
Improving Adaptive Bagging Methods for Evolving
Data Streams

Abstract. We propose two new improvements for bagging methods on evolv-
ing data streams. Recently, two new variants of Bagging were proposed [5] :
ADWIN Bagging and Adaptive-Size Hoeffding Tree (ASHT) Bagging. ASHT
Bagging uses trees of different sizes, and ADWIN Bagging uses ADWIN as a
change detector to decide when to discard underperforming ensemble members.
We improve ADWIN Bagging using Hoeffding Adaptive Trees, trees that can
adaptively learn from data streams that change over time. To speed up the time
for adapting to change of Adaptive-Size Hoeffding Tree (ASHT) Bagging, we
add an error change detector for each classifier. We test our improvements by
performing an evaluation study on synthetic and real-world datasets comprising
up to ten million examples.

1 Introduction

Data streams pose several challenges on data mining algorithm design. First, algorithms
must make use of limited resources (time and memory). Second, by necessity they must
deal with data whose nature or distribution changes over time. In turn, dealing with
time-changing data requires strategies for detecting and quantifying change, forget-
ting stale examples, and for model revision. Fairly generic strategies exist for detecting
change and deciding when examples are no longer relevant. Model revision strategies,
on the other hand, are in most cases method-specific.

The following constraints apply in the Data Stream model:

1. Data arrives as a potentially infinite sequence. Thus, it is impossible to store it all.
Therefore, only a small summary can be computed and stored.

2. The speed of arrival of data is fast, so each particular element has to be processed
essentially in real time, and then discarded.

3. The distribution generating the items may change over time. Thus, data from the
past may become irrelevant (or even harmful) for the current prediction.

Under these constraints the main properties of an ideal classification method are
the following: high accuracy and fast adaption to change, low computational cost in
both space and time, theoretical performance guarantees, and a minimal number of
parameters.

Ensemble methods are combinations of several models whose individual predictions
are combined in some manner (for example, by averaging or voting) to form a final
prediction. Often, ensemble learning classifiers provide superior predictive performance
and they are easier to scale and parallelize than single classifier methods.

In [5] two new state-of-the-art bagging methods were presented: ASHT Bagging
using trees of different sizes, and ADWIN Bagging using a change detector to decide



2

when to discard underperforming ensemble members. This paper improves on ASHT
Bagging by speeding up the time taken to adapt to changes in the distribution generating
the stream. It improves on ADWIN Bagging by employing Hoeffding Adaptive Trees,
trees that can adaptively learn from evolving data streams. The paper is structured as
follows: the state-of-the-art Bagging methods are presented in Section 2. Improvements
to these methods are presented in Section 3. An experimental evaluation is conducted
in Section 4. Finally, conclusions and suggested items for future work are presented in
Section 5.

2 Previous Work

2.1 Bagging using trees of different size

T1 T2 T3 T4

Fig. 1. An ensemble of trees of different size

In [5], a new method of bagging was presented using Hoeffding Trees of different
sizes. A Hoeffding tree [8] is an incremental, anytime decision tree induction algorithm
that is capable of learning from massive data streams, assuming that the distribution
generating examples does not change over time. Hoeffding trees exploit the fact that
a small sample can often be enough to choose an optimal splitting attribute. This idea
is supported mathematically by the Hoeffding bound, which quantifies the number of
observations (in our case, examples) needed to estimate some statistics within a pre-
scribed precision (in our case, the goodness of an attribute). More precisely, the Ho-
effding bound states that with probability 1− δ, the true mean of a random variable of
range R will not differ from the estimated mean after n independent observations by
more than:

ε =

√
R2 ln(1/δ)

2n
.

A theoretically appealing feature of Hoeffding Trees not shared by other incremental
decision tree learners is that it has sound guarantees of performance. Using the Hoeffd-
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ing bound one can show that its output is asymptotically nearly identical to that of a
non-incremental learner using infinitely many examples. See [8] for details.

The Adaptive-Size Hoeffding Tree (ASHT) is derived from the Hoeffding Tree al-
gorithm with the following differences:

– it has a value for the maximum number of split nodes, or size
– after one node splits, if the number of split nodes of the ASHT tree is higher than

the maximum value, then it deletes some nodes to reduce its size

The intuition behind this method is as follows: smaller trees adapt more quickly to
changes, and larger trees perform better during periods with little or no change, simply
because they were built on more data. Trees limited to size s will be reset about twice
as often as trees with a size limit of 2s. This creates a set of different reset-speeds for
an ensemble of such trees, and therefore a subset of trees that are a good approximation
for the current rate of change. It is important to note that resets will happen all the time,
even for stationary datasets, but this behaviour should not have a negative impact on the
ensemble’s predictive performance.

