
 1

Tailoring resources: the energy efficient consolidation strategy

goes beyond virtualization

Jordi Torres, David Carrera, Vicenç Beltran, Nicolás Poggi, Kevin Hogan, Josep Ll. Berral, Ricard

Gavaldà, Eduard Ayguadé, Toni Moreno and Jordi Guitart.

Barcelona Supercomputing Center (BSC) - Technical University of Catalonia (UPC) - Barcelona (Spain)

torres@ac.upc.edu

Abstract

Virtualization and consolidation are two complementary

techniques widely adopted in a global strategy to reduce

system management complexity. In this paper we show how

two simple and well-known techniques can be combined to

dramatically increase the energy efficiency of a virtualized

and consolidated data center. This result is obtained by

introducing a new approach to the consolidation strategy

that allows an important reduction in the amount of active

nodes required to process a web workload without

degrading the offered service level. Furthermore, when the

system eventually gets overloaded and no energy can be

saved without loosing performance, we show how these

techniques can still improve the overall value obtained

from the workload. The two techniques are memory

compression and request discrimination, and were

separately studied and validated in a previous work to be

now combined in a joint effort. Memory compression is

used to convert CPU power into extra memory capacity to

overcome system underutilization scenarios caused by

memory constraints. Request discrimination is used to

identify web clients according to the value they have to the

system. We study the combined use of these two techniques

by describing a simple but still representative scenario and

also by considering the dramatic impact they would have

for a real workload obtained from a top national travel

website. Our results indicate that an important

improvement can be achieved by deciding not only how

resources are allocated, but also how they are used.

Moreover, we believe that this serves as an illustrative

example of a new way of management: tailoring the

resources to meet high level energy efficiency goals.

1. Introduction
Companies are now focusing more than ever on the need

to improve energy efficiency. In addition to the cost of

energy, a new challenge for them is the increasing social

pressure to reduce their carbon footprint. Commercial

electricity consumption is a major factor in rising

atmospheric CO2 levels and data centers are a significant

part of the problem. While energy costs are rising and data

center equipment is stressing the power and cooling

infrastructure, the main issue is not the current amount

of data center emissions, but the fact that data center

emissions are increasing faster than any other

carbon emission. For this reason nowadays there is a big

interest in “Green” data centers and supercomputer centers

[10]. In this scenario, the research community is being

challenged to rethink data center strategies, and add energy

efficiency to a list of critical operating parameters that

already includes service ability, reliability and performance.

Consolidation and virtualization can be combined to

reduce the management complexity of large data centers as

well as to increase the energy efficiency of such a system.

But even in a scenario where the resources are consolidated

and virtualized, utilizing all the capacity of the components

that are switched on (and consuming power) is not always

simple. To determine a set of applications to be collocated

in a node to perfectly fit and exploit all the resources of the

system is a hard problem to solve, especially when tenths or

even hundreds of nodes and applications can be found in a

data center. Furthermore, the fact that the demand

associated with each system resource for a given

application may not be related in any way to its demand for

other resources (i.e. an application with a large memory

footprint may not be very demanding in terms of CPU

power) which creates a structural problem requiring

constraints to be relaxed in order to overcome it.

In this paper we present how these two simple and well-

known techniques can be combined to dramatically increase

the energy efficiency of a virtualized and consolidated data

center. Increased energy efficiency is obtained through the

introduction of a new approach to the consolidation strategy

by combining: memory compression and request

discrimination. Combining these techniques enables an

important reduction in the amount of active nodes required

to process a web workload by dynamically classifying and

shaping the workload, without degrading the offered service

level. Furthermore, when the system eventually gets

overloaded and no energy can be saved without loosing

performance, we show how request discrimination can still

improve the overall value obtained from the workload. The

two techniques were separately studied and validated in a

previous work to be now combined in a joint effort.

 2

Memory compression is used to convert CPU power into

extra memory capacity to overcome system underutilization

scenarios caused by memory constraints. Request

discrimination is used to characterize web clients by

predicting their class and the value they will have on the

system. Our experiments performed on a real workload,

obtained from a top national travel service exemplify the

dramatic improvement these thechniques offer in energy

and performance efficiency.

The main contribution of this article is to demonstrate

that the consolidation of dynamic workloads does not end

with virtualization, but there is even more to consolidate

when energy-efficiency is pursued. We will present two

alternatives to rescue resources that consolidation does not

currently capitalize on while using virtualization.

The rest of the paper is organized as follows. In Section

2 we study the related work found in the literature. Section

3 describes the basics in dynamic resource management that

we assume as available in our work. Section 4 discusses

the memory compression and request discrimination

techniques applied in our work. Section 5 formally states

the problem we address. Section 6 discusses our study and

obtained results. Finally, some conclusions and future work

are discussed in Section 7.

2. Related Work

Server consolidation has become very popular following

the advances in virtualization technologies [17,9,2], it

allows the control of how resources are allocated to the

running applications. Dynamic allocation of server

resources to applications has been extensively studied

[4,6,12,14,23], however these proposals do not benefit from

the techniques we are introducing to go beyond

virtualization by tailoring resources. The problematic of

consolidating multi-tier applications considered in [19] is

complementary to our proposal . Also of great importance

is the topic considered in [18] regarding the power-efficient

management of enterprise workloads which exploits the

heterogeneity of the platforms. Our proