
Improving Adaptive Bagging Methods
for Evolving Data Streams

A. Bifet, G. Holmes, B. Pfahringer, and R. Gavaldà

University of Waikato
Hamilton, New Zealand

Laboratory for Relational Algorithmics, Complexity and Learning LARCA
UPC-Barcelona Tech, Catalonia

Nanjing, 4 November 2009
1st Asian Conference on Machine Learning (ACML’09)

Motivation

MOA Software for Mining Data Streams
Build a useful software mining for massive data sets

Bagging for data streams
Improve accuracy on classification methods for data
streams

2 / 26

Data stream classification cycle

1 Process an example at a time,
and inspect it only once (at
most)

2 Use a limited amount of
memory

3 Work in a limited amount of
time

4 Be ready to predict at any
point

3 / 26

Realtime analytics: from Databases to Dataflows

Data streams
Data streams are ordered datasets
Not all datasets are data streams
All dataset may be processed incrementally as a data
stream

MOA: Massive Online Analysis
Faster Mining Software using less resources

Instant mining: more for less

4 / 26

What is MOA?

{M}assive {O}nline {A}nalysis is a framework for online learning
from data streams.

It is closely related to WEKA
It includes a collection of offline and online as well as tools
for evaluation:

boosting and bagging
Hoeffding Trees

with and without Naïve Bayes classifiers at the leaves.

5 / 26

WEKA

Waikato Environment for Knowledge Analysis
Collection of state-of-the-art machine learning algorithms
and data processing tools implemented in Java

Released under the GPL
Support for the whole process of experimental data mining

Preparation of input data
Statistical evaluation of learning schemes
Visualization of input data and the result of learning

Used for education, research and applications
Complements “Data Mining” by Witten & Frank

6 / 26

WEKA: the bird

7 / 26

MOA: the bird

The Moa (another native NZ bird) is not only flightless, like the
Weka, but also extinct.

8 / 26

MOA: the bird

The Moa (another native NZ bird) is not only flightless, like the
Weka, but also extinct.

8 / 26

MOA: the bird

The Moa (another native NZ bird) is not only flightless, like the
Weka, but also extinct.

8 / 26

MOA: the bird

The Moa (another native NZ bird) is not only flightless, like the
Weka, but also extinct.

8 / 26

Concept Drift Framework

t

f (t) f (t)

α

α

t0
W

0.5

1

Definition
Given two data streams a, b, we define c = a⊕W

t0 b as the data
stream built joining the two data streams a and b

Pr[c(t) = b(t)] = 1/(1+ e−4(t−t0)/W).
Pr[c(t) = a(t)] = 1−Pr[c(t) = b(t)]

9 / 26

Concept Drift Framework

t

f (t) f (t)

α

α

t0
W

0.5

1

Example

(((a⊕W0
t0 b)⊕W1

t1 c)⊕W2
t2 d) . . .

(((SEA9⊕W
t0 SEA8)⊕W

2t0
SEA7)⊕W

3t0
SEA9.5)

CovPokElec = (CoverType⊕5,000
581,012 Poker)⊕5,000

1,000,000 ELEC2

9 / 26

New Ensemble Methods For Evolving Data Streams

New Ensemble Methods For Evolving Streams (KDD’09)
a new experimental data stream framework for studying
concept drift
two new variants of Bagging:

ADWIN Bagging
Adaptive-Size Hoeffding Tree (ASHT) Bagging.

an evaluation study on synthetic and real-world datasets

10 / 26

Outline

1 Adaptive-Size Hoeffding Tree bagging

2 ADWIN Bagging

3 Empirical evaluation

11 / 26

Adaptive-Size Hoeffding Tree

T1 T2 T3 T4

Ensemble of trees of different size
each tree has a maximum size
after one node splits, it deletes some nodes to reduce its
size if the size of the tree is higher than the maximum value

12 / 26

Adaptive-Size Hoeffding Tree

T1 T2 T3 T4

Ensemble of trees of different size
smaller trees adapt more quickly to changes,
larger trees do better during periods with little change
diversity

