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Abstract

In the Internet, where millions of users are a click away from your site, being able to
dynamically classify the workload in real time, and predict its short term behavior,
is crucial for proper self-management and business efficiency. As workloads vary
significantly according to current time of day, season, promotions and linking, it be-
comes impractical for some ecommerce sites to keep overdimensioned infrastructures
to accommodate the whole load. When server resources are exceeded, session-based
admission control systems allow maintaining a high throughput in terms of prop-
erly finished sessions and QoS for a limited number of sessions; however, by denying
access to excess users, the website looses potential customers.

In the present study we describe the architecture of AUGURES, a system that
learns to predict Web user’s intentions for visiting the site as well its resource usage.
Predictions are made from information known at the time of their first request and
later from navigational clicks. For this purpose we use machine learning techniques
and Markov-chain models. The system uses these predictions to automatically shape
QoS for the most profitable sessions, predict short-term resource needs, and dynam-
ically provision servers according to the expected revenue and the cost to serve it.
We test the AUGURES prototype on access logs from a high-traffic, online travel
agency, obtaining promising results.
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1 Introduction

1.1 The Current Web Scenario

According to the Internet World Stats [19], there are over 1 billion Internet
users, and when online, they are a click away from any site. Certain events
such as news, world events, or promotions announced in mass media or in the
Web can cause a flock of users to visit related websites, creating peak loads
in minutes. Furthermore, current Web applications rely on technologies such
as XML-based Web services for B2B communication, SSL for security, media
streaming, and AJAX for interactivity. While these technologies enhance users’
experience and privacy, they also increase the demand for CPU and resources
on the server side. As Web applications become more resource-intensive and
the number of potential visitors increases, system overload incidence is also
growing along.

Scaling the infrastructure of a website might not be simple; for cost reasons,
scalability problems, or because some peaks are infrequent, websites may not
be able to adapt rapidly in hardware to user fluctuations. When a server is
overloaded, it will typically serve no connection, as connections compete for re-
sources. System administrators might get warnings from resource-monitoring
services, but in general they get to the problem when the situation has already
occurred, and controlling the arrival of users is out of their reach. To address
this issue, session-based admission control systems [3,6] are used to keep a
high throughput in terms of properly finished sessions and QoS for a limited
number of sessions. However, by denying access to excess users, the website
loses potential revenue from customers.

In this study we propose a new approach to this problem which uses learning
techniques applied to past data, to create a model for anonymous Web user
behavior in a real, complex website that does experience the overload situa-
tions mentioned above. The model is then used to support decisions regarding
the allocation of the available resources, based on a utility-related metrics.
The learning phase captures the selected features in a model according to a
utility goal. As a proof of concept, we have selected the features that make
a customer more likely to make a purchase, and therefore more attractive —
from the point of view of maximizing revenues — to keep in the system in
the case of a severe overload. In most of the article, we take as a metric the
number of completed sessions that end in purchase; Section 6 describes other
possible metrics and applications. In this sense, we are proposing a per-user
adaptive utility based session management.

We describe the architecture of the prototype we have developed, named AU-
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GURES, and the simulation experiments we have performed on weblogs from
the servers of a high-traffic online travel agency, Atrapalo.com. The experi-
ments indicate that using AUGURES to prioritize customer sessions can lead
to increased revenue in at least two situations: one, when overload situations
occur; that is, the incoming transaction load exceeds the site’s capacity and
some sessions will have to be queued, redirected to a static site, or dropped;
for this study, these should be mostly non-buying sessions, while we try to ad-
mit most buying ones. The second scenario is that in which keeping a server
running has a quantifiable cost; in this case, one could try to group buying ses-
sions on a small number of servers, possibly shutting down those other servers
that would produce little or no revenue.

1.2 Motivation

Our preliminary experiments [13] showed that the users’ intentions for visiting
a site can be predicted to some extent from their navigation clicks, results
of previous visits, and other session information. In this context, a revenue-
based admission control policy can help to avoid revenue loss due to randomly
delaying or dropping excess connections. Defining admission policies based on
information generated from user behavior models can contribute to devising
cost-effective infrastructures, and seems to have promising applications for
resource management for medium to large Web infrastructures.

