
Mining Adaptively Frequent Closed Unlabeled Rooted
Trees in Data Streams

Albert Bifet Ricard Gavaldà
Departament de Llenguatges i Sistemes Informàtics

Universitat Politècnica de Catalunya
Barcelona, Spain

{abifet,gavalda}@lsi.upc.edu

ABSTRACT
Closed patterns are powerful representatives of frequent pat-
terns, since they eliminate redundant information. We pro-
pose a new approach for mining closed unlabeled rooted
trees adaptively from data streams that change over time.
Our approach is based on an efficient representation of trees
and a low complexity notion of relaxed closed trees, and
leads to an on-line strategy and an adaptive sliding win-
dow technique for dealing with changes over time. More
precisely, we first present a general methodology to identify
closed patterns in a data stream, using Galois Lattice The-
ory. Using this methodology, we then develop three closed
tree mining algorithms: an incremental one IncTreeNat,
a sliding-window based one, WinTreeNat, and finally one
that mines closed trees adaptively from data streams, Ada-
TreeNat. To the best of our knowledge this is the first work
on mining frequent closed trees in streaming data varying
with time. We give a first experimental evaluation of the
proposed algorithms.

Categories and Subject Descriptors
H.2.8 [Database applications]: Database Applications—
Data Mining

General Terms
Algorithms

Keywords
Data streams, closed mining, concept drift, patterns, trees

1. INTRODUCTION
Tree-structured representations are a main key idea per-

vading all of Computer Science; many link-based structures
may be studied formally by means of trees. From the pars-
ing structures in Compiler Design and Natural Language
Processing, to the B+ indices that make our commercial
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Database Management Systems useful, through search-tree
or heap data structures, tree automata, the decision tree
structures in Artificial Intelligence and Decision Theory, or
the now-ubiquitous XML, they often represent an optimal
compromise between the conceptual simplicity and process-
ing efficiency of strings and the harder but much richer
knowledge representation formalisms based on graphs. Ac-
cordingly, a wealth of slight variations of the basic notions,
both of the structures themselves (binary, bounded-rank,
unranked, ordered, unordered) or of their relationships (in-
duced or embedded, top-down or bottom-up subtree rela-
tions) have been proposed for study and motivated applica-
tions. In particular, mining frequent trees is becoming an
important task, with broad applications including chemical
informatics, computer vision, text retrieval, bioinformatics,
and web analysis. We focus on finding navigation patterns
in web sites and web logs, so we are interested on unlabeled
induced rooted trees, thus our relevant information is the
root and the link structure. Unlabeled trees are also a pre-
vious step to mine labeled trees, a more powerful pattern in
applications.

Closure-based mining on purely relational data, that is,
itemset mining, is, by now, well-established, and there are
interesting algorithmic developments. Sharing some of the
attractive features of frequency-based summarization of sub-
sets, it offers an alternative view with advantages; first, by
imposing closure, the number of frequent sets is heavily re-
duced and, second, the possibility appears of developing a
mathematical foundation that connects closure-based min-
ing with lattice-theoretic approaches like Formal Concept
Analysis.

Data streams are defined as data sequences that arrive at
high speed. They are so large that we may not be able to
store all of what we see, and we do not have too much time to
process each item. Several applications naturally generate
data streams, a prime example being log records or click-
streams in web tracking and personalization. The unlabeled
rooted tree is an interesting pattern to obtain from this data.
The most frequent way to deal with continuous data streams
evolving on time, is to keep in memory a window of examples
and refresh its model every time change is detected.

We propose a general methodology to identify closed pat-
terns in a data stream, using Galois Lattice Theory. Using
this methodology, we develop three closed tree mining al-
gorithms: IncTreeNat, an incremental closed tree mining
algorithm; WinTreeNat, a sliding window closed tree min-
ing algorithm; and finally AdaTreeNat, an adaptive closed
tree mining algorithm.



AdaTreeNat is a new algorithm that can adaptively
mine from data streams that change over time, with no need
for the user to enter parameters describing the speed or na-
ture of the change. We take a recently proposed algorithm
(ADWIN) [4] for detecting change and keeping updated statis-
tics from a data stream, and use it as a black-box in place
or counters or accumulators. Since ADWIN has rigorous per-
formance guarantees, this opens the possibility of extending
such guarantees to the new algorithm.

The rest of the paper is organized as follows. We discuss
related work in Section 2. Sections 3 and 4 give background
and introduce our closure operator and its properties needed
for our algorithms. Section 5 introduces the general mining
framework and Section 6 shows how to adapt this framework
to deal with concept drift. Section 7 shows its application to
tree structures. Experimental results are given in Section 8,
and some conclusions in Section 9.

2. RELATED WORK
There is a large body of work done on itemset mining.

An important part of the most recent work is related to
data streams; see the survey [12] and the references there.
We can divide these data stream methods in two different
classes depending on whether they use a landmark window
or a sliding window. Only a small part of these methods deal
with frequent closed mining. Moment [5], CFI-Stream [13]
and IncMine [11] are the state-of-art algorithms for mining
frequent closed itemsets over a sliding window. CFI-Stream
stores only closed itemsets in memory, but it must main-
tain all closed itemsets as it does not implement a minimum
support threshold. Moment stores much more information
besides the current frequent closed itemsets, but it has a
minimum support threshold to reduce the quantity of pat-
terns found. IncMine proposes a notion of semi-FCIs that
consists in increasing the minimum support threshold for an
itemset as it is retained longer in the window.

There have been subsequent efforts in moving towards
closure-based mining on structured data, particularly se-
quences, trees and graphs. One of the differences with closed
itemset mining stems from the fact that uniqueness of set-
theoretic intersection no longer holds: whereas the intersec-
tion of two sets is a set, the intersection of two sequences
or two trees is not one sequence or one tree. This makes
it nontrivial to justify the word “closed” in terms of a stan-
dard closure operator. Many papers resort to a support-
based notion of closeness of a tree or sequence [6]; others
(like [1]) choose a variant of trees where a closure operator
between trees can be actually defined (via least general gen-
eralization). In some cases, the trees are labeled, and strong
conditions are imposed on the label patterns (such as non-
repeated labels in tree siblings [16] or nonrepeated labels at
all in sequences [9]). Chi et al. proposed CMTreeMiner [6],
the first algorithm to discover all closed and maximal fre-
quent labeled induced subtrees without first discovering all
frequent subtrees. CMTreeMiner shares many features with
CloseGraph [18].

A lot of research work exist on XML pattern mining. Asai
et al. [2] present StreamT, a tree online mining algorithm
that uses a forgetting model and is able to maintain a slid-
ing window, but it extracts only frequent trees, not closed
ones. Hsieh et al. [10] propose STMer, an alternative to
StreamT to deal with frequent trees over data streams, but
without using a sliding window. In [8], Feng et al. present

SOLARIA*, a frequent closed XML query pattern mining al-
gorithm, but it is not an incremental method. Li. et al [14]
present Incre-FXQPMiner, an incremental mining algorithm
of frequent XML query patterns, but it does not obtain the
closed XML queries, neither it uses a sliding window.

As we are interested in web link structure we focus on
unlabeled trees. Labeled trees are trees in which each vertex
is given a unique label. Unlabeled trees are trees in which
each vertex has no label, or there is a unique label for all
vertices. A comprehensive introduction to the algorithms on
unlabeled trees can be found in [17].

To the best of our knowledge this is the first approach
defined for mining frequent closed trees in streaming data
that evolve with time.

3. PRELIMINARIES
Patterns are graphs, composed by a labeled set of nodes

(vertices) and a labeled set of edges. The number of nodes
in a pattern is called its size. Examples of patterns are
itemsets, sequences and trees [20].

Given two patterns t and t′, we say that t is a subpattern
of t′, or t′ is a super-pattern of t, denoted by t � t′ if there
exists a 1-1 mapping from the nodes in t to a subset of the
nodes in t′ that preserves node and edge labeling. As there
may be many mappings with this property, we will define for
each type of pattern a more specific definition of subpattern.
Two patterns t, t′ are said to be comparable if t � t′ or t′ � t.
Otherwise, they are incomparable. Also t ≺ t′ if t is a proper
subpattern of t′ (that is, t � t′ and t 6= t′).

