n) states, it will follow that the class of distributions
generated by PDFA is not learnable sample efficiently from L∞-queries.

Let Pn be the set of parities on n variables. Consider the class of distributions
Dn over {0, 1}n+1 where there is a distribution Dh for each parity h ∈ Pn which
for any x ∈ {0, 1}n and y ∈ {0, 1} satisfies Dh(xy) = 2−n if h(x) = y and
Dh(xy) = 0 otherwise. The class Dn contains 2n distributions. Note that each
one of these distributions can be represented by a PDFA with at most 2n + 2
states.

We will show that for n large enough, the class Dn can not be learned with
a sample efficient L∞-query algorithm. To do so, an adversary answering the
queries asked by a learning algorithm is provided. Then it is shown that very
little information about the underlying distribution can be gained with a sub-
exponential number of such queries when answers are provided by the adversary.
The argument is similar in nature to that used in [12] to prove that parities can
not be learned in the statistical query model. Basically, we show that for each
answer the number of distributions inDn that are inconsistent with it is at most a
sub-exponential number. Since there are an exponential number of distributions
in Dn, after a sub-exponential number of queries only a small fraction of the
whole set of distributions has been ruled out. Thus, the adversary can always
find a distribution which is consistent with every answer given to the algorithm
but still has large error with respect to the hypothesis provided by the learner.

We present our lower bound for algorithms using L∞-queries only. The ar-
gument for dealing with standard SQ queries, in case the algorithm uses both
types, is exactly as in the lower bound proved by Kearns for concept learning
parities, and we omit it for brevity. Let L be a sample efficient algorithm for
learning Dn using L∞-queries only. Fix ε to be some constant smaller than 1/9.
Now, let p(n) and q(n) be two functions such that for each query (A,B, α, β)
asked by L the following holds: 1) α > 1/p(n), 2) β > 1/q(n), 3) p(n) and q(n)
are 2o(n), and 4) there exist positive kA and kB such that A ⊆ {0, 1}kA and
B ⊆ {0, 1}kB . A query (A,B, α, β) satisfying 4 will be called strict. Restricting
to strict queries is a technical condition which we believe can be removed in a
more careful analysis. Nonetheless, this condition holds for the PDFA learning
algorithms we are aware of when restricted to target PDFA representing pari-
ties. That is because a non-strict query in this setting means the algorithm is
considering states generating words of different lengths, and this in turn means
hypotheses having infinite KL with any D ∈ Dn.



The following theorem states our lower bound formally. Its qualitative corol-
lary is immediate.

Theorem 2. Let functions p(n) and q(n) be 2o(n). If ε ≤ 1/9 and n is large
enough, an algorithm using strict L∞-queries where α > 1/p(n) and β > 1/q(n)
for any query (A,B, α, β) cannot learn Dn with o(2n/max{p(n)2q(n), q(n)2})
queries.

Corollary 1. For ε ≤ 1/9 and n large enough, the class Dn cannot be learned
sample efficiently with L∞-queries.

Proof (of Theorem 2). Let (A,B, α, β) be a strict L∞-query asked by L. Without
loss of generality we assume that kA ≥ kB . If kA ≤ n, for any a ∈ {0, 1}, we
define the quantity θA,a as (−1)a/2 if the all zero string belongs to A and as 0
otherwise. If kA = n+1, the quantity θ′A is defined as (−1)a/2 if 0 · · · 0a ∈ A and
0 · · · 0ā /∈ A, where a ∈ {0, 1} and ā means negation; we let θ′A = 0 otherwise.
Quantities θB,b and θ′B are defined similarly.

The adversary is defined and analyzed in two parts. In the first part we
consider the cases where it answers “?”, while the situations where some µ̂ is
answered are considered in the second part. Our analysis begins by considering
the following three cases, where the adversary answers the query with “?”:

1. If either kA, kB > n+ 1.
2. If either kA ≤ n with |A| < 2kAβ or kB ≤ n with |B| < 2kBβ.
3. If either kA = n + 1 with |A| < 2n+2β − 2θ′A or kB = n + 1 with |B| <

2n+2β − 2θ′B .

