
On the Power of Equivalence Queries

Ricard Gavald�a

�

Department of Software (LSI)

Universitat Polit�ecnica de Catalunya

Pau Gargallo, 5

08028 Barcelona, Spain

June 20th, 1994

Abstract

In 1990, Angluin showed that no class exhibiting a combinatorial prop-

erty called \approximate �ngerprints" can be identi�ed exactly using

polynomially many Equivalence queries (of polynomial size). Here we

show that this is a necessary condition: every class without approx-

imate �ngerprints has an identi�cation strategy that makes a poly-

nomial number of Equivalence queries. Furthermore, if the class is

\honest" in a technical sense, the computational power required by

the strategy is within the polynomial-time hierarchy, so proving non-

learnability is at least as hard as showing P 6= NP.

1 Introduction

Learning via queries is a well-studied model in computational learning. The

types of queries that have been used most often in the design of learning

algorithms are, by far, Membership and Equivalence queries. In this paper

we focus on the second type.

�

This research was partially supported by the ESPRIT Basic Research Actions Program

of the EC under contract No. 7141 (project ALCOM II), and by DAAD and MEC through

Acciones Integradas 1992, 131-B, 313-AI-e-es/zk. E-mail: gavalda@lsi.upc.es

1

There are a few classes of concepts known to be learnable from Equiv-

alence queries alone: CNF and DNF formulas with a bounded number of

literals per clause [2], discrete geometric concepts [10], and some types of

simple grammars [14]. (By \learnable" we always mean \learnable in poly-

nomial time"; see Section 2 for de�nitions.)

Equivalence queries, however, are provably insu�cient for learning many

other classes. Angluin [3] showed that they do not su�ce for learning de-

terministic or nondeterministic �nite automata, context-free grammars, or

general CNF or DNF formulas. She proved these facts by showing that these

classes exhibit a certain combinatorial property, \having approximate �nger-

prints", together with the following theorem.

Theorem 1 [3] If a representation class C has approximate �ngerprints,

then it is not learnable from Equivalence queries.

It is important to realize that the proof of Theorem 1 relies on an information-

theoretic argument: a polynomial number of queries, each of polynomial size,

is not enough to identify each concept in the class, even if the learner has un-

limited computation power between the queries. Hence, having approximate

�ngerprints implies non-learnability, regardless on any complexity-theoretic

consideration.

The main result in this paper is that approximate �ngerprints are also a

necessary condition for proving non-learnability, at least for any proof relying

on the amount of information received by the learner.

We take �rst a slight variation of Angluin's \approximate �ngerprints",

mainly to ensure that it is decidable whether a given object is an approxi-

mate �ngerprint. It is easy to verify that this variation still allows to prove

Theorem 1, and that the classes shown to have approximate �ngerprints in [3]

still have them with the new de�nition.

Then we show that, in any class not having approximate �ngerprints, it

is possible to implement a very weak version of majority vote, which leads

to a polynomial learning strategy. More precisely, we restrict ourselves to

\honest" classes, satisfying certain natural conditions speci�ed in Section 2,

and show the following fact.

Theorem 2 For every honest class C, if C does not have approximate �n-

gerprints then it is learnable from Equivalence queries, given access to an

oracle in the polynomial-time hierarchy.

2

Furthermore, if we are happy with (not necessarily computable) identi-

�cation strategies, we can remove the honesty condition and use Angluin's

original de�nition.

Putting together Theorems 1 and 2, we obtain the following corollary.

Corollary 3 If P = NP, every honest class C is learnable from Equivalence

queries if and only if it does not have approximate �ngerprints.

Hence, it is still conceivable that classes without approximate �ngerprints

are learnable in polynomial time. More realistically, this corollary can be

interpreted as follows: with the current knowledge, the only feasible way

to prove that a class is not learnable is to show that it has approximate

�ngerprints; any other way would immediately yield a proof that P 6= NP.

Finally, we apply the techniques in the proof of Theorem 2 to the class

of boolean circuits.