The (infinite) set of all patterns will be denoted with T ,
but actually all our developments will proceed in some finite
subset of T which will act as our universe of discourse.

The input to our data mining process, now is a given finite
dataset D of transactions, where each transaction s ∈ D
consists of a transaction identifier, tid, and a pattern. Tids
are supposed to run sequentially from 1 to the size of D.
From that dataset, our universe of discourse U is the set of
all patterns that appear as subpattern of some pattern in D.

Following standard usage, we say that a transaction s sup-
ports a pattern t if t is a subpattern of the pattern in trans-
action s. The number of transactions in the dataset D that
support t is called the support of the pattern t. A subpattern
t is called frequent if its support is greater than or equal to a
given threshold min sup. The frequent subpattern mining
problem is to find all frequent subpatterns in a given dataset.
Any subpattern of a frequent pattern is also frequent and,
therefore, any superpattern of a nonfrequent pattern is also
nonfrequent (the antimonotonicity property).

We define a frequent pattern t to be closed if none of its
proper superpatterns has the same support as it has. Gen-
erally, there are much fewer closed patterns than frequent
ones. In fact, we can obtain all frequent subpatterns with
their support from the set of frequent closed subpatterns
with their supports. So, the set of frequent closed subpat-
terns maintains the same information as the set of all fre-
quent subpatterns.

Itemsets are subsets of a set of items. Let I = {i1, · · · , in}
be a fixed set of items. All possible subsets I ′ ⊆ I are item-
sets. We can consider itemsets as patterns without edges,
and without two nodes having the same label. In itemsets
the notions of subpattern and super-pattern correspond to
the notions of subset and superset.

Sequences are ordered list of itemsets. Let I = {i1, · · · , in}



be a fixed set of items. Sequences can be represented as
〈(I1)(I2)...(In)〉, where each Ii is a subset of I, and Ii comes
before Ij if i ≤ j. Without loss of generality we can assume
that the items in each itemset are sorted in a certain order
(such as alphabetic order). In sequences we are interested
in a notion of subsequence defined as following: a sequence
s = 〈(I1)(I2)...(In)〉 is a subsequence of s′ = 〈(I ′1)(I ′2)...(I ′n)〉
i.e. s � s′, if there exist integers 1 ≤ j1 < j2 . . . < jn ≤ m
such that I1 ⊆ I ′j1 , . . . , In ⊆ I ′jn

.
Trees, viewed as patterns, are discussed in more detail in

Section 7.

3.1 Relaxed support
Song et al.[15] introduced the concept of relaxed frequent

itemset and we adapt it to pattern mining. The support
space of all subpatterns can be divided into n = d1/εre
intervals, where εr is a user-specified relaxed factor, and
each interval can be denoted by Ii = [li, ui), where li =
(n− i) ∗ εr ≥ 0, ui = (n− i+ 1) ∗ εr ≤ 1 and i ≤ n. Then a
subpattern t is called a relaxed closed subpattern if and only
if there exists no proper superpattern t′ of t such that their
suports belong to the same interval Ii.

Relaxed closed mining is a powerful notion that reduces
the number of closed subpatterns in data streams where ap-
proximation is acceptable.

We can define Relaxed support as a mapping from all pos-
sible dataset supports to the set of relaxed intervals. We
can apply it to our mining algorithms, replacing the calls to
support values, to relaxed support values.

We introduce the concept of logarithmic relaxed frequent
pattern, by defining li = dcie, ui = dci+1 − 1e for the value
of c generating n intervals. Depending on the closed pat-
tern distribution on the dataset, and the scale of supports
of interest, the notion of logarithmic support may be more
appropiate than the linear one.

4. CLOSURE OPERATOR ON PATTERNS
In this section we develop our approach for closed pattern

mining based on the use of closure operators. Most previous
approaches defined “closed” patterns in terms of support.
This essentially leaves antimonotonicity as the only math-
ematical property to be exploited. Our approach relies on
much richer mathematics, which, as usual, leads to more
interesting algorithmics.