1.3 Our Methodology

In this paper we present a method for learning, from the analysis of session
logs, how to assign priorities to customers according to some metric – in this
study, to their purchasing probability in the current session. Our approach
consists in using the Web server log files to develop learning models that
make predictions about each class of user future behavior, with the objective
of assigning a priority value to every customer based on the expected revenue
that s/he will generate, which in our case essentially depends on whether s/he
will make a purchase. Our learning methods combines static information (time
of access, URL, session ID, referer, among others) and dynamic information
(the Web graph of the path followed by the user), in order to make predictions
for each incoming Web request.
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2 Related Work

In the context of Web workload analysis, there are few published studies based
on real e-commerce data, mainly because companies consider HTTP logs as
sensitive data. Moreover, most works are based on static content sites, where
the studied factors were mainly: file size distributions, which tend to follow
a Pareto distribution [1]; and file popularity following Zipf’s Law [1,8]. Also,
works such as [11] have studied logs from real and simulated auction sites and
bookstores; there are no studies that we know about which are concerned with
intermediary sites, like the one studied here, where most of the information
comes from B2B providers and which can potentially have a different behavior.

Recent works on Web user behavior prediction and profiling [2,7,12,17] have
focused on Web caching or prefetching of Web documents, to reduce latency
of served pages and improve the cache hit rate. Another studied approach
is to model users for link prediction generating navigational tours and next-
link suggestions to users. The mentioned approaches are best suited for large
and mostly static Web pages, where users navigate through a vast amount of
information such as an encyclopedia. Prefetching a dynamic page that includes
database transactions might be too costly in the case of a miss or user exit.
Other authors [2,14] focus on dynamic content adaptation, where the page
adapts to the type of user; it could include images, colors and even products
or links. Our approach could be applicable for dynamic content adaptation
too, although in this study we are focusing on resource management.

Path analysis [5,15] and Customer Behavior Model Graphs (CBMG) such as
[10] are similar to the dynamic part of our approach — we use the closely
related Markov chain model. Menascé et al. [10] propose to build the CBMG
using the k-means clustering algorithm, creating a probability matrix for the
possible path transitions from a state. What we try to accomplish in this paper
is not predicting what the next click will be; rather, we want to foresee the
user’s ultimate intentions for visiting the site, and in particular whether s/he
will eventually buy.

Session-based admission control has been widely studied [3,6,16]; the work
presented here is an extension to these aproaches. Related works on resource
management, i.e. by Littman et al. [9] uses Näıve-Bayes for cost classification
and a Markov chain feedback approach for failure remediation. Other works
such as [4] also take into account costs and resource allocation; in contrast
with previous approaches, in this paper we are focusing on the actual revenue
that is lost by denying access to purchasing users, and not resource allocation
costs.
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Fig. 1. AUGURES architecture

3 The AUGURES Prototype

In this section we describe the architecture of AUGURES, the prototype we
have implemented to perform the experiments. AUGURES currently has two
subsystems: an offline component (the learner) that takes the historical logfile
and produces a predictive model or predictor, and a real-time component, the
selector, implemented as a service that runs along with the session manager of
the firewall. The selector analyses the incoming requests, runs them through
the predictor, and outputs the priority along with other static information for
the session. These two subsystems are presented graphically in Figure 1.

The input to the offline component is the logfile produced by the site’s dy-
namic application. It contains non-ambiguous session and page actions (tags)
as historical data, which is first cleaned and reorganized by a preprocessor.
The preprocessor produces an intermediate file with one line for each trans-
action. These lines are largely computed independently from each other, so
they do not contain information about the user navigational pattern; that is
why we call the information in this file static. Next, this file is enriched with
dynamic information reflecting the user navigation sequence, relating the dif-
ferent transactions of the same session. This is done by computing a Markov
model for each value of the class, in our case buying and non-buying; the
prediction of these models for each individual request is added as extra in-
formation to each line of the preprocessed file. Finally, this enriched dataset
is passed to a learning module that produces a predictor, some mathematical
function that, given a request, assigns it a buying probability. More details
are given in the following subsections.

The real-time component, the selector, runs side-by-side with the session man-
ager of the firewall. When an incoming HTTP/S request arrives, the selector
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reads the entry produced by the firewall, retrieves from a database existing
information about the user and session (if any), and then evaluates the request
through the predictor, the (offline built) model. The result is a predicted prob-
ability of purchase, which is written to the firewall’s active session table along
with other useful information such as: current load, server conditions, and en-
terprise policies. This information can then be used by the firewall (in ways
outside the scope of this paper) to prioritize and even discontinue some of
the sessions according to the current load and policies. We remark that the
firewall is not a part of AUGURES: it is often a complex, and very sensitive,
part of the infrastructure so we do not aim at replacing it. AUGURES, how-
ever, provides additional information to the firewall which helps it in taking
informed decisions rather than blind or random ones.