Recall that an oracle answering L∞-queries may answer “?” whenever the prob-
ability of the words with a prefix in A or B is smaller than 3β. We will only
reason about A; by symmetry, the same arguments work for B. In case 1, it is
obvious that Dh(A{0, 1}∗) = 0 for any parity h ∈ Pn and therefore the answer
“?” is consistent with all distributions in Dn. Now, in case 2, if kA ≤ n then
Dh(A{0, 1}∗) = 2−kA |A| independently of h. Thus, the answer “?” is consistent
with all parities if |A| < 2kAβ. Lastly, for case 3 assume that kA = n + 1. Now
Dh(A{0, 1}∗) = Dh(A), and this probability does depend on h since it equals
2−n times the number of words xy ∈ A such that h(x) = y. Hence, it is not
possible for the answer “?” to be consistent with all distributions, although we
show that it is consistent with most of them. If parity h is chosen uniformly at
random, by a routine calculation one shows that

Eh[Dh(A)] = 2−n
(
|A|
2

+ θ′A

)
. (7)

So, our adversary answers “?” whenever Eh[Dh(A)] < 2β. The number of dis-
tributions in Dn inconsistent with this answer can be upper bounded using a
probabilistic argument. By Chebyshev’s inequality,

Ph[Dh(A) > 3β] ≤ Ph[|Dh(A)− Eh[Dh(A)]| > β] ≤ Vh[Dh(A)]
β2

. (8)



The leftmost probability in this equation is the number of inconsistent distri-
butions times 2−n. Now, write A as the disjoint union A = A01 ∪ A′, where for
any x ∈ {0, 1}n the words x0 and x1 belong to A01 if and only if x0, x1 ∈ A.
This partition implies that for any parity h exactly a half of the words xy ∈ A01

satisfy h(x) = y. It follows then that a part of Dh(A) does not depend on h:
Dh(A) = 2−n−1|A01|+Dh(A′). Thus only the part A′ contributes to the variance
of Dh(A). Taking this into account, a computation with indicator variables and
a standard linear algebra argument show that

Vh[Dh(A)] = 2−2n

(
|A′|
4
− θ′A

2
)

. (9)

Applying the bounds 1/q(n) < β < 1, the definition of θ′A and recalling the
assumption |A| < 2n+2β − 2θ′A, we see that (8) and (9) imply that the number
of distributions inconsistent with the answer “?” is, in this case, smaller than
q(n)2.

So far, we have shown that whenever the adversary answers “?”, at most
q(n)2 distributions in Dn are inconsistent with this answer. Now we move ahead
to the second part of the analysis. In the rest of the cases the adversary answers
with some µ̂. In particular:

1. If kB < kA < n+ 1 then µ̂ = 2kA−n−1.
2. If kB < kA = n+ 1 then µ̂ = 1.
3. If kB = kA then µ̂ = 0.

In what follows we show that, if n is large enough, the number of distributions
inconsistent with the answer is, in each case, bounded by max{p(n)2q(n), q(n)2}.

Before proceeding, observe that in all these cases kA ≤ n+1 and for any parity
h the conditional distribution DA

h has support {0, 1}n+1−kA with the convention
that {0, 1}0 = {λ}, the set with the empty string. Furthermore, if kA ≤ n we
can write any parity h ∈ Pn as h = f + g where f ∈ PkA

and g ∈ Pn−kA
, with

the convention that P0 contains only the constant 0. Then, for any x = yz with
y ∈ {0, 1}kA and z ∈ {0, 1}n−kA we have h(x) = f(y) + g(z). Everything holds
equally when replacing A by B.