When the tree size exceeds the maximun size value, there are two different delete
options:

– delete the oldest node, the root, and all of its children except the one where the split
has been made. After that, the root of the child not deleted becomes the new root.

– delete all the nodes of the tree, that is, restart from a new root.

In [5] a new bagging method was presented that uses these Adaptive-Size Hoeffding
Trees and that sets the size for each tree. The maximum allowed size for the n-th ASHT
tree is twice the maximum allowed size for the (n− 1)-th tree. Moreover, each tree has
a weight proportional to the inverse of the square of its error, and it monitors its error
with an exponential weighted moving average (EWMA) with α = .01. The size of the
first tree is 2.

With this new method, the authors attempted to improve bagging performance by
increasing tree diversity. It has been observed [15] that boosting tends to produce a more
diverse set of classifiers than bagging, and this has been cited as a factor in increased
performance.

2.2 Bagging using ADWIN

ADWIN [3] is a change detector and estimator that solves in a well-specified way the
problem of tracking the average of a stream of bits or real-valued numbers. ADWIN
keeps a variable-length window of recently seen items, with the property that the win-
dow has the maximal length statistically consistent with the hypothesis “there has been
no change in the average value inside the window”.

More precisely, an older fragment of the window is dropped if and only if there
is enough evidence that its average value differs from that of the rest of the window.
This has two consequences: first, that change is reliably declared whenever the window
shrinks; and second, that at any time the average over the existing window can be re-
liably taken as an estimate of the current average in the stream (barring a very small
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or very recent change that is still not statistically visible). A formal and quantitative
statement of these two points (in the form of a theorem) appears in [3].

ADWIN is parameter- and assumption-free in the sense that it automatically detects
and adapts to the current rate of change. Its only parameter is a confidence bound δ,
indicating how confident we want to be in the algorithm’s output, a property inherent to
all algorithms dealing with random processes.

Also important for our purposes, ADWIN does not maintain the window explicitly,
but compresses it using a variant of the exponential histogram technique. This means
that it keeps a window of length W using only O(logW ) memory and O(logW ) pro-
cessing time per item.

Bagging using ADWIN is implemented as ADWIN Bagging where the Bagging
method is the online bagging method of Oza and Rusell [17] with the addition of the
ADWIN algorithm as a change detector. When a change is detected, the worst classifier
of the ensemble of classifiers is removed and a new classifier is added to the ensemble.

3 Improvements for Adaptive Bagging Methods

In this section we propose two new improvements for the adaptive bagging methods
explained in the previous section.

3.1 ADWIN bagging using Hoeffding Adaptive Trees

The basic idea is to use adaptive Hoeffding trees instead of non-adaptive Hoeffding trees
as the base classifier for the bagging ensemble method. We use the Hoeffding Adaptive
Trees proposed in [4], where a new method for managing alternate trees is proposed.
The general idea is simple: we place ADWIN instances at every node that will raise an
alert whenever something worth attention happens at the node.

We use the variant of the Hoeffding Adaptive Tree algorithm (HAT for short) that
uses ADWIN as a change detector. It uses one instance of ADWIN in each node, as
a change detector, to monitor the classification error rate at that node. A significant
increase in that rate indicates that the data is changing with respect to the time at which
the subtree was created. This was the approach used by Gama et al. in [10], using
another change detector.

When any instance of ADWIN at a node detects change, we create a new alternate
tree without splitting any attribute. Using two ADWIN instances at every node, we mon-
itor the average error of the subtree rooted at this node and the average error of the new
alternate subtree. When there is enough evidence (as witnessed by ADWIN) that the new
alternate tree is doing better than the original decision subtree, we replace the original
decision subtree by the new alternate subtree.

3.2 DDM Bagging using trees of different size

We improve the Bagging using trees of different size, by adding a change detector for
each Hoeffding tree to speed up the adaption to the evolving stream.
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We use two drift detection methods (DDM and EDDM) proposed by Gama et al. [9]
and Baena-Garcı́a et al. [2]. These methods control the number of errors produced by the
learning model during prediction. They compare the statistics of two windows: the first
contains all of the data, and the second contains only the data from the beginning until
the number of errors increases. Their methods do not store these windows in memory.
They keep only statistics and a window of recent errors data.