In contrast to the selector, which has a real-time requirement, the offline com-
ponent can be executed at scheduled intervals to rebuild the predictor (daily,
weekly, etc.) at periods of low load, and even in an off-site machine. Therefore
the requirements of speed and low memory use are not a limitation for this
component, while the real-time part needs to be as efficient as possible. As
future work we are considering running the learning module incrementally and
in real time, so that the predictor is always as accurate as possible. In this
case, the computational requirements of the learning method would also be of
importance.

3.1 The Preprocessor: Generating Static Information

The goal of the preprocessor is two-fold: First, it should clean the logfile of
static content i.e. images, CSS, javascript or other media files. It should also
be cleaned of irrelevant and non-user-initiated transactions, such as AJAX
autocomplete controls, background checks and offsite requests via Web services
(B2B communication). The second goal is to add information that cannot be
derived from the logfile only, such as background information on previous
sessions and, if available, user details form the company’s customer database.

The preprocessor reads the log and produces one output line for each input
transaction, producing a dataset relevant to learning containing the following
fields:

• Date and time.
• The tag, action performed by the page or non-ambiguous URL.
• Whether the user has already logged onto the system during this session.
• Whether the customer is a returning customer, retrieved from cookies or

matching IP address.
• Whether the customer has purchased in the past, and if so how far back.
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• Session length so far, in number of transactions (clicks).
• The referer tag, the tag of the previously visited page; this is an external

page for the first click of each session.
• The class assigned to this session, that is, what the “correct” prediction

should be for this log entry. In our case, there are two class values: buyer
and non-buyer.

Note that all fields except for the class can be computed from information
in the previous entries of the log, or from separately stored information. The
class, however, can only be computed by looking forward in the same session,
and checking whether it contains any tag indicating purchase. Clearly, this is
not possible in the online process, since this information is precisely what we
are trying to predict. Thus, the class can only be computed in datasets with
past information, those used for offline learning.

3.2 Generating Dynamic Information

We use the information obtained from the user’s navigation sequence as the
dynamic information of the session; it is the sequence of URLs followed by the
user. Unfortunately, most machine learning algorithms are not well adapted
to dealing with variables that are themselves sequences. In AUGURES we
propose to use high-order Markov chains to address this issue.

A Markov chain describes a probability distribution on the set of all finite
paths along a finite set of states S. In general, for a path s1s2 . . . sn and any
probability distribution we have the following rule

Pr[s1s2s3 . . . sn] = Pr[s1] · Pr[s2 | s1] · Pr[s3 | s1s2] · · ·Pr[sn | s1 . . . sn−1].

For general distributions these probabilities can be all distinct. The assump-
tion in a kth order Markov chain is that, given any previous history, only the
k most recently visited states affect the future transitions, formally

Pr[sn | s1 . . . sn−1] = Pr[sn | sn−k . . . sn−1], for n− k ≥ 1.

As an example, in a Markov chain with k = 2 the rule above simplifies to

Pr[s1s2s3 . . . sn] = Pr[s1]·Pr[s2 | s1]·Pr[s3 | s1s2]·Pr[s4 | s2s3] · · ·Pr[sn | sn−2sn−1].

Therefore, a k-th order Markov chain is described by giving, for each state
s ∈ S and path p of length at most k, a probability that the next state is
s given that the k last visited states are those in path p. This implies that
the distribution given by the Markov chain can be specified by giving at most
|S|k+1 numbers, rather than infinitely many.
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Furthermore, given a set of data consisting of paths along S, one can build
a kth order Markov chain that approximates their distribution as follows:
compute all the empirical probabilities Pr[si+1 | s1 . . . si] for 0 ≤ i ≤ k on
the data. By the discussion above, these figures are enough to approximate
Pr[p] for each path p of every length. Of course, whether the figure computed
in this way approaches the real probability of p in the source of the data
depends on 1) the amount of training data available (the more data, the better
approximation), and on 2) the degree to which the Markovian assumption is
valid for the source.