12 / 26

Adaptive-Size Hoeffding Tree

0,2

0,21

0,22

0,23

0,24

0,25

0,26

0,27

0,28

0,29

0,3

0 0,1 0,2 0,3 0,4 0,5 0,6

Kappa

E
rr

o
r

0,25

0,255

0,26

0,265

0,27

0,275

0,28

0,1 0,12 0,14 0,16 0,18 0,2 0,22 0,24 0,26 0,28 0,3

Kappa

E
rr

o
r

Figure: Kappa-Error diagrams for ASHT bagging (left) and bagging
(right) on dataset RandomRBF with drift, plotting 90 pairs of
classifiers.

13 / 26

Improvement for ASHT Bagging Method

Improvement for ASHT Bagging ensemble method
Bagging using trees of different size

add a change detector for each tree in the ensemble
DDM: Gama et al.
EDDM: Baena, del Campo, Fidalgo et al.

14 / 26

Outline

1 Adaptive-Size Hoeffding Tree bagging

2 ADWIN Bagging

3 Empirical evaluation

15 / 26

ADWIN Bagging

ADWIN

An adaptive sliding window whose size is recomputed online
according to the rate of change observed.

ADWIN has rigorous guarantees (theorems)
On ratio of false positives and negatives
On the relation of the size of the current window and
change rates

ADWIN Bagging
When a change is detected, the worst classifier is removed and
a new classifier is added.

16 / 26

Optimal Change Detector and Predictor
ADWIN

High accuracy
Fast detection of change
Low false positives and false negatives ratios
Low computational cost: minimum space and time needed
Theoretical guarantees
No parameters needed
Estimator with Memory and Change Detector

17 / 26

Algorithm ADaptive Sliding WINdow
ADWIN

Example

W= 101010110111111
W0= 1

ADWIN: ADAPTIVE WINDOWING ALGORITHM

1 Initialize Window W
2 for each t > 0
3 do W ←W ∪{xt} (i.e., add xt to the head of W)
4 repeat Drop elements from the tail of W
5 until |µ̂W0− µ̂W1 |< εc holds
6 for every split of W into W = W0 ·W1
7 Output µ̂W

18 / 26

Algorithm ADaptive Sliding WINdow
ADWIN

Example

W= 101010110111111
W0= 1 W1 = 01010110111111

ADWIN: ADAPTIVE WINDOWING ALGORITHM

1 Initialize Window W
2 for each t > 0
3 do W ←W ∪{xt} (i.e., add xt to the head of W)
4 repeat Drop elements from the tail of W
5 until |µ̂W0− µ̂W1 |< εc holds
6 for every split of W into W = W0 ·W1
7 Output µ̂W

18 / 26

Algorithm ADaptive Sliding WINdow
ADWIN

Example

W= 101010110111111
W0= 10 W1 = 1010110111111

ADWIN: ADAPTIVE WINDOWING ALGORITHM

1 Initialize Window W
2 for each t > 0
3 do W ←W ∪{xt} (i.e., add xt to the head of W)
4 repeat Drop elements from the tail of W
5 until |µ̂W0− µ̂W1 |< εc holds
6 for every split of W into W = W0 ·W1
7 Output µ̂W

18 / 26

Algorithm ADaptive Sliding WINdow
ADWIN

Example

W= 101010110111111
W0= 101 W1 = 010110111111

ADWIN: ADAPTIVE WINDOWING ALGORITHM

1 Initialize Window W
2 for each t > 0
3 do W ←W ∪{xt} (i.e., add xt to the head of W)
4 repeat Drop elements from the tail of W
5 until |µ̂W0− µ̂W1 |< εc holds
6 for every split of W into W = W0 ·W1
7 Output µ̂W

18 / 26

Algorithm ADaptive Sliding WINdow
ADWIN

Example

W= 101010110111111
W0= 1010 W1 = 10110111111

ADWIN: ADAPTIVE WINDOWING ALGORITHM

1 Initialize Window W
2 for each t > 0
3 do W ←W ∪{xt} (i.e., add xt to the head of W)
4 repeat Drop elements from the tail of W
5 until |µ̂W0− µ̂W1 |< εc holds
6 for every split of W into W = W0 ·W1
7 Output µ̂W