The following concept is standard in mathematics. If X
is a set with a partial order ≤, a closure operator on X
is a function C : X → X such that x ≤ C(X), x ≤ y
implies C(x) ≤ C(y), and C(X) = C(C(X)). A Galois
connection is defined by two functions, relating two lattices
in a certain way. Here our lattices are plain power sets of
the transactions, on the one hand, and of the corresponding
subpatterns, in the other. On the basis of the binary relation
t � t′, the following definition and proposition are rather
standard.

Definition 1. The Galois connection pair:

• For finite A ⊆ D, σ(A) = {t ∈ T
˛̨
t maximally con-

tained in t′ for all t′ ∈ A}

• For finite B ⊂ T , not necessarily in D, τD(B) = {t′ ∈
D

˛̨
∀ t ∈ B (t � t′)}

Proposition 1. The composition ∆D = σ ◦ τD is a clo-
sure operator on the subsets of D.

We point out the following easy-to-check properties:

1. t ∈ ∆D({t})

2. ∆D1∪D2({t}) = {t1∩t2
˛̨
t1 ∈ ∆D1({t}), t2 ∈ ∆D2({t})}

We can relate the closure operator to the notion of clo-
sure based on support, as previously defined, as follows: t is
closed for D if and only if: ∆D({t}) = {t}.

Proposition 2. Adding a pattern transaction to a dataset
of patterns D does not decrease the number of closed patterns
for D.

Proof. All previously closed patterns remain closed. A
closed pattern will become unclosed if one of its superpat-
terns reach the same support, but that is not possible be-
cause every time the support of a pattern increases, the sup-
port of all its subpatterns also increases. 2

Proposition 3. Adding a transaction with a closed pat-
tern to a dataset of patterns D does not modify the number
of closed patterns for D.

Proof. Suppose s is a subpattern of a closed pattern t.
If s is closed then ∆D({s}) = {s}. If s is not closed, then
∆D({s}) ⊂ ∆D({t}) = {t}. Increasing the support of the
closed pattern t will increase the support of all its subpat-
terns. The subpatterns that are closed will remain closed,
and the ones that are non-closed, will remain non-closed be-
cause the support of its closure will increase also. 2

Proposition 4. Deleting a pattern transaction from a
dataset of patterns D does not increase the number of closed
patterns for D.

Proof. All the previous unclosed patterns remain un-
closed. A condition for an unclosed pattern to become closed
is that its superpatterns with the same support modifies
their support, but this is not possible because every time we
decrease the support of a superpattern we decrease also the
support of this pattern. 2

Proposition 5. Deleting a pattern transaction that is re-
peated in a dataset of patterns D does not modify the number
of closed patterns for D.

Proof. Adding a transaction with a previously closed
pattern to a dataset of patterns D does not modify the num-
ber of closed patterns for D. So deleting it does not change
the number of closed patterns. 2

Proposition 6. Let D1 and D2 be two datasets of pat-
terns. A pattern t is closed for D1 ∪ D2 if and only if
∆D1∪D2({t}) = {t1 ∩ t2

˛̨
t1 ∈ ∆D1({t}), t2 ∈ ∆D2({t})} =

{t}.

Proposition 6 follows from the definition of closed pattern.
We use it as a closure checking condition when adding a set
of transactions to a dataset of patterns.

Corollary 1. Let D1 and D2 be two datasets of pat-
terns. A pattern t is closed for D1 ∪ D2 if and only if

• t is a closed pattern for D1, or

• t is a closed pattern for D2, or



Closed Subpattern Mining Add(T1, T2,min sup, T )

Input: Frequent closed pattern sets T1 and T2, and min sup.
Output: The frequent closed pattern set T .

1 T ← T1

2 for every t in T2 in size-ascending order
3 do if t is closed in T1

4 do supportT (t)+ = supportT2(t)
5 for every t′ that is a subpattern of t
6 do if t′ is in T1

7 then if t′ is not updated
8 then insert t′ into T
9 supportT (t′)+ = supportT2(t′)

10 else
11 skip processing t′ and all its subpatterns
12 do if t is not closed in T1

13 do insert t into T
14 for every t′ that is a subpattern of t
15 do if t′ is not updated
16 then if t′ is in T1

17 then supportT (t′)+ = supportT2(t′)
18 if {s ∩ t

˛̨
s ∈ ∆T1({t′})} = {t′}

19 then insert t′ into T
20 supportT (t′)+ = supportT2(t′)
21 else
22 skip processing t′ and all its subpatterns
23 return T

Figure 1: The Closed Subpattern Mining adding algorithm

• t is a subpattern of a closed pattern in D1 and a closed
pattern in D2 and ∆D1∪D2({t}) = {t}

Proposition 7. Let D be a dataset of patterns. A pat-
tern t is closed for D if and only if the intersection of all its
closed superpatterns is t.