In our methodology, we define the set of states S to be the set of tags in our
log data. Then, for some parameter k, we create a k-th order Markov chain for
each of the classes, each one modelling the typical sequences of tags (requests)
for that class. In our case, we train two models: one for buyers and one for
non-buyers. Given the path followed in the current session, these two chains
can be used to compute probabilities Pr[p | buyer] and Pr[p |nonbuyer], where
p is the sequence of previous k tags in the session. Using Bayes’ rule, we can
then estimate the converse probabilities Pr[buyer | p] and Pr[nonbuyer | p]. For
example,

Pr[buyer | p] = Pr[p | buyer] · Pr[buyer]/ Pr[p]

where we approximate Pr[buyer] as the fraction of buyers in the data, and
Pr[p] can be ignored because what matters really is the ratio of Pr[buyer | p]
to Pr[nonbuyer | p]. That is, given that the user has followed this path, the
Markov chains guess the probabilities that later in the future s/he buys or
does not buy. At training time, these two figures (the buying and non-buying
probabilities) are added as new variables to the line describing the current
transaction in the training set. At prediction time, these two figures are added
as new variables to the information passed to the predictor for the current
transaction.

We have used k = 2 (second-order Markov chains) for the experiments re-
ported in the next sections. After some experimentation, this value seemed to
provide the best results for our attempts. It is intuitively clear that remem-
bering the last two visited pages gives more information than remembering
only the last one. On the other hand, as k grows, each individual path is
less frequent in the data, the approximations of the probabilities are coarser,
and predictive accuracy is reduced (i.e., overfitting tends to appear). This ef-
fect is especially harmful on buying paterns which are rare in our datasets.
In particular, k = 3 gave results comparable to k = 2, and predictions were
significantly worse for k > 3. This conclusion may, of course, be different in
other contexts.
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3.3 Learning Module

The resulting sequence of transformed and enriched log entries can be treated
as a dataset where the order of examples is irrelevant and each example is a
tuple of simple values (numerical or categorical values). This is what is needed
to apply most machine learning algorithms in the literature.

In this first prototype we have chosen the Näıve Bayes classifier as a learning
algorithm, for a number of reasons: 1) it is easy to understand, has no user-
entered parameters, and has very low CPU time and memory requirements,
both for training and for prediction; 2) in preliminary experiments [13], it
performed about as well as more sophisticated methods, such as decision trees
and boosting; and 3) it assigns probabilities to its predictions, rather than
hard buy/non-buy decisions, and this is essential for our prototype. Naturally,
there is ample room for trying other and more advanced prediction methods
in later versions, which administrators can choose according to their data and
available resources.

4 Results and Evaluation

In this section we describe the data, our experiments with the prototype, and
discuss the results obtained. We want to remark that our goal was to test a
generic approach without fine tuning the experiments with domain knowledge,
rather than obtaining the best possible figures for this particular dataset.

4.1 The Dataset

The data consisted of the transactions collected over approximately 5 days,
from 01/22/2007 1am to 01/26/2007 11pm, consisting of 3.7 million transac-
tions. We distinguish “transaction” and “request”; a transaction in this paper
is a user-initiated action (click) to the site that s/he views as an atomic op-
eration. Internally, each transaction in the dataset corresponds to an average
of 13 requests (hits) to the server, including media files, CSS, Javascript and
the final HTML output. To log user actions only, the dataset was produced by
the site’s dynamic application; additional code was added at the end of each
executing script to log the transaction data after the actions were executed.
By doing so, the data is already cleaned and more accurate, as opposed to
the access log from a Web server where URL actions might be ambiguous.
Furthermore, the application can log directly the user session, not only its IP
address, allowing us to correctly differentiate NAT/firewalled users. A session
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is a sequence of transactions initiated by a user in a definite amount of time.

The cleaned data contained 218 different “tags”, “pages” or user request types
and about 3.7 million transactions, grouped in 452,939 sessions. Of these ses-
sions, about 3% ended in purchase after it was cleaned, and 234,261 corre-
sponded to returning users. The average session length was 8.2 transactions,
increasing to 18.5 for buying sessions. Because buying sessions are longer, the
percentage of transactions labeled as “buying” is larger than the percentage
of buying sessions, namely about 6.7% rather than 3%.

From the cleaned dataset we prepared training and testing datasets. To force
the learning algorithm to pay attention to the buying class, the training dataset
was built by randomly selecting about 25% of the buying sessions, and about
three times as many random nonbuying sessions. This way, we made sure that
buying sessions were sufficiently visible while training as most machine learn-
ing algorithms tend to ignore underrepresented classes. The training dataset
finally consisted of 25,331 sessions, corresponding to approximately 200,000
transactions. The rest of the sessions were included in the testing set, which
thus contained 427,608 sessions and 3.5 million transactions.