Theorem 4 If P = NP then boolean circuits are learnable from Equivalence

queries.

Thus, boolean circuits are di�erent in a sense from the classes discussed

in [3]. For those classes, negative results are absolute; for circuits, any neg-

ative result needs to assume or prove that P 6= NP. In other words, the

hardness of learning circuits relies on the intractability of computational

problems, not on the amount of information needed for identi�cation.

It would be interesting to delimit more precisely the frontier between

\information" and \computation" hardness, especially when other types of

queries are present. Let us remind that this problem is completely solved

for the PAC-learning paradigm. It is known [5] that every honest class is

PAC-learnable from a polynomial number of examples, given access to an

oracle in NP. Hence, for PAC, all the di�culty comes from the computation

side.

The paper is organized as follows: In Section 2 we establish some notation

and recall the basic concepts of query learning. In Section 3 we de�ne approx-

imate �ngerprints. Section 4 proves our main result, Theorem 2. Section 5

presents the application to circuits.

3

2 Preliminaries

Languages. All languages de�ned in this paper are subsets of �

?

, where

� = f0; 1g. For a string x 2 �

?

, jxj is the length of x. By �

�n

we denote

the set f x 2 �

?

: jxj � n g.

We use implicit and easily computable isomorphisms between natural

numbers, strings, and tuples of strings. All polynomials we use are assumed

to be nondecreasing.

We expect some familiarity with the central notions of complexity theory.

We use in particular the classes P, NP, #P, and the �

p

k

and �

p

k

classes of

the polynomial-time hierarchy, PH. For two complexity classes C and D,

C(D) denotes the complexity class C relativized to class D, i.e., the set of

languages accepted by machines of type C relative to oracles in D. See [4]

for explanations.

Representation classes. We specify learning problems by means of represen-

tation classes, in the style of [11, 13]. A representation class C is a tuple

(R;�), where

� language R � �

?

is the set of representations, and

� function � maps each representation r 2 R to a language, or concept,

�(r) � �

?

.

If r 2 R and �(r) = c we say that r is a representation of concept c. We

talk often about the size of a concept; we mean the length of a shortest

representation for that concept.

We only deal with honest representation classes, those that satisfy the

following two conditions: 1) it is easy to decide whether a given string is a

representation, that is, R is in P; 2) it is easy to decide whether a string is

in a given concept, that is, the set f (r; w) : w 2 �(r) g is in P.

In particular, we will use a representation class of boolean circuits, CIR.

It consists of the set R

cir

of encodings of circuits and the function �

cir

that

maps the encoding of circuit c to the set of bit strings on which c evaluates

to 1.

Learning. We consider learning algorithms, or learners, that make Equiva-

lence queries to a teacher. The teacher answers the queries according to a

target concept c, taken from a representation class C = (R;�). The target is

4

�xed for an execution of the learner. More precisely, a query is a represen-

tation r 2 R, and the answer is either YES if �(r) = c, or else any string in

�(r) � c, called the counterexample.

The running time of the algorithm is measured as a function of the size

of the target concept and the length of the longest counterexample received.

The learner learns C if, for any target concept c taken from C and any se-

quence of answers consistent with c, it outputs a representation in R for c,

and it does so in polynomial time.

3 Approximate Fingerprints Revisited

We recall the following de�nitions from Angluin's work [3]. All of them

assume that C = (R;�) is a honest representation class.