The drift detection method (DDM) uses the number of errors in a sample of n exam-
ples, modelled by a binomial distribution. For each point i in the sequence that is being
sampled, the error rate is the probability of misclassifying (pi), with standard deviation
given by si =

√
pi(1− pi)/i. They assume (as stated in the PAC learning model [16])

that the error rate of the learning algorithm (pi) will decrease while the number of ex-
amples increases if the distribution of the examples is stationary. A significant increase
in the error of the algorithm, suggests that the class distribution is changing and, hence,
the actual decision model is supposed to be inappropriate. Thus, they store the values of
pi and si when pi + si reaches its minimum value during the process (obtaining ppmin

and smin). It then checks when the following conditions are triggered:

– pi + si ≥ pmin + 2 · smin for the warning level. Beyond this level, the examples
are stored in anticipation of a possible change of context.

– pi + si ≥ pmin + 3 · smin for the drift level. Beyond this level the concept drift is
supposed to be true, the model induced by the learning method is reset and a new
model is learnt using the examples stored since the warning level triggered. The
values for pmin and smin are reset too.

This approach is good at detecting abrupt changes and gradual changes when the
gradual change is not very slow, but has difficulties when the change is gradual and
slow. In that case, the examples will be stored for a long time, the drift level then takes
too long to trigger and the examples in memory can be exceeded.

Baena-Garcı́a et al. proposed a new method EDDM [2] in order to improve DDM.
It is based on the estimated distribution of the distances between classification errors.
The window resize procedure is governed by the same heuristics.

4 Comparative Experimental Evaluation

Massive Online Analysis (MOA) [13] is a software environment for implementing algo-
rithms and running experiments for online learning from data streams. The data stream
evaluation framework and all algorithms evaluated in this paper were implemented in
the Java programming language extending the MOA software. MOA includes a col-
lection of offline and online methods as well as tools for evaluation. In particular, it
implements boosting, bagging, and Hoeffding Trees, all with and without Naı̈ve Bayes
classifiers at the leaves.

One of the key data structures used in MOA is the description of an example from
a data stream. This structure borrows from WEKA, where an example is represented
by an array of double precision floating point values. This provides freedom to store all
necessary types of value – numeric attribute values can be stored directly, and discrete
attribute values and class labels are represented by integer index values that are stored as
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floating point values in the array. Double precision floating point values require storage
space of 64 bits, or 8 bytes. This detail can have implications for memory usage.

We use the new experimental framework for concept drift presented in [5]. Consid-
ering data streams as data generated from pure distributions, we can model a concept
drift event as a weighted combination of two pure distributions that characterizes the
target concepts before and after the drift. This framework defines the probability that
every new instance of the stream belongs to the new concept after the drift. It uses the
sigmoid function, as an elegant and practical solution.

t

f(t)

α

α

t0

W

0.5

1

Fig. 2. A sigmoid function f(t) = 1/(1 + e−s(t−t0)).

We see from Figure 2 that the sigmoid function

f(t) = 1/(1 + e−s(t−t0))

has a derivative at the point t0 equal to f ′(t0) = s/4. The tangent of angle α is equal to
this derivative, tanα = s/4. We observe that tanα = 1/W , and as s = 4 tanα then
s = 4/W . So the parameter s in the sigmoid gives the length of W and the angle α.
In this sigmoid model we only need to specify two parameters : t0 the point of change,
and W the length of change.

Definition 1. Given two data streams a, b, we define c = a ⊕W
t0 b as the data stream

built joining the two data streams a and b, where t0 is the point of change, W is the
length of change and

– Pr[c(t) = a(t)] = e−4(t−t0)/W /(1 + e−4(t−t0)/W )
– Pr[c(t) = b(t)] = 1/(1 + e−4(t−t0)/W ).

In order to create a data stream with multiple concept changes, we can build new data
streams joining different concept drifts:

(((a⊕W0
t0 b)⊕W1

t1 c)⊕W2
t2 d) . . .
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4.1 Datasets for concept drift

Synthetic data has several advantages – it is easier to reproduce and there is little cost
in terms of storage and transmission. For this paper we use the data generators most
commonly found in the literature.