We also noticed that there were transactions produced by automated bots, i.e.
crawlers or Web fetching from other sites, of course never ending in purchase.
We kept them in the dataset as it is important that our system learns to
identify these as non-buyers: since search queries to B2B providers have a cost
and the bots could be abusive or even malicious, they should be assigned low
priority or denied access. In [18] we extended the experiments described in
this article, to automatically detect and ban content stealing bots. The traffic
caused by content stealing bots represents up 12% of the total traffic in the
analyzed dataset; in case of an overload, these sessions should be the first to
be discarded and have be correctly identified.

4.2 Quantities of Interest in Admission Control

After building a classifier using the training dataset, we can compute for each
transaction in the testing set a “true” buying/nonbuying label and a “pre-
dicted” label. Thus, we can divide them into the four typical categories of
true positives (tp), false positives (fp), true negatives (tn), and false negatives
(fn). For example, false positives are the transactions that are predicted to be
followed by purchase but that in fact are not.

We observed the classical recall and precision measures, as well as one that is
specific to our setting, which we call %admitted.

• %admitted is (tp+fp)/(tp+fp+tn+fn), or the fraction of incoming transac-
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Fig. 2. recall vs. %admitted

tions that the system admits.
• the recall is tp/(tp+fn), the fraction of admitted buyers over all buyers.
• the precision is tp/(tp+fp), the fraction of admitted buyers over all admitted

transactions.

Our ultimate goal is to use these predictions for prioritizing sessions, so that
low priority sessions can be queued, redirected to a static page, or even dropped
when the server is under a heavy load condition. The meaning of a false positive
and a false negative in this context is very different. Rejecting a false negative
(fn) session implies a substantial loss (in revenue), so it is preferable to accept
it even at the cost of keeping many false positives (fp) in the system. Therefore,
these two figures should be examined and evaluated separately.

In our case, since we are using the Näıve Bayes classifier, we have good control
over the %admitted quantity. Indeed, this classifier provides a probability of
buying p(t) for each transaction t. Set some threshold value T ∈ [0, 1]; then
we can decide to admit those transactions t such that p(t) > T . By increasing
T , we will make it more difficult for a transaction t to pass this test, hence we
will admit less transactions. Conversely, if we lower T , more transactions will
be admitted. Once the Näıve Bayes classifier is built, we use the training set
to tabulate the function of T to the actual %admitted, for future use.

4.3 Classifier Performance

A first set of results was obtained applying the learned Näıve Bayes classifier
(containing the Markov models prediction) on the testing dataset. Figures 2
and 3 present the evolution of recall and precision as we vary the percentage
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Fig. 3. precision vs. %admitted

of admissions from 100% (no rejections) to 10%.

As predicted, there is a nontrivial relation between %admitted, recall, and
precision. Naturally, as we become more restrictive in the number of admis-
sions, we loose true customers, but at a rate smaller than if we were choosing
at random. For example, if we choose to admit 50% of the transactions, AU-
GURES will still admit 91% of those that will end in purchase (rather than
50% as we would if we were selecting them randomly). Similarly with preci-
sion: no matter the percentage of admissions we fix, if we choose transactions
randomly, we will choose buying ones in the same proportion as there are buy-
ing transactions in the dataset, namely about 6.7%. By using the AUGURES
strategy, when we are admitting say 50% of all transactions, about 12% will
end in a purchase, an improvement by a factor of almost 2.

These figures become even more interesting as we restrict %admitted more
and more: when admitting only 10% of transactions, AUGURES will still
admit 76% of all real buyers and 35% of admitted users will really buy. This
means an increase by a factor of over 5 in precision over random selection. The
results demonstrate the potential of the predictor module in a self-adaptive
system: as more users arrive and the capacity of the infrastructure is exceeded,
the proportion of admitted sessions that will end up in a purchase increases.
In other words, the system prioritizes the most profitable sessions when it
becomes most necessary.

In Table 1 we present the recall and precision for clicks 1 through 3. Recall
represents the fraction of real buyers that are admitted by the predictor, while
precision is the fraction of predicted buyers. With this experiment we wanted
to show that there is enough information to prioritize sessions right from their
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First Click Second Click Third Click

%recall 47.6 51.1 53.0

%precision 15.2 18.6 21.0
Table 1
Recall and precision for clicks 1 to 3.

first access to the site, improving predictions with the number of clicks. For
the first access, we detected 15% or better of buying sessions, in contrast with
a random strategy which would pick only 3% of buyers.