De�nition 5 i) A class of concepts C � C is bounded by m 2 IN if for each

c 2 C there is a representation r 2 R such that �(r) = c and jrj � m.

ii) A sequence of concept classes in C, fC

n

g, is a sequence C

1

, C

2

, C

3

: : : such that each C

n

is a class of concepts. Such sequence is bounded by

function f if each C

n

is bounded by f(n).

iii) For a language A, A

�n

is the set A \ �

�n

; note that A

�n

is not

necessarily a concept in C, even if A is. For a class of concepts A, A

�n

is the

class f A

�n

: A 2 A g.

iv) Let T be a class of concepts, w 2 �

?

a string, b a value in f0; 1g, and

� a real number between 0 and 1. We say that (w; b) is an �-approximate

�ngerprint for T if

kf c 2 T :

�

c

(w) = b gk < � � kTk:

De�nition 6 Representation class C has approximate �ngerprints if

there exist polynomials p

1

and p

2

such that

for every polynomial q

(1) there is a sequence of concept classes fT

n

g bounded by p

1

(n) and

(2) in�nitely many n such that

(3) T

�p

2

(n)

n

contains at least two sets, and

for every r 2 R of length at most q(n)

there is some w 2 �

�p

2

(n)

such that

5

(4) (w;

�

�(r)

(w)) is a 1=q(n)-

approximate �ngerprint for T

�p

2

(n)

n

.

This de�nition is di�erent from that in [3] in two respects. First, line (2)

reads \for all su�ciently large n" in [3]. It is easy to verify that the weaker

condition \for in�nitely many n" is enough for the proof of Theorem 1.

Intuitively, to prove non-learnability it is enough to force superpolynomial

running time in each algorithm at in�nitely many lengths.

Second, in lines (3) and (4) we use T

�p

2

(n)

n

instead of the original T

n

.

Again, Angluin's proof goes through with this change, and the approximate

�ngerprints she �nds for dfa, nfa, cfg, and CNF and DNF formulas also

witness this property. The reason to introduce this change is the following:

with the original de�nition, the property given by line (4) is not recursive in

general, because it is not even decidable whether two representations de�ne

the same concept. The polynomial bound on the lengths involved makes this

predicate recursive and puts it \close enough" to PH for our purposes.

Finally, note that we can replace lines (1) and (2) in De�nition 6 by the

equivalent

(1) there are in�nitely many n such that

(2) there is some concept class T

n

bounded by p

1

(n) such that,

that are slightly easier to handle.

4 Necessity of Approximate Fingerprints

In this section we prove the main result of the paper, Theorem 2 stated in

the Introduction.

Suppose C = (R;�) does not have approximate �ngerprints. This means

that

for every polynomials p

1

and p

2

there is some polynomial q such that

for all but �nitely many n and

for every concept class T

n

bounded by p

1

(n),

either T

�p

2

(n)

n

contains less than two sets, or

for some r 2 R of length at most q(n)

and for every w 2 �

�p

2

(n)

6

(w;

�

�(r)

(w)) is not a 1=q(n)-

approximate �ngerprint for T

�p

2

(n)

n

.

Notation. In order to describe the learning algorithm, let us introduce some

notation.

A sample is a set of pairs of the form (w; b), where w is a string and

b 2 f0; 1g. We say that concept c is consistent with sample s when, for each

pair (w; b) in s,

�

c

(w) = b.

The set Cons(n; s) is the class of all concepts that have size at most n

and are consistent with s. Note that, given r 2 R, a sample s, and string 0

n

,

it is possible to decide in polynomial time whether �(r) 2 Cons(n; s).

For a concept c and any n, we say that \n is large enough for c" if

� c has size at most n, i.e., some representation of size n or less, and

� every other concept c

0

of size at most that of c di�ers from c in at least

one string of length � n.

Algorithm. We �rst describe an algorithm A for C that reads as input a

natural number n, and has the following properties:

P1: Whenever A outputs a representation in R, it is a good representation

for the target.

P2: If n is large enough for the target, A(n) always outputs a representation

in R.

P3: For every n, A(n) always halts, and it does so in time polynomial in n

and the length of the longest counterexample received.

Later we will remove the need for input n.

Fix p

1

(n) = p

2

(n) = n and let q be the polynomial provided for p

1

and p

2

by the assumption that C does not have approximate �ngerprints. Learner A

is de�ned in Figure 1.