We start now with case 1. Like before, we have Dh(A{0, 1}∗) = 2−kA |A| = pA
and Dh(B{0, 1}∗) = 2−kB |B| = pB for any parity h. Now, given y ∈ {0, 1}n−kA

and z ∈ {0, 1}, by definition we can write

DA
h (yz) =

∑
x∈ADh(xyz)

pA
. (10)

Writing h = f + g, define Aaf = {x ∈ A : f(x) = a} for a ∈ {0, 1}. This yields
the partition A = A0

f ∪A1
f . The numerator in (10) can then be written as∑

x∈A
Dh(xyz) =

∑
x∈A0

f

Dh(xyz) +
∑
x∈A1

f

Dh(xyz) . (11)

Recall that Dh(xyz) = 2−n if and only if h(xy) = f(x) + g(y) = z. Hence, if
g(y) = z then Dh(xyz) = 2−n for all x ∈ A0

f . Similarly, Dh(xyz) = 2−n for all



x ∈ A1
f if and only if g(y) 6= z. Thus, the following expression for the conditional

distribution DA
h holds:

DA
h (yz) =

2−n

pA
·

{
|A0
f | if g(y) = z ,

|A1
f | if g(y) 6= z .

(12)

Note that for any parity h both values can be attained for some choice of y and
z. With the obvious modifications, these expressions hold for B too.

Now we compute the supremum distance between DA
h and DB

h for any h ∈
Pn. Write h = f + g = f ′ + g′ where f ∈ PkA

, f ′ ∈ PkB
, g ∈ Pn−kA

and
g′ ∈ Pn−kB

. Then L∞(DA
h , D

B
h ) equals

max
{

2kA−n

|A|
max

{
|A0
f |, |A1

f |
}
,

2kB−n

|B|
max

{
|B0
f ′ |, |B1

f ′ |
}}

(13)

because DA
h and DB

h are distributions over suffixes of different lengths. Since
max{|A0

f |, |A1
f |} ≥ |A|/2 and max{|B0

f ′ |, |B1
f ′ |} ≤ |B|, we see that

L∞(DA
h , D

B
h ) =

2kA−n

|A|
max

{
|A0
f |, |A1

f |
}
. (14)

Note this distance only depends on the first kA bits of the parity h.
In order to count how many distributions in Dn are inconsistent with the an-

swer µ̂ = 2kA−n/2 given by the adversary we use another probabilistic argument.
Assume that a parity h ∈ Pn is chosen uniformly at random and let f ∈ PkA

be
the parity obtained from the first kA bits of h. Then it is easy to verify that for
a ∈ {0, 1} we have

Eh[|Aaf |] =
|A|
2

+ θA,a, and Vh[|Aaf |] =
|A|
4

+
θA,a

2
. (15)

Using these computations and recalling that α ≥ 1/p(n) and pA = |A|/2kA >
β ≥ 1/q(n), we apply Lemma 1 and get, after some calculations,

Ph
[∣∣∣∣ |Aaf ||A| − 1

2

∣∣∣∣ > α2n−kA

]
≤
p(n)2q(n)

(
2kA + 2q(n)θA,a

)
2n+1 (2n − 2p(n)q(n)|θA,a|)

. (16)

Since kA ≤ n, |θA,a| ≤ 1/2 and θA,0 + θA,1 = 0, a union bound yields

Ph
[∣∣∣∣L∞(DA

h , D
B
h )− 2kA−n

2

∣∣∣∣ > α

]
≤ p(n)2q(n)

2n − p(n)q(n)
. (17)

Therefore, the number of distributions in Dn inconsistent with the answer given
by our adversary in this case is asymptotically bounded from above by p(n)2q(n).

Case 2 is next. Because the adversary has not answered “?” we know that
|A| ≥ 2n+2β − 2θ′A and |B| ≥ 2kBβ. Since kA = n+ 1 it follows that DA

h (λ) = 1



if Dh(A{0, 1}∗) 6= 0, otherwise we define DA
h (λ) = 0. Hence, for any parity h the

supremum distance between DA
h and DB

h can be written as

L∞(DA
h , D

B
h ) = max

{
DA
h (λ),

2kB−n

|B|
max{|B0

f |, |B1
f |}
}

, (18)