18 / 26

Algorithm ADaptive Sliding WINdow
ADWIN

Example

W= 101010110111111
W0= 10101 W1 = 0110111111

ADWIN: ADAPTIVE WINDOWING ALGORITHM

1 Initialize Window W
2 for each t > 0
3 do W ←W ∪{xt} (i.e., add xt to the head of W)
4 repeat Drop elements from the tail of W
5 until |µ̂W0− µ̂W1 |< εc holds
6 for every split of W into W = W0 ·W1
7 Output µ̂W

18 / 26

Algorithm ADaptive Sliding WINdow
ADWIN

Example

W= 101010110111111
W0= 101010 W1 = 110111111

ADWIN: ADAPTIVE WINDOWING ALGORITHM

1 Initialize Window W
2 for each t > 0
3 do W ←W ∪{xt} (i.e., add xt to the head of W)
4 repeat Drop elements from the tail of W
5 until |µ̂W0− µ̂W1 |< εc holds
6 for every split of W into W = W0 ·W1
7 Output µ̂W

18 / 26

Algorithm ADaptive Sliding WINdow
ADWIN

Example

W= 101010110111111
W0= 1010101 W1 = 10111111

ADWIN: ADAPTIVE WINDOWING ALGORITHM

1 Initialize Window W
2 for each t > 0
3 do W ←W ∪{xt} (i.e., add xt to the head of W)
4 repeat Drop elements from the tail of W
5 until |µ̂W0− µ̂W1 |< εc holds
6 for every split of W into W = W0 ·W1
7 Output µ̂W

18 / 26

Algorithm ADaptive Sliding WINdow
ADWIN

Example

W= 101010110111111
W0= 10101011 W1 = 0111111

ADWIN: ADAPTIVE WINDOWING ALGORITHM

1 Initialize Window W
2 for each t > 0
3 do W ←W ∪{xt} (i.e., add xt to the head of W)
4 repeat Drop elements from the tail of W
5 until |µ̂W0− µ̂W1 |< εc holds
6 for every split of W into W = W0 ·W1
7 Output µ̂W

18 / 26

Algorithm ADaptive Sliding WINdow
ADWIN

Example

W= 101010110111111 |µ̂W0− µ̂W1 | ≥ εc : CHANGE DET.!

W0= 101010110 W1 = 111111

ADWIN: ADAPTIVE WINDOWING ALGORITHM

1 Initialize Window W
2 for each t > 0
3 do W ←W ∪{xt} (i.e., add xt to the head of W)
4 repeat Drop elements from the tail of W
5 until |µ̂W0− µ̂W1 |< εc holds
6 for every split of W into W = W0 ·W1
7 Output µ̂W

18 / 26

Algorithm ADaptive Sliding WINdow
ADWIN

Example

W= 101010110111111 Drop elements from the tail of W
W0= 101010110 W1 = 111111

ADWIN: ADAPTIVE WINDOWING ALGORITHM

1 Initialize Window W
2 for each t > 0
3 do W ←W ∪{xt} (i.e., add xt to the head of W)
4 repeat Drop elements from the tail of W
5 until |µ̂W0− µ̂W1 |< εc holds
6 for every split of W into W = W0 ·W1
7 Output µ̂W

18 / 26

Algorithm ADaptive Sliding WINdow
ADWIN

Example

W= 01010110111111 Drop elements from the tail of W
W0= 101010110 W1 = 111111

ADWIN: ADAPTIVE WINDOWING ALGORITHM

1 Initialize Window W
2 for each t > 0
3 do W ←W ∪{xt} (i.e., add xt to the head of W)
4 repeat Drop elements from the tail of W
5 until |µ̂W0− µ̂W1 |< εc holds
6 for every split of W into W = W0 ·W1
7 Output µ̂W

18 / 26

Algorithm ADaptive Sliding WINdow
ADWIN

Theorem
At every time step we have:

1 (False positive rate bound). If µt remains constant within
W, the probability that ADWIN shrinks the window at this
step is at most δ .