Invariant. The following two predicates are invariants of the main loop

in A:

7

1. input n;

2. s := �; f s is a sample g;

3. loop

4. case kCons(n; s)

�n

k = 0 :

5. output \n not large enough" and halt;

6. case kCons(n; s)

�n

k = 1 :

7. �nd the smallest r 2 R such that �(r) 2 Cons(n; s);

8. ask r as a query;

9. if answer = YES then

10. output r and halt

11. else

12. output \n not large enough" and halt

13. endif;

14. case kCons(n; s)

�n

k � 2 :

15. �nd some r 2 R of length at most q(n) such that, for every w 2 �

�n

,

16. (w;

�

�(r)

(w)) is not a 1=(16q(n))-approximate �ngerprint

17. for Cons(n; s)

�n

;

18. ask r as query;

19. if answer = YES then

20. output r and halt

21. else

22. let w be the counterexample;

23. s := s [f(w; 1�

�

�(r)

(w))g

24. endif

25. endloop

Figure 1. Learning algorithm A.

8

I1: If n is large enough for the target, then the target is in Cons(n; s).

The predicate is initially true because every concept is consistent with

the empty sample. And each pair added to s is consistent with the

target, so I1 is maintained.

I2: kCons(n; s)

�n

k < 2

n+1

�

1�

1

16q(n)

!

ksk

.

This is initially true because there are never more concepts in Cons(n; s)

than representations of size at most n, i.e., less than 2

n+1

. At each

iteration, at most one pair is added to s, but by the way r is chosen in

line 15, this pair is consistent with at most a fraction 1�

1

16q(n)

of sets

in Cons(n; s)

�n

. Hence I2 is maintained.

Note that the r required in lines 15{17 always exists by the assumption

that C does not have approximate �ngerprints. The additional factor

1=16 is introduced in order to �nd r with a PH oracle, as discussed

later.

Termination. Note that when kCons(n; s)

�n

k � 1, A necessarily halts at

this iteration. Furthermore, each iteration either halts or adds some element

to s. By invariant I2 , this can be repeated at most i(n) times, where i(n) is

the maximum such that 2

n+1

�

�

1�

1

16q(n)

�

i(n)

> 1. By substitution, it is easy

to verify that i(n) < d16(n+1)q(n)= ln(2)e. Thus, the main loop is executed

only a number of times polynomial in n.

Correctness. Note that whenever A outputs a representation, that repre-

sentation has been just answered YES, so it is correct with respect to the

target. This shows property P1 of A.

The learner can halt without giving a representation in two points, lines 5

and 12. In line 5, Cons(n; s) is empty. By invariant I1 , this means that n

is not large enough. In line 12, two things can happen: either n is less than

the size of the target, so it is not large enough; or else, concept �(r) has size

at most that of the target, �(r) 6= target, but �(r) and the target agree on

all strings of length at most n. Because r is chosen smallest in line 7, again

n is not large enough. This shows property P2 .

Time complexity. There are four steps of A that require querying an oracle.

9

Line 4: Clearly, Cons(n; s)

�n

is empty if and only if Cons(n; s) is. This is

equivalent to saying that for every r 2 R of size at most n, �(r) 62 Cons(n; s).

Predicate �(r) 62 Cons(n; s) can be veri�ed in polynomial time, as said be-

fore, so this is a coNP question; it can be solved by a polynomial-size query

to an NP oracle.

Line 6: Knowing whether kCons(n; s)

�n

k � 1 is knowing whether, for

every r

1

, r

2

of length at most n, �(r

1

) 2 Cons(n; s) and �(r

2

) 2 Cons(n; s)

implies �(r

1

)

�n

= �(r

2

)

�n

. This is again a coNP query.

Line 7: Since \�(r) 2 Cons(n; s)" is a P predicate, this part can be solved

querying an oracle in NP.

Lines 15 to 17: These lines can be implemented querying an oracle in �

p

6

.

In this version we only sketch the proof.