where f corresponds to the first kB bits of h. Note that L∞(DA
h , D

B
h ) 6= 1 implies

that Dh(A{0, 1}∗) = 0. Now there are two possibilities. If A01 6= ∅ then for any
parity h we have Dh(A{0, 1}∗) 6= 0 and therefore the answer µ̂ = 1 is consistent
with every parity. On the other hand, A01 = ∅ implies that A = A′ and |A| ≤ 2n

because for each prefix x ∈ {0, 1}n at most one of x0 and x1 belongs to A. In
the latter situation we have Ph[|L∞(DA

h , D
B
h ) − 1| > α] ≤ Ph[L∞(DA

h , D
B
h ) 6=

1] = Ph[Dh(A{0, 1}∗) = 0]. This last probability is bounded by

Ph [|Dh(A{0, 1}∗)− Eh [Dh(A{0, 1}∗)]| ≥ Eh [Dh(A{0, 1}∗)]] , (19)

which in turn can be bounded using Chebyshev’s inequality by

Vh [Df (A{0, 1}∗)]
Eh [Dh(A{0, 1}∗)]2

. (20)

Therefore, by (7) and (9) and the bounds on |A|, θ′A and β, we see that the at
most q(n)2/16 distributions in Dn are inconsistent with the answer µ̂ = 1.

Now we consider case number 3, where k = kA = kB and the adversary
responds µ̂ = 0. Two distinct situations need to be considered: k = n + 1
and k ≤ n. Assume first that k = n + 1. An argument already used in case
2 shows that if both A01 6= ∅ and B01 6= ∅, then for each parity h it holds
that DA

h (λ) = DB
h (λ) = 1 and therefore L∞(DA

h , D
B
h ) = 0 irrespective of h.

In this case the answer is consistent with every distribution. If exactly one of
A01 = ∅ and B01 = ∅ holds, suppose it is A01 = ∅ without loss of generality,
then L∞(DA

h , D
B
h ) 6= 0 whenever Dh(A{0, 1}∗) = 0, which, by case 2, happens

for at most q(n)2/16 distributions in Dn. Now, if both A01 = ∅ and B01 = ∅,
it is easy to see using a union bound that µ̂ = 0 is inconsistent with at most
q(n)2/8 distributions.

Assume now that k ≤ n. Then, from the fact that |A| = |A0
f | + |A1

f | and
|B| = |B0

f |+ |B1
f |, the following expression for the L∞ distance between DA

h and
DB
h can be deduced:

L∞(DA
h , D

B
h ) = 2k−n max

a∈{0,1}

{∣∣∣∣ |Aaf ||A| − |Baf ||B|
∣∣∣∣} = 2k−n

∣∣∣∣∣ |A0
f |
|A|
−
|B0
f |
|B|

∣∣∣∣∣ , (21)

where f ∈ Pk is formed with the first k bits of h. We will show that in this
case µ̂ = 0 is a response consistent with most of the distributions in Dn. Write
Xf = |A0

f |/|A| − |B0
f |/|B| and note that by (15) we have Eh[Xf ] = θA/|A| −

θB/|B|, where, for simplicity, we write θA and θB for θA,0 and θB,0 respectively.
Performing further computations one sees that

Eh
[
X2
f

]
=

1
4|A|

+
1

4|B|
+

θA
|A|2

+
θB
|B|2

. (22)



Combining the last two expressions and observing that θAθB = 0, the following
formula for the variance of Xf is obtained:

Vh[Xf ] =
1

4|A|
+

1
4|B|

+
θA

2|A|2
+

θB
2|B|2

. (23)

Since β > 1/q(n) implies |A|, |B| > 2k/q(n), plugging these bounds in previ-
ous formulas yields:

|Eh[Xf ]| ≤ q(n)
2k+1

, and Vh[Xf ] ≤ q(n)
2k+1

+
q(n)2

22k+1
. (24)

Lemma 1 then yields the bound

Ph[L∞(DA
h , D

B
h ) > α] = Ph[|Xf | > α2n−k] ≤ p(n)2q(n)(1 + q(n)/2n)

2n+1 − 2p(n)q(n)
, (25)

where we have used that α > 1/p(n) and k ≤ n. From this bound, the number of
distributions for which the answer is inconsistent is asymptotically p(n)2q(n)/2.