Proof. Suppose that the intersection of all its closed su-
perpatterns is t′ and that t′ 6= t, then t is not closed because
it exists a superpattern t′ with the same support. Also, sup-
pose the intersection of all its closed superpatterns is t and
that t is not closed. Then t′ ∈ ∆({t}) has the same sup-
port as t, and it must be in the intersection of all the closed
superpatterns of t. 2

We use Proposition 8 as a closure checking condition when
deleting a set of transactions from a pattern set.

5. CLOSED PATTERN MINING

5.1 Incremental Closed Pattern Mining
In this subsection we propose a new method to do incre-

mental closed pattern mining. Every time a new batch of
patterns DT2 arrives we compute the closed pattern set of
the batch DT2, and then we update the closed pattern set
T using Closed Subpattern Mining Add as is shown in
Figure 1.

In words, let T be the existing set of closed patterns, and
T2 those coming from the new batch. For each closed pat-
tern in DT2, we check whether the pattern is closed in T .
If it is closed, we update its support and the support of all
its subpatterns, as justified by Proposition 3. If it is not

closed, as it is closed for T2, we add it to the closed pat-
tern set, as justified by Corollary 2, and we check for each
of its subpatterns whether it is closed or not. In line 18, we
use Proposition 6 to do the closure-check ∆T1∪T2({t′}) =
{t1 ∩ t2

˛̨
t1 ∈ ∆T1({t′}), t2 ∈ ∆T2({t′})} = {t′} using

the fact that ∆T2({t′}) = {t}. Here ∆T2({t′}) is a closed
pattern in T2. As we check all the subpatterns of T2 in
size-ascending order, we know that all closed subpatterns of
t have been checked before, and therefore we can suppose
that ∆T2({t′}) = {t}.

The best (most efficient) data structure to do this task will
depend on the pattern. In general, a lattice is the default
option, where each lattice node is a pattern with its support,
and a list of its closed superpatterns and a list of its closed
subpatterns: We can use the lattice structure to speed up
the closure check ∆T1∪T2({t′}) = {t′}.

5.2 Closed pattern mining over a sliding win-
dow

Adding a method to delete a set of transactions, we can
adapt our method to use a sliding window of pattern trans-
actions.

Figure 2 shows the Closed Subpattern Mining Delete
pseudocode. We check for every t pattern in T2 in ascending
order if its subpatterns are still closed or not after deleting
some transactions. We can look for a closed superpattern
with the same support or use the closure checking condition
given by Proposition 8: a pattern t is closed if the intersec-
tion of all its closed superpatterns is t. The lattice structure
supports this operation well. We can delete a transaction
one by one, or delete a batch of transactions of the slid-



Closed Subpattern Mining Delete(T1, T2,min sup, T )

Input: Frequent Closed pattern sets T1 and T2, and min sup.
Output: The frequent closed pattern set T .

1 T ← T1

2 for every t in T2 in size-ascending order
3 do for every t′ that can be reduced from t
4 do if t′ is not updated
5 then if t′ is in T1

6 then if t′ is not closed
7 then delete t′ from T
8 else supportT (t′)− = supportT2(t′)
9 else

10 skip processing t′ and all its subpatterns
11 return T

Figure 2: The Closed Subpattern Mining delete algorithm

ing window. We delete transactions one by one to avoid
recomputing the frequent closed patterns of each batch of
transactions.

6. ADDING CONCEPT DRIFT
In this section we present a new method for dealing with

concept drift in pattern mining, using ADWIN [4], an algo-
rithm for detecting change and dynamically adjusting the
length of a data window. First we briefly review the AD-

WIN algorithm and then we describe our method combining
the previous sliding window pattern mining algorithms and
ADWIN.