At this point of the algorithm, we know that Cons(n; s)

�n

contains at least

two sets. By the assumption that C does not have approximate �ngerprints,

we know that there is some r

0

2 R of length at most q(n) such that for every

w 2 �

�n

kf c 2 Cons(n; s)

�n

:

�

c

(w) =

�

�(r

0

)

(w) gk

kCons(n; s)

�n

k

�

1

q(n)

: (1)

The function that, given 0

n

and s returns kCons(n; s)

�n

k can be shown

to be in #P(�

p

2

), but it is not clear how to compute it in PH. We can,

however, obtain good approximations of this function using a theorem by

Stockmeyer ([12], Theorem 3.1) or, rather, its relativization in the presence

of �

p

2

oracles. This theorem guarantees that there is some function f 2

�

p

3

(�

p

2

) = �

p

5

such that for every n and s,

1

2

f(0

n

; s) � kCons(n; s)

�n

k � 2 f(0

n

; s):

A function g(0

n

; s; r; w) with similar properties can be obtained for the nu-

merator of the left-hand side of equation (1).

Now, lines 15 to 17 are implemented searching for any r such that for

all w 2 �

�n

it holds

g(0

n

; s; r; w)

f(0

n

; s)

�

1

4q(n)

:

10

The search for r uses an oracle in �

p

2

(�

p

5

) = �

p

6

; here, �

p

2

represents the

guessing of r and the universal veri�cation of w, and �

p

5

is used to compute

f and g.

By the way f and g are de�ned, the quotient g=f di�ers by a factor or at

most 4 from the left-hand side of equation (1). Hence, at least representation

r

0

satis�es this condition and r is always found in line 7. By a similar

argument, any r 2 R satisfying this condition also satis�es

kf c 2 Cons(n; s)

�n

:

�

c

(w) =

�

�(r

0

)

(w) gk

kCons(n; s)

�n

k

�

1

16q(n)

;

as required by the de�nition of algorithm A.

Let us note that a more careful use of Stockmeyer's techniques, along the

lines of [8, 9], brings the required oracle down to �

p

3

.

If these lines are solved as explained, clearly each iteration of the loop

takes time polynomial in n and the maximum length of a counterexample

received so far. As the number of iterations bounded by a polynomial in n,

property P3 holds for A.

Getting rid of input n. To obtain the claimed learning algorithm for C, it

is enough to execute A(i) sequentially with inputs i = 1, 2, 3, 4, : : : When

some A(i) outputs some r 2 R as output, output r and halt.

Correctness is clear because any representation output by any A(i) must

be correct (property P1). For termination, note that each A(i) is terminat-

ing, and that A(i) will output a representation whenever i is large enough

for the target concept (properties P3 and P2).

To discuss the time complexity, let N be the size of the target concept, n

the minimum such that A(n) outputs a representation, and l

i

the length of

the longest counterexample received by A(i). There are two cases:

Case 1: n � N . Each run of A(i) with i � n takes time polynomial in i

and l

i

, i.e., polynomial in N and max

i

fl

i

g.

Case 2: n > N . Note that the �rst case of algorithm A(i) can occur

only when i < N . So for all i with N � i < n, A(i) must terminate in

the second case. That is, A(i) �nds some r such that �(r)

�i

= target

�i

,

but �(r) 6= target. Hence, the counterexample received in line 8 has length

greater than i. The running time of A(i) for all such i is polynomial in i

and l

i

> i, i.e., polynomial in max

i

fl

i

g.

11

In summary, each run A(i) takes time polynomial in N and max

i

fl

i

g,

and there are at most max

i

fN;max

i

fl

i

gg runs. So the new learner runs in

polynomial time.

5 On the hardness of learning boolean cir-

cuits

As said in the Introduction, we can prove the following theorem.

Theorem 4 If P = NP then CIR is learnable from Equivalence queries.

A way to prove Theorem 4 would be to show that the class CIR does not have

approximate �ngerprints. Then this corollary would follow from Theorem 2.