2 (False negative rate bound). Suppose that for some
partition of W in two parts W0W1 (where W1 contains the
most recent items) we have |µW0−µW1 |> 2εc . Then with
probability 1−δ ADWIN shrinks W to W1, or shorter.

ADWIN tunes itself to the data stream at hand, with no need for
the user to hardwire or precompute parameters.

19 / 26

Algorithm ADaptive Sliding WINdow
ADWIN

ADWIN using a Data Stream Sliding Window Model,
can provide the exact counts of 1’s in O(1) time per point.
tries O(logW) cutpoints
uses O(1

ε
logW) memory words

the processing time per example is O(logW) (amortized
and worst-case).

Sliding Window Model

1010101 101 11 1 1
Content: 4 2 2 1 1
Capacity: 7 3 2 1 1

20 / 26

ADWIN bagging using Hoeffding Adaptive Trees
Decision Trees: Hoeffding Adaptive Tree

CVFDT: Hulten, Spencer and Domingos
No theoretical guarantees on the error rate of CVFDT
Parameters needed : size of window, number of
examples,...

Hoeffding Adaptive Tree:
replace frequency statistics counters by estimators

don’t need a window to store examples

use a change detector with theoretical guarantees to
substitute trees

Advantages:
1 Theoretical guarantees
2 No Parameters

21 / 26

Outline

1 Adaptive-Size Hoeffding Tree bagging

2 ADWIN Bagging

3 Empirical evaluation

22 / 26

Empirical evaluation

Dataset Most Accurate Method
Hyperplane Drift 0.0001 Bag10 ASHT W+R
Hyperplane Drift 0.001 DDM Bag10 ASHT W
SEA W = 50 BagADWIN 10 HAT
SEA W = 50000 BagADWIN 10 HAT
RandomRBF No Drift 50 centers Bag 10 HT
RandomRBF Drift .0001 50 centers BagADWIN 10 HAT
RandomRBF Drift .001 50 centers DDM Bag10 ASHT W
RandomRBF Drift .001 10 centers BagADWIN 10 HAT
Cover Type DDM Bag10 ASHT W
Poker BagADWIN 10 HAT
Electricity DDM Bag10 ASHT W
CovPokElec BagADWIN 10 HAT

23 / 26

Empirical evaluation

SEA
W= 50000

Time Acc. Mem.
BagADWIN 10 HAT 154.91 88.88 ± 0.05 2.35
DDM Bag10 ASHT W 44.02 88.72 ± 0.05 0.65
NaiveBayes 5.52 84.60 ± 0.03 0.00
NBADWIN 12.40 87.83 ± 0.07 0.02
HT 7.20 85.02 ± 0.11 0.33
HT DDM 7.88 88.17 ± 0.18 0.16
HAT 20.96 88.40 ± 0.07 0.18
BagADWIN 10 HT 53.15 88.58 ± 0.10 0.88
Bag10 HT 30.88 85.38 ± 0.06 3.36
Bag10 ASHT W+R 33.56 88.51 ± 0.06 0.84

24 / 26

Empirical evaluation

Accuracy

71,4

71,9

72,4

72,9

73,4

73,9

10.000 140.000 270.000 400.000 530.000 660.000 790.000 920.000

Instances

A
c

c
u

ra
c

y
 (

%
)

BagAdwin HAT

DDM BagHAST

EDDM BagHast

DDM HT

EDDM HT

BagAdwin HT

BagHAST

Figure: Accuracy on dataset LED with three concept drifts.

25 / 26

Summary

http://www.cs.waikato.ac.nz/∼abifet/MOA/

Conclusions
New improvements for ensemble bagging methods:

Adaptive-Size Hoeffding Tree bagging using change
detection methods
ADWIN bagging using Hoeffding Adaptive Trees

MOA is easy to use and extend

Future Work
Extend MOA to more data mining and learning methods.

26 / 26

	Adaptive-Size Hoeffding Tree bagging
	ADWIN Bagging
	Empirical evaluation