SEA Concepts Generator This artificial dataset contains abrupt concept drift, first in-
troduced in [20]. It is generated using three attributes, where only the two first at-
tributes are relevant. All three attributes have values between 0 and 10. The points
of the dataset are divided into 4 blocks with different concepts. In each block, the
classification is done using f1 + f2 ≤ θ, where f1 and f2 represent the first two
attributes and θ is a threshold value. The most frequent values are 9, 8, 7 and 9.5
for the data blocks. In our framework, SEA concepts are defined as follows:

(((SEA9 ⊕W
t0 SEA8)⊕W

2t0 SEA7)⊕W
3t0 SEA9.5)

Rotating Hyperplane It was used as testbed for CVFDT versus VFDT in [14]. A hy-
perplane in d-dimensional space is the set of points x that satisfy

d∑
i=1

wixi = w0 =
d∑

i=1

wi

where xi, is the ith coordinate of x. Examples for which
∑d

i=1 wixi ≥ w0 are la-
beled positive, and examples for which

∑d
i=1 wixi < w0 are labeled negative. Hy-

perplanes are useful for simulating time-changing concepts, because we can change
the orientation and position of the hyperplane in a smooth manner by changing the
relative size of the weights. We introduce change to this dataset adding drift to each
weight attribute wi = wi + dσ, where σ is the probability that the direction of
change is reversed and d is the change applied to every example.

Random RBF Generator This generator was devised to offer an alternate complex
concept type that is not straightforward to approximate with a decision tree model.
The RBF (Radial Basis Function) generator works as follows: A fixed number of
random centroids are generated. Each center has a random position, a single stan-
dard deviation, class label and weight. New examples are generated by selecting
a center at random, taking weights into consideration so that centers with higher
weight are more likely to be chosen. A random direction is chosen to offset the
attribute values from the central point. The length of the displacement is randomly
drawn from a Gaussian distribution with standard deviation determined by the cho-
sen centroid. The chosen centroid also determines the class label of the example.
This effectively creates a normally distributed hypersphere of examples surround-
ing each central point with varying densities. Only numeric attributes are generated.
Drift is introduced by moving the centroids with constant speed. This speed is ini-
tialized by a drift parameter.

LED Generator This data source originates from the CART book [6]. An implemen-
tation in C was donated to the UCI [1] machine learning repository by David Aha.
The goal is to predict the digit displayed on a seven-segment LED display, where
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each attribute has a 10% chance of being inverted. It has an optimal Bayes classi-
fication rate of 74%. The particular configuration of the generator used for experi-
ments (led) produces 24 binary attributes, 17 of which are irrelevant.

Data streams may be considered infinite sequences of (x, y) where x is the feature
vector and y the class label. Zhang et al. [21] observe that p(x, y) = p(x|t) · p(y|x) and
categorize concept drift in two types:

– Loose Concept Drifting (LCD) when concept drift is caused only by the change of
the class prior probability p(y|x),

– Rigorous Concept Drifting (RCD) when concept drift is caused by the change of
the class prior probability p(y|x) and the conditional probability p(x|t)

Note that the Random RBF Generator has RCD drift, and the rest of the dataset
generators have LCD drift.

4.2 Real-World Data

It is not easy to find large real-world datasets for public benchmarking, especially with
substantial concept change. The UCI machine learning repository [1] contains some
real-world benchmark data for evaluating machine learning techniques. We consider
three of the largest: Forest Covertype, Poker-Hand, and Electricity.

Forest Covertype Contains the forest cover type for 30 x 30 meter cells obtained from
US Forest Service (USFS) Region 2 Resource Information System (RIS) data. It
contains 581, 012 instances and 54 attributes, and it has been used in several papers
on data stream classification [11, 18].

Poker-Hand Consists of 1, 000, 000 instances and 11 attributes. Each record of the
Poker-Hand dataset is an example of a hand consisting of five playing cards drawn
from a standard deck of 52. Each card is described using two attributes (suit and
rank), for a total of 10 predictive attributes. There is one Class attribute that de-
scribes the “Poker Hand”. The order of cards is important, which is why there are
480 possible Royal Flush hands instead of 4.