Unfortunately, we have been unable to prove this, even assuming P =

NP. A �rst problem is that each circuit accepts a set of strings of a �xed

length, and this trivially prevents the negation of the approximate �ngerprint

de�nition. A deeper problem is that the number of possible concept classes

T

n

in the de�nition is doubly exponential, while the number of circuits of

size q(n) grows only exponentially.

Nevertheless, looking into the proof of Theorem 2, we notice that the

hypothesis that C does not have approximate �ngerprints is not applied to

any arbitrary class T

n

of concepts. It is applied only to classes of the form

Cons(n; s), each of which is described completely by a sample of polynomial

size.

Using this fact, it is possible to give an ad-hoc version of algorithm A

in Section 4 that works for the class CIR. We omit its presentation in this

version; a complete proof can be found in [7].

Late addition. Note that our proof of Theorem 4 does not show that

CIR is learnable with the help of an oracle in PH; it uses the full force of the

assumption that P = NP. Very recently, Bshouty, Cleve, and Tamon have

independently shown that CIR is learnable both by randomized algorithms

with an NP oracle and by deterministic algorithms with a �

p

3

oracle [6], thus

obtaining Theorem 4 as a corollary. Many similar results concerning other

representation classes are also shown in [6].

Acknowledgements. I am grateful to David Guijarro and Vijay Ragha-

van for helpful comments. I also thank Nader Bshouty, Richard Cleve, and

12

Christino Tamon for promptly sending a copy of their work [6], and Vijay

again for �rst telling me about it.

References

1. D. Angluin: \Learning regular sets from queries and counterexamples".

Information and Computation 75 (1987), 87{106.

2. D. Angluin: \Queries and concept learning". Machine Learning 2

(1988), 319{342.

3. D. Angluin: \Negative results for equivalence queries". Machine Learn-

ing 5 (1990), 121{150.

4. J.L. Balc�azar, J. D��az, and J. Gabarr�o: Structural Complexity I. EATCS

Monographs on Theoretical Computer Science, vol. 11. Springer-Verlag

1988.

5. A. Blumer, A. Ehrenfeucht, D. Haussler, and M.K. Warmuth: \Occam's

razor". Information Processing Letters 24 (1987), 377{380.

6. N.H. Bshouty, R. Cleve, S. Kannan, and C. Tamon: \Oracles and queries

that are su�cient for exact learning". To be presented at the 7th COLT

Conference, New Jersey, July 1994.

7. R. Gavald�a: Kolmogorov Randomness and its Applications to Structural

Complexity Theory. Doctoral Dissertation, Universitat Polit�ecnica de

Catalunya, april 1992.

8. R. Gavald�a: \Bounding the complexity of advice functions". Proceedings

of the 7th Annual Conference on Structure in Complexity Theory, 249{

254. IEEE Computer Society Press, 1992.

9. J. K�obler: \Locating P/poly optimally in the extended low hierarchy".

Proceedings of the 10th Symposium on Theoretical Aspects of Computer

Science, 28{37. Lecture Notes in Computer Science 665. Springer-

Verlag, 1993.

13

10. W.Maass and G. Tur�an: \On the complexity of learning from counterex-

amples". Proceedings of the 30th Annual Symposium on Foundations of

Computer Science, 262{267. IEEE Computer Society Press, 1989.

11. M.K. Warmuth: \Towards representation independence in PAC learn-

ing". Proceedings of the International Workshop on Analogical and In-

ductive Inference AII-89, 78{103. Lecture Notes in Arti�cial Intelli-

gence 397. Springer-Verlag, 1989.

12. L. Stockmeyer: \On approximation algorithms for #P". SIAM Journal

on Computing 14 (1985), 849{861.

13. O. Watanabe: \A formal study of learning via queries". Proceedings of

the 17th International Colloquium on Automata, Languages, and Pro-

gramming, 139{152. Lecture Notes in Computer Science 443. Springer-

Verlag, 1990.

14. T. Yokomori: \Polynomial-time learning of very simple grammars from

positive data". Proceedings of the 4th ACM Workshop on Computational

Learning Theory, 213{227. Morgan Kaufmann, 1991.

14