4.4 Performance in Real-Time Prediction

Our next experiments test the AUGURES prototype under a simulated envi-
ronment over a 24-hour period. This dataset belonged to different dates for
the same system, and contained 112,000 transactions. Figure 4 presents the
evolution of the rate of transactions/hour in this workload, sampled every 5
minutes. It averaged about 4,600 transactions/hour and hasd a peak of about
13,000.

Fig. 4. Transactions/hour rate in the workload

More precisely, we compared the number of transactions that would end up
in purchase if admitted with the AUGURES prototype and if admitted with
a random selection strategy. For the simulation we chose different values of
a parameter MAX denoting the maximum rate of transactions/hour a given
infrastructure can accept without throughput degradation. We also chose some
time unit T in minutes; the results we report are for T=5 minutes, but results
did not vary significantly in the range T=[1 minute, 60 minutes]. We fed
AUGURES with the workload corresponding to the reference day, sequentially.
Every T minutes, AUGURES computes the rate transactions/hour from the
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MAX %admitted %recall %precision %improve

13500 100 100 6.61 0

9000 99.31 99.97 6.65 0.66

7500 98.56 99.82 6.69 1.28

6000 90.65 97.26 7.09 7.29

4500 75.46 92.82 8.13 23.01

3000 63.81 88.27 9.14 38.32

1500 39.11 77.20 13.04 97.36
Table 2
Results of simulation on real workload

current load and, with this figure, it recomputes the threshold of the classifier
so that it admits at most (approximately) MAX transactions/hour during
the next T minutes. That is, if the current rate is less than MAX, it sets
the threshold to 0 so that all transactions are admitted. Otherwise, if the
instantaneous load L is greater than MAX, it sets the threshold so that a
fraction of about MAX/L of the transactions are admitted.

The results of this simulation are presented in Table 2. Rows correspond to
the different values of MAX tried, ranging from one exceeding the peak (in
which no transaction is rejected) to one where MAX is almost 1/10 of the
peak. Columns correspond to

• % of transactions admitted,
• % of recall obtained, i.e., % of all buying transactions that are admitted,
• % of precision, i.e., % of admitted transactions that lead to purchase,
• and %improvement over the random strategy (e.g., if the random strategy

admits 1,000 buying transactions and AUGURES admits 1,200, % improve-
ment is 20%).

Thus, for example, when the maximal load MAX is set to 6,000 (about 50%
of the peak), we still accept 90.65% of transactions, miss less than 3% of
the buying ones (recall=97.26%), and all in all we accept 7.3% more buying
transactions than the random strategy. When setting MAX to 3,000 (i.e.,
assuming an infrastructure able to handle less than 25% of the peak), we still
accept 63.8% of transactions, reject only 12% of the buying ones, and do about
40% better than the random strategy.

Another view of the process is presented in Figure 5, which presents the ab-
solute numbers of buying transactions accepted by AUGURES and by the
random strategy. Here we chose T=1 hour as time unit and MAX=3,000. It
can be seen that, as expected, at times when the workload is low, AUGURES
did not act, so the curves for both strategies coincide. On the other hand,
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Fig. 5. Admitted buys by AUGURES and random selection

when the workload exceeds MAX, AUGURES chose better and admitted a
substantially higher number of buyers. In other words, the area between both
curves is the %improvement column of Table 2.

5 The Effect of Dynamic Server Activation

In the next experiment we wanted to simulate the benefit of our technique in
an environment where not all servers have to be active at all times, but where
they can be turned on and shut down dynamically. This possibility is today
routinely used in all centers having a reasonable number of in-site servers:
in this case, shutting down unnecessary servers results in immediate savings
in power (both for the server itself and for cooling), hence lower costs. Also,
dynamic provisioning of external servers is becoming mainstream too. Services
such as Amazon’s Elastic Computing, Sun’s Grid, or Google’s Cloud, enable
ecommerce sites to be configured at a minimum number of server resources and
provision according to the incoming load, with a de facto unlimited number
of servers. We phrase the rest of the section in terms of dynamic provisioning
for clarity.