Electricity Is another widely used dataset described by M. Harries [12] and analysed
by Gama [9]. This data was collected from the Australian New South Wales Elec-
tricity Market. In this market, the prices are not fixed and are affected by demand
and supply of the market. The prices in this market are set every five minutes. The
ELEC dataset contains 45, 312 instances. Each example of the dataset refers to a
period of 30 minutes, i.e. there are 48 instances for each time period of one day.
The class label identifies the change of the price related to a moving average of
the last 24 hours. The class level only reflect deviations of the price on a one day
average and removes the impact of longer term price trends.

The size of these datasets is small, compared to tens of millions of training ex-
amples of synthetic datasets: 45, 312 for ELEC dataset, 581, 012 for CoverType, and
1, 000, 000 for Poker-Hand. Another important fact is that we do not know when drift
occurs or indeed if there is any drift. We may simulate RCD concept drift, joining the
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Hyperplane Hyperplane SEA
Drift .0001 Drift .001 W= 50000

Time Acc. Mem. Time Acc. Mem. Time Acc. Mem.
BagADWIN 10 HAT 3025.87 90.80 9.91 2834.85 90.02 1.23 154.91 89.02 2.35
DDM Bag10 ASHT W 1321.64 91.57 0.85 1351.16 91.23 2.10 44.02 88.80 0.65
EDDM Bag10 ASHT W 1362.31 91.39 3.15 1371.46 90.96 2.77 48.95 88.75 0.90
NaiveBayes 86.97 84.37 0.01 86.87 73.69 0.01 5.52 83.87 0.00
NBADWIN 308.85 91.40 0.06 295.19 90.68 0.06 12.40 87.58 0.02
HT 157.71 86.39 9.57 159.43 80.70 10.41 7.20 84.87 0.33
HT DDM 174.10 89.28 0.04 180.51 88.48 0.01 7.88 88.07 0.16
HT EDDM 207.47 88.95 13.23 193.07 87.64 2.52 8.52 87.64 0.06
HAT 500.81 89.88 1.72 431.6 88.72 0.15 20.96 88.32 0.18
BagADWIN 10 HT 1306.22 91.16 11.40 1308.08 90.48 5.52 53.15 88.53 0.88
Bag10 HT 1236.92 87.68 108.75 1253.07 81.80 114.14 30.88 85.34 3.36
Bag10 ASHT 1060.37 91.11 2.68 1070.44 90.08 2.69 35.30 87.57 0.91
Bag10 ASHT W 1055.87 91.40 2.68 1073.96 90.65 2.69 35.69 87.91 0.91
Bag10 ASHT R 995.06 91.47 2.95 1016.48 90.61 2.14 33.74 88.07 0.84
Bag10 ASHT W+R 996.52 91.57 2.95 1024.02 90.94 2.14 33.56 88.30 0.84
Bag5 ASHT W+R 551.53 90.75 0.08 562.09 90.57 0.09 20.00 87.99 0.05
OzaBoost 974.69 87.01 130.00 959.14 82.56 123.75 39.97 86.17 4.00

Table 1. Comparison of algorithms. Accuracy is measured as the final percentage of examples
correctly classified over the 1 or 10 million test/train interleaved evaluation. Time is measured
in seconds, and memory in MB. The best individual accuracies are indicated in boldface. Note
that due to the large number of test examples all differences are statistically significant, but these
differences may not be meaningful in practise.

three datasets, merging attributes, and supposing that each dataset corresponds to a dif-
ferent concept.

CovPokElec = (CoverType⊕5,000
581,012 Poker)⊕5,000

1,000,000 ELEC

As all examples need to have the same number of attributes, we simple concatenate
all the attributes, and we set a number of classes that is the maximum number of classes
of all the datasets.

4.3 Results

We use the datasets for evaluation explained in the previous sections. The experiments
were performed on a 2.0 GHz Intel Core Duo PC machine with 2 Gigabyte main mem-
ory, running Ubuntu 8.10. The evaluation methodology used was Interleaved Test-Then-
Train: every example was used for testing the model before using it to train. This inter-
leaved test followed by train procedure was carried out on 10 million examples from the
hyperplane and RandomRBF datasets, and one million examples from the SEA dataset.
Tables 1 and 2 reports the final accuracy, and speed of the classification models induced
on synthetic data. Table 3 shows the results for real datasets: Forest CoverType, Poker
Hand, and CovPokElec. The results for the Electricity dataset were structurally similar
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RandomRBF RandomRBF RandomRBF
No Drift Drift .0001 Drift .001

50 centers 50 centers 50 centers
Time Acc. Mem. Time Acc. Mem. Time Acc. Mem.