6.1 The ADWIN algorithm
Recently, we proposed an algorithm termed ADWIN (for

Adaptive Windowing) that solves in a well-specified way the
problem of tracking the average of a stream of bits or real-
valued items. ADWIN keeps a variable-length window of re-
cently seen items, with the property that the window has at
all times the maximal length statistically consistent with the
hypothesis “there has been no change in the average value
inside the window”.

More precisely, an older fragment of the window is dropped
if and only if there is enough evidence that its average value
differs from that of the rest of the window. This has two con-
sequences: one, that change reliably declared whenever the
window shrinks; and two, that at any time the average over
the existing window can be reliably taken as an estimation
of the current average in the stream (barring a very small
or very recent change that is still not statistically visible).
A formal and quantitative statement of these two points (a
theorem) appears in [4].
ADWIN is parameter- and assumption-free in the sense that

it automatically detects and adapts to the current rate of
change. Its only parameter is a confidence bound δ, indicat-
ing how confident we want to be in the algorithm’s output,
inherent to all algorithms dealing with random processes.

Also important for our purposes, ADWIN does not main-
tain the window explicitly, but compresses it using a variant
of the exponential histogram technique in [7]. In particular,
it keeps a window of length W using only O(logW ) memory
rather than the O(W ) one expects from a näıve implemen-
tation. The processing time per item is also O(logW ).

6.2 Concept drift closed pattern mining
We propose two strategies to deal with concept drift:

1. Using a sliding window, with an ADWIN estimator de-
ciding the size of the window

2. Maintaining an ADWIN estimator for each closed set in
the lattice structure.

In both strategies we use Closed Subpattern Mining Add
to add transactions. In the first strategy we use Closed
Subpattern Mining Delete to delete transactions as we
maintain a sliding window of transactions.

In the second strategy, we do not delete transactions. In-
stead, each ADWIN monitors its support and when a change
is detected, then the support may

• increase: the number of closed patterns is increasing
and it is maintained by Closed Subpattern Mining
Add

• decrease: the number of closed patterns may decrease
and we have to delete the non-closed patterns from the
lattice. We do this in the following way:

– If the support is lower than min supp, we delete
the closed pattern from the lattice.

– If the support is higher than min supp, we check
whether it and all its subpatterns are still closed
finding a superpattern with the same support, or,
alternatively, we can use the closure checking of
Proposition 8: a pattern t is closed if the inter-
section of all its closed superpatterns is t.

7. CLOSED TREE MINING
In this section we apply the general framework above

specifically by considering the tree pattern. Trees are con-
nected acyclic graphs, rooted trees are trees with a vertex
singled out as the root, and unranked trees are trees with
unbounded arity. We say that t1, . . . , tk are the components
of tree t if t is made of a node (the root) joined to the roots of
all the ti’s. We can distinguish betweeen the cases where the
components at each node form a sequence (ordered trees) or



just a set (unordered trees). We will deal with rooted, un-
ranked trees. We do not assume the presence of labels on
the nodes.

An induced subtree of a tree t is any connected subgraph
rooted at some node v of t that its vertices and edges are
subsets of those of t. An embedded subtree of a tree t is
any connected subgraph rooted at some node v of t that
does not break the ancestor-descendant relationship among
the vertices of t. We are interested in induced subtrees.
Formally, let s be a rooted tree with vertex set V ′ and edge
set E′, and t a rooted tree t with vertex set V and edge set
E. Tree s is an induced subtree (or simply a subtree) of t
(written t′ � t) if and only if 1) V ′ ⊆ V , 2) E′ ⊆ E, and
3) the labeling of V ′ is preserved in t. This notation can be
extended to sets of trees A � B: for all t ∈ A, there is some
t′ ∈ B for which t � t′.

We represent each tree using natural representations [3].
The natural representation of a tree is a sequence over a
countably infinite alphabet, namely, the set of natural num-
bers. This encoding basically corresponds to a preorder
traversal of t, where each number of the sequence repre-
sents the depth of the current node in the traversal. As an
example, the natural representation of the tree

is the natural sequence (0, 1, 2, 2, 3, 1). Note that, for exam-
ple, the subsequence (1, 2, 2, 3) corresponds to the bottom-
up subtree rooted at the left son of the root.

The input to our data mining process is a given finite
dataset D of transactions, where each transaction s ∈ D
consists of a transaction identifier, tid, and an unlabeled
rooted tree. Figure 3 shows a finite dataset example.

The closure operator defined for trees uses the following
Galois connection pair:

• For finite A ⊆ D, σ(A) = {t ∈ T
˛̨
t maximally con-

tained in t′ for all t′ ∈ A}

• For finite B ⊂ T , not necessarily in D, τD(B) = {t′ ∈
D

˛̨
∀ t ∈ B (t � t′)}.

The main results of Section 4 may be established for un-
labeled trees as:

Corollary 2. Let D1 and D2 be two datasets of trees.
A tree t is closed for D1 ∪ D2 if and only if

• t is a closed tree for D1, or

• t is a closed tree for D2, or

• t is a subtree of a closed tree in D1 and a closed tree
in D2 and ∆D1∪D2({t}) = {t}.

Proposition 8. Let D be a dataset of trees. A tree t is
closed for D if and only if the intersection of all its closed
supertrees is t.

The closed trees for the dataset of Figure 3 are shown in
the Galois lattice of Figure 4.

D

Tid Trees

1 (0, 1, 2, 3, 2)
2 (0, 1, 2, 2, 1)
3 (0, 1, 2, 3, 1)

Figure 3: A dataset example

1 2 3

12 13 23

123

Figure 4: Example of Galois Lattice of Closed trees

7.1 Non Incremental Closed Tree Mining
In [3] the authors presented an algorithm for computing

frequent and closed trees from a dataset of trees, in a non-
incremental way. They represent the potential subtrees to
be checked as frequent and closed on the dataset in such
a way that extending them by one single node, in all pos-
sible ways, corresponds to a clear and simple operation on
the representation. The completeness of the procedure is
assured, that is, all trees can be obtained in this way. This
allows them to avoid extending trees that are found to be
already nonfrequent.

The pseudocode of this method, Closed Subtrees Mining,
is presented in Figures 5 and 6. Note that the first line of
the algorithm is a canonical representative checking, a check
that is used frequently in tree mining literature. In [3] the
authors selected one of the ordered trees corresponding to
a given unordered tree to act as a canonical representative:
by convention, this canonical representative has larger trees
always to the left of smaller ones.

7.2 Incremental Closed Tree Mining
We propose three tree mining algorithms adapting the



Closed Subtree Mining(t,D,min sup, T )

Input: A tree t, a tree dataset D, and min sup
Output: The frequent closed tree set T

1 if t 6= Canonical Representative(t)
2 then return T
3 for every t′ that can be extended from t in one step
4 do if support(t′) ≥ min sup
5 do T ← Closed Subtree Mining(t′, D,

min sup, T )
6 do if support(t′) = support(t)
7 then t is not closed
8 if t is closed
9 then insert t into T

10 return T

Figure 5: The Closed Subtree Mining algorithm

Closed Mining(D,min sup)

Input: A tree dataset D, and min sup
Output: The closed tree set T

1 t← r
2 T ← ∅
3 T ← Closed Subtree Mining(t,D,min sup, T )
4 return T

Figure 6: The Closed Unordered Mining algorithm

general framework for patterns presented in Section 5:

• IncTreeNat, an incremental closed tree mining algo-
rithm,

• WinTreeNat, a sliding window closed tree mining
algorithm

• AdaTreeNat an adaptive closed tree mining algo-
rithm

The batches are processed using the non-incremental al-
gorithm explained in Subsection 7.1. We use the relaxed
closed tree notion to speed up the mining process.

8. EXPERIMENTAL EVALUATION
We tested our algorithms on synthetic and real data, com-

paring the results with CMTreeMiner [6].
All experiments were performed on a 2.0 GHz Intel Core

Duo PC machine with 2 Gigabyte main memory, running
Ubuntu 7.10. As far as we know, CMTreeMiner is the state-
of-art algorithm for mining induced frequent closed trees in
databases of rooted trees. CMTreeMiner and our algorithms
are implemented in C++. The main difference with our
approach is that CMTreeMiner is not incremental and works
with labeled nodes, and we deal with unlabeled trees.

On synthetic data, we use the same dataset as in [6] and
[19] for rooted ordered trees restricting the number of dis-
tinct node labels to one. We call this dataset TN1, and is
generated by the tree generation program of Zaki [19] avail-
able from his web page. This program generates a mother
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Figure 7: Data experimental time results on ordered
trees on TN1 dataset

IncTreeNat

CMTreeMinerTime
(sec.)

Size (Milions)

2 4 6 8

100

200

300

Figure 8: Time used on unordered trees, TN1
dataset

tree that simulates a master website browsing tree. Then it
assigns probabilities of following its children nodes, includ-
ing the option of backtracking to its parent, such that the
sum of all the probabilities is 1. Using the master tree, the
dataset is generated creating subtrees by randomly picking
subtrees according to these probabilities.

In the TN1 dataset, the parameters are the following: the
number of distinct node labels is N = 1, the total number
of nodes in the tree is M = 10, 000, the maximal depth of
the tree is D = 10, the maximum fanout is F = 10. The
average number of nodes is 3.

The results of our experiments on synthetic data are shown
in Figures 7, 8, 9 and 10. We changed the dataset size from
100, 000 to 8 milion, and we observe that as the dataset size
increases, IncTreeNat time increases linearly, and CMTreeM-
iner does much worse than IncTreeNat. After 6 milion
samples, in the unordered case, CMTreeMiner runs out of
main memory and it ends before outputing the closed trees.

Figure 11 shows the result of the second following exper-
iment: we take a TN1 dataset of 2 milion trees, and we
introduce artifical concept drift changing the dataset trees
from sample 500,000 to 1,000,000 and from 1,500,000 to
2,000,000, in order to have a small number of closed trees.
We compare IncTreeNat , WinTreeNat with a sliding
window of 500, 000 and 1, 000, 000, and with AdaTreeNat.
We observe that AdaTreeNat detects change faster, and
it quickly revises the number of closed trees in its output.
On the other hand, the other methods have to retain all the
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Figure 10: Memory used on unordered trees, TN1
dataset

data stored in its window, and they need more samples to
change its output number of closed trees.

To compare the two adaptive methods, we perform a third
experiment. We use a data stream of 200, 000 trees, with a
static distribution of 20 closed trees on the first 100, 000
trees and 20 different closed trees on the last 100, 000 trees.
The number of closed trees remains the same. Figure 12
shows the difference between the two methods. The first one,
which monitors the number of closed trees, detects change
at sample 111,480 and then it reduces the window size im-
mediately. In the second method there are ADWINs monitor-
ing each tree support; they notice the appearance of new
closed trees quicker, but overall the number of closed trees
decreases more slowly than in the first method.

Finally, we tested our algorithms on the CSLOGS Dataset,
available from Zaki’s web page [19]. It consists of web logs
files collected over one month at the Department of Com-
puter Science of Rensselaer Polytechnic Institute. The logs
touched 13, 361 unique web pages, and the CSLOGS dataset
contains 59, 691 trees. The average tree size is 12.

Figure 13 shows the number of closed trees detected on the
CSLOGS dataset, varying the number of relaxed intervals.
We see that on this dataset support values are distributed
in such a way that the number of closed trees using loga-
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rithmic relaxed support is greater than using linear relaxed
support. When the number of intervals is greater than 1,000
the number of closed intervals is 249, the number obtained
using the classical notion of support.

9. CONCLUSIONS
We have presented efficient algorithms for mining ordered

and unordered frequent unlabeled closed trees on evolving
data streams. If the distribution of the tree dataset is sta-
tionary, the best method to use is IncTreeNat, as we do
not need to delete any past transaction. If the distribution
may evolve, then a sliding window method is more appropi-
ate. If we know which is the right size of the sliding window,
then we can use WinTreeNat, otherwise AdaTreeNat
would be a better choice, since it does not need the window
size parameter.

Future work will be to do more experiments varying other
tree parameters, and comparing it to other incremental meth-
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ods as StreamT, if they are available. Most importantly, we
want to apply the methodology explained in this paper to
labeled trees, a pattern that has more applications than un-
labeled trees, and in particula compare our methodology
with CMTreeMiner using the same type of trees.
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