So far we have seen that, if n is large enough, for any strict L∞-query
issued by L, the answer given by the adversary is inconsistent with at most
max{p(n)2q(n), q(n)2} distributions in Dn. Since there are 2n distributions for
any given n, after sub-exponentially many queries there will be still many differ-
ent distributions in Dn consistent with all the answers provided to the learner.

Now, note that the relative entropy between any two distributions in Dn
is infinite because they have different supports. Thus, for n big enough, if L
outputs a hypothesis in Dn, it will have infinite error with high probability
with respect to the random choice of a target distribution in Dn. Recalling
that for each pair of distributions in Dn we have L1(Df , Dg) = 1, we also get
a lower bound for learning Dn using the variation distance as error measure.
Now assume L outputs some distribution D̂, not necessarily in Dn, such that
KL(Df‖D̂) ≤ ε for some Df ∈ Dn. Then it follows from Pinsker’s inequality [5]
that KL(Dg‖D̂) ≥ (1/2 ln 2)(1−

√
2 ln 2ε)2 for any other distribution Dg different

from Df . Since ε ≤ 1/9, we then have KL(Dg‖D̂) > 2/9. Therefore, if a target
distribution in Dn is chosen at random, then L will have large error with high
probability. ut

4.1 A Lower Bound in Terms of Distinguishability

A lower bound on the complexity of learning the class of PDFA with a given
distinguishability now follows easily using a padding argument. We ignore the
dependence on ε in the statement.

An L∞-query algorithm is (p, q)-bounded if, for every query (A,B, α, β) it
asks, α > 1/p and β > 1/q, where p and q may depend on inputs of the algorithm
and the complexity of the target distribution.

Corollary 2. Let p and q be functions in nO(1) · (1/µ)o(1). For every c < 1,
there is no (p, q)-bounded L∞-query algorithm that, for every n and µ, learns



the class of distributions generated by PDFA with n states and distinguishability
µ with (1/µ)c queries.

Proof. Recall the class of distributionsDk from the proof of Theorem 2. For every
m and k, define the class of distributions Cm,k as follows: for every distribution
D in Dk, there is a distribution in Cm,k that gives probability D(x) to each
string of the form 0mx, and 0 to strings not of this form. Every distribution in
Dk is generated by a PDFA with 2k states and distinguishability 2−k. It follows
that every distribution Cm,k is generated by a PDFA with m + 2k states and
distinguishability also 2−k.

Now let m = m(k) grow as 2o(k). Assume for contradiction the existence of an
algorithm as in the statement of the theorem. This algorithm is (p, q)-bounded
with p and q that grow like (m+ 2k)O(1) · (1/2−k)o(1) = 2o(k). By an immediate
reduction, the algorithm can be used to learn the classes of distributions Dk

with 2kc queries for some c < 1. But since 2kc is in o(2k−o(k)), this contradicts
Theorem 2. ut

5 Conclusion

Let us remark that the lower bound in the previous section, as other lower bounds
for learning from statistical queries, is strangely both information-theoretic and
complexity-theoretic. We know, by the results in [1], that the barrier for learning
PDFA is complexity-theoretic, not information-theoretic. Yet, our result says
that, for algorithms that can only see their target through the lens of statistical
and L∞-queries, the problem becomes information-theoretic.

As open problems on which we are working, we shall mention possible rela-
tions between L∞-queries and other variants of SQ proposed in the literature,
and in particular those by Ben-David et al. [2] for distribution learning. Another
problem is narrowing the gap between lower and upper bound: our lower bound
plus the simulation we describe does not forbid the existence of algorithms that
learn from O(1/µ) samples. Yet, the best bounds we can prove now for the
Clark-Thollard algorithm and its variants are larger, namely Θ(1/µ2) at best.
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