BagADWIN 10 HAT 5378.75 95.40 119.17 2706.91 86.73 0.51 1976.62 69.09 0.10
DDM Bag10 ASHT W 1230.43 93.01 3.21 1349.65 83.42 0.53 1441.22 69.85 3.09
EDDM Bag10 ASHT W 1317.58 93.29 3.76 1366.65 84.30 0.71 1422.31 70.29 0.71
NaiveBayes 111.12 72.04 0.01 111.47 53.21 0.01 113.37 53.17 0.01
NBADWIN 396.01 72.04 0.08 272.58 68.07 0.05 249.1 62.20 0.04
HT 154.67 93.64 6.86 189.25 63.64 9.86 186.47 55.48 8.90
HT DDM 185.15 93.64 13.72 199.95 76.49 0.02 206.41 64.09 0.03
HT EDDM 185.89 93.66 13.81 214.55 75.55 0.09 203.41 64.00 0.02
HAT 794.48 93.63 9.28 413.53 79.09 0.09 294.94 65.29 0.01
BagADWIN 10 HT 1238.50 95.29 67.79 1326.12 85.23 0.26 1354.03 67.18 0.03
Bag10 HT 995.46 95.30 71.26 1362.66 71.08 106.20 1240.89 58.15 88.52
Bag10 ASHT 1009.62 85.47 3.73 1124.40 76.09 3.05 1133.51 66.36 3.10
Bag10 ASHT W 986.90 93.76 3.73 1104.03 76.61 3.05 1106.26 66.94 3.10
Bag10 ASHT R 913.74 91.96 2.65 1069.76 84.28 3.74 1085.99 67.83 2.35
Bag10 ASHT W+R 925.65 93.57 2.65 1068.59 84.71 3.74 1101.10 69.27 2.35
Bag5 ASHT W+R 536.61 85.47 0.06 557.20 81.69 0.09 587.46 68.19 0.10
OzaBoost 964.75 94.82 206.60 1312.00 71.64 105.94 1266.75 58.20 88.36

Table 2. Comparison of algorithms. Accuracy is measured as the final percentage of examples
correctly classified over the 1 or 10 million test/train interleaved evaluation. Time is measured in
seconds, and memory in MB.

to those for the Forest CoverType dataset and therefore not reported. Additionally, the
learning curves and model growth curves for LED dataset are plotted (Figure 3).

The first, and baseline, algorithm (HT) is a single Hoeffding tree, enhanced with
adaptive Naive Bayes leaf predictions. Parameter settings are nmin = 1000, δ = 10−8

and τ = 0.05, as used in [8]. The HT DDM and HT EDDM are Hoeffding Trees with
drift detection methods as explained in Section 3.2.

Bag10 is Oza and Russell online bagging using ten classifiers and Bag5 only five.
BagADWIN is the online bagging version using ADWIN explained in Section 2.2. As
described earlier, we implemented the following new variants of bagging:

– ADWIN Bagging using Hoeffding Adaptive Trees.
– Bagging ASHT using the DDM drift detection method
– Bagging ASHT using the EDDM drift detection method

In general terms, we observe that ensemble methods perform better than single clas-
sifier methods, and that explicit drift detection is better. However, these improvements
come at a cost of runtime and memory. In fact, the results indicate that memory is not
as big an issue as the runtime accuracy tradeoff.

RCD drift produces much more drama than LCD - for example, the best result in
Table 2 goes down 16% when increasing the drift from 0.0001 to 0.001 - in Hyperplane
the same change in drift elicits only a fractional change in accuracy. For RCD drift all
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Cover Type Poker CovPokElec
Time Acc. Mem. Time Acc. Mem. Time Acc. Mem.