For this experiment, we used the 24-hour dataset in the previous section and
studied the number of servers that would be needed at different times of the
day to serve the incoming load at that time. Then, we compared the number
of servers that would be needed if our only interest was to serve all (or most)
buyers, possibly dropping many nonbuyers. The AUGURES system makes a
big difference between both situations: using the predictions from AUGURES,
the most promising customers can be allocated to server 1, the next most
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Fig. 6. Evolution of load and number of dynamically provisioned servers

promising ones to server 2, etc. At some point, the highest-numbered active
servers are likely to be receiving mostly non-buyer sessions. If the number of
buyers in a server is sufficiently low with respect to the cost of having the
server running, it is beneficial to the company to shut it down, maybe failing
to serve a few buyers, but mostly discarding nonbuying traffic. Conversely, if
all servers are receiving a non-negligible number of buyers, it may be time to
request a new server to the dynamic provisioner.

While we did not simulate this mechanism strictly speaking, we carried out
an experiment to let us visualize its potential benefits. Note that the intention
of the experiment was not solving the problem of deciding when acquiring
or releasing a new server. There is extensive literature on the topic, but we
used a simple yet effective approach: we average the load change in the last 10
minutes of requests, and multiply it by the time it would take to start a new
server (chosen to be 10 minutes for the experiments); we request a new server
if the expected load is higher than the current capacity. The same mechanism
was applied to release a server, but with the constraint that a newly added
server must stay on for at least 15 minutes.

In the experiment, we assumed that each server can handle 50 requests per
minute. This would mean, in our dataset, that 10 servers would be needed
to serve the peak load. Figure 6 shows the evolution of the number of active
servers when the strategy above was used to acquire/release servers dynami-
cally. It can be seen that it closely parallels the evolution of the load, and it
fact it overprovisions by a slight amount. The area between the plot and the
10-server line above the peak represents the savings in server cost with respect
to keeping all 10 servers up at all times.
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#servers Buyers Static Buyers Benefit Benefit Benefit

& Dynamic Augures Static Dynamic Augures

1 3166 12961 2355 2355 12150

2 5968 13812 4345 4512 12361

3 8624 14606 6190 6612 12593

4 11131 15361 7886 8575 12805

5 13474 16064 9417 10391 12982

6 15465 16659 10597 11888 13083

7 16703 17026 11024 12665 12988

8 17115 17146 10624 12700 12700

9 17157 17157 9855 12422 12422

10 17157 17157 9044 12323 12323
Table 3
Buyers served and benefits of different strategies

So far, this is independent of the usage of AUGURES. To see the potential
benefit of combining dynamic server activation (or dynamic provisioning) and
server prioritization, one has to study the amount of buyers served at different
servers. Table 3 shows some figures for analysis, accumulated over the 24-hour
period in the dataset. It compares three strategies: the “static” strategy, in
which a fixed number of servers (from 1 to 10) are permanently active, and
each new session is assigned to the least-numbered server with available ca-
pacity; the “dynamic” strategy, in which servers are turned on and off as the
load requires, and sessions are assigned to servers as above; and the combi-
nation of the dynamic strategy which AUGURES, in which incoming sessions
are assigned to servers 1, then 2, etc. in order of purchase probability (so most
promising sessions are assigned to server 1). Each table row represents a num-
ber of servers, from 1 to 10. For each number of servers i, the five columns list:
how many buyers are served by servers 1. . . i in the static and dynamic strate-
gies (note they have to be the same); how many buyers are served by servers
1. . . i in the AUGURES strategy; and the actual benefit generated by servers 1
to i in each of the three strategies. To compute this benefit, we have assumed
that each (served) buyer produces a benefit of 1 and each server a cost of 0.33
per minute, a ratio which approximates the average benefit per buyer in our
dataset’s agency and the actual cost of Amazon’s Elastic Computing current
prices.

From the table one can observe a number of phenomena: first, even in the static
strategy, server 10 serves no buyers. This is because our strategy for predicting
future load tends to overestimate, so server 10 is basically overprovisioning and
serves no load. Also, as is to be expected, in the static and dynamic strategies,
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server 1 gets about 19% of the buyers (i.e., more than 1/10): this is because the
session assignment strategy tries to keep it fully busy, so it receives the largest
share of the load. In contrast, in the AUGURES strategy, lower-numbered
servers get a fraction of buyers larger than their fraction of load share. In
particular, server number 1 alone serves 75% (=12961/17157) of the buyers.

For the three strategies, the benefit grows with the number of servers up to
6-8 servers, at which point each new server produces more cost than benefit.
However, AUGURES’ maximum benefit (13082) exceeds slightly that of the
dynamic strategy (12699), and both exceed by far that of the static one. The
point to note here is that the actual figures depend on the values we have
assumed on the ratio of benefit per buyer / server costs. In a situation where
the ratio is much lower (e.g., server time is expensive), AUGURES’ benefit
could potentially exceed the dynamic strategy by far. In the extreme case, the
company could serve 75% of its buying customers with just 1 server, while the
dynamic strategy would need at least 5 servers for the same effect.

Admittedly, there is a strong practical consideration that we have not taken
into account in this simulation: companies are reluctant to loosing not only
buyers, but also non-buying sessions because that means a loss in user sat-
isfaction and prestige (hence, future revenue). On the other hand, marketing
techniques produce estimates of the value of a lost session, which could be
incorporated into the computations above.

6 Other Potential Applications

This section describes other potential applications for the techniques described
in the article. We summarize as using machine learning techniques to charac-
terize individual anonymous Web sessions in real time from available session
information and past data.

A first approach to extended the experiments presented in this article, is to
use other metrics than if the session will end up in a purchase, to prioritize it.
Two that we plan to investigate in the immediate future are:

• Expected purchase value and profit margin for the session, in case not all
purchases have the same value or profit.

• Number of served sessions. This is an important metric, applicable to sites
that don’t sell products, but where user satisfaction is important. The idea
is the following: Assume that resources used by a session i.e., computing
time, memory, bandwidth, database searches, among others, can be pre-
dicted with some accuracy in the way we predicted purchases; preliminary
experiments indicate that this is indeed the case. Then the system could
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prioritize sessions that use less resources and penalize resource-consuming
ones. In this way, more sessions per time unit could be served, increasing
the number of served users. This is important since being served at all is
probably the most important factor for user satisfaction.

For ecommerce sites, features that we have not considered but that could be
taken into account are: magnitude of the transaction, type of product, profit
margins, type of customer (new, returning, gold), demographic group, and a
combination of these features according to the type of site and path. The idea
is that by predicting the benefit to be obtained from the session, it could be
contrasted with infrastructure costs, and shape QoS accordingly.

Information, media streaming, or social-networking sites can definitely benefit
from predictions about session costs and user contribution to the network,
to change the QoS of the session. Users that contribute more, or that seem
to be impatient in information sites, could automatically be granted more
bandwith and better response times. On the other hand, leachers and content
stealing bots [18] should see their QoS lowered if system resources are low, and
even denied access in case of overloads. For sites that do not rely on external
providers or pages that are mainly static or cacheable, prefetching can be used
as in [7,12,17]. Predicting user intentions can be use in the field of dynamic
content adaptation [2,14], where the page content, layout, links, and banners
change according to the predictions about the user.

7 Conclusions and Future Work

Websites might become overloaded by certain events such as news events or
promotions, as they can potentially reach millions of users. When a peak sit-
uation occurs most infrastructures become stalled and throughput is reduced.
To prevent this, load admission control mechanisms are used to allow only
a certain number of sessions; but as they do not differentiate between users,
users with intentions to purchase might be denied access. As a proof of con-
cept, we have taken data from a high-traffic online travel agency and learned
to predict users’ purchasing intentions from their navigational patterns.

In our experiments, we are able to train a model from previously recorded
navigational information that can be used to determine, with nontrivial prob-
ability, whether a session will lead to purchase from the first click. The max-
imum number of allowed users to the site can be regulated, according to the
infrastructure’s capacity and goal specification, by placing a threshold over the
predicted buying probability of incoming transactions. That is, the model can
adapt itself dynamically to the workload while maintaining reasonable recall
and precision.
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As future work we plan to investigate other models, including hidden Markov
models, Bayesian Networks, and k-means clustering, to improve predictions.
We are also plan to explore other classification criteria (see Section 6) and
resource usage, as well as their combinations for flexible configuration based
on high-level policies. At the same time we plan to test the applicability of the
predictor models, by testing their real-time performance. As a first step we
plan to use the prediction system as a base layer for a utility-based resource
management system.
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[11] D. Menascé, V.Almeida, R. Riedi, F. Ribeiro, R. Fonseca, W. Meira, Jr. In
Search of Invariants for e-Business Workloads. Proc. 2nd ACM Conference on
Electronic Commerce, 56–65, 2000.

[12] A. Nanopoulos, D. Katsaros, Y. Manolopoulos. Effective Prediction of Web-
user Accesses: a Data Mining Approach. Conference on Mining Log Data
Across All Customer Touchpoints (WebKDD’01), San Francisco, 2001.

[13] N. Poggi, T. Moreno, J. Berral, R. Gavaldà, J. Torres. Web Customer
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