BagADWIN 10 HAT 317.75 85.48 0.2 267.41 88.63 13.74 1403.40 87.16 0.62
DDM Bag10 ASHT W 249.92 88.39 6.09 128.17 75.85 1.51 876.18 84.54 19.74
EDDM Bag10 ASHT W 207.10 86.72 0.37 141.96 85.93 12.84 828.63 84.98 48.54
NaiveBayes 31.66 60.52 0.05 13.58 50.01 0.02 91.50 23.52 0.08
NBADWIN 127.34 72.53 5.61 64.52 50.12 1.97 667.52 53.32 14.51
HT 31.52 77.77 1.31 18.98 72.14 1.15 95.22 74.00 7.42
HT DDM 40.26 84.35 0.33 21.58 61.65 0.21 114.72 71.26 0.42
HT EDDM 34.49 86.02 0.02 22.86 72.20 2.30 114.57 76.66 11.15
HAT 55.00 81.43 0.01 31.68 72.14 1.24 188.65 75.75 0.01
BagADWIN 10 HT 247.50 84.71 0.23 165.01 84.84 8.79 911.57 85.95 0.41
Bag10 HT 138.41 83.62 16.80 121.03 87.36 12.29 624.27 81.62 82.75
Bag10 ASHT 213.75 83.34 5.23 124.76 86.80 7.19 638.37 78.87 29.30
Bag10 ASHT W 212.17 85.37 5.23 123.72 87.13 7.19 636.42 80.51 29.30
Bag10 ASHT R 229.06 84.20 4.09 122.92 86.21 6.47 776.61 80.01 29.94
Bag10 ASHT W+R 198.04 86.43 4.09 123.25 86.76 6.47 757.00 81.05 29.94
Bag5 ASHT W+R 116.83 83.79 0.23 57.09 75.87 0.44 363.09 77.65 0.95
OzaBoost 170.73 85.05 21.22 151.03 87.85 14.50 779.99 84.69 105.63

Table 3. Comparison of algorithms on real data sets. Time is measured in seconds, and memory
in MB.

methods drop significantly. The bagging methods have the most to lose and go down
between 14-17% (top three) and 10-18% (bottom of table). The base methods have less
to lose going down (0-14%).

For all datasets one of the new methods always wins in terms of accuracy. Specifi-
cally, on the nine analysed datasets: BagADWIN 10 HAT wins five times out of nine,
DDM Bag10 ASHT W wins three times, EDDM Bag10 ASHT W wins once; this re-
lationship is consistent in the following way: whenever the single HAT beats Bag10
ASHT W, then BagADWIN 10 HAT beats DDM Bag10 ASHT W, and vice versa.
Note that the bad result for DDM Bag10 ASHT W on the Poker dataset must be due
to too many false positive drift predictions that wrongly keep the model too small (this
can be verified by observing the memory usage in this case), which is mirrored by the
behavior of HT DDM on the Poker dataset.

The new improved ensemble methods presented in this paper are slower than the
old ones, with BagADWIN 10 HAT being worst, because it pays twice: through the
addition of ADWIN and HAT, the latter being slower than HT by a factor between two
and five. Change detection can be time-consuming, the extreme case being Naive
Bayes vs. NBAdwin, where Naive Bayes can be up to six times faster. However,
change detection helps accuracy, with improvements of up to 20 percentage points (see,
for example, CovPokElec).

Non-drift-aware non-adaptive ensembles like Bag10 HT and OzaBoost usually
need the most memory, sometimes by a very large margin. Bag10 ASHT W+R needs
a lot more memory than Bag5 ASHT W+R, because the last trees in a Bag N ASHT
W+R needs as much space as the full Bag N-1 ASHT W+R ensemble.
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Recall that data stream evaluation is fundamentally three-dimensional. When adding
adaptability to evolving data streams using change detector methods, we increase the
run-time, obtaining more accurate methods. For example, adding a change detector
DDM to HT, or to Bag10 ASHT W, in Table 1, we observe a higher cost in runtime,
but also an improvement in accuracy.

5 Conclusions and Future Work

We have presented two new improvements for bagging methods, using Hoeffding Adap-
tive Trees and change detection methods. In general terms, we observe that using ex-
plicit drift detection methods we improve accuracy. However, these improvements come
at a cost of runtime and memory. It seems that the cost of improving accuracy in bagging
methods for data streams, is large in runtime, but small in memory.

As future work, we would like to build new ensemble methods that perform with an
accuracy similar to the methods presented in this paper, but using less runtime. These
new methods could be a boosting ensemble method, or a bagging method using new
change detection strategies. We think that a boosting method could improve bagging
performance by increasing tree diversity, as it is shown by the increased performance
of boosting for the traditional batch learning setting. This could be a challenging topic
since in [5], the authors didn’t find any boosting method in the literature [17, 19, 7] that
outperformed bagging in the streaming setting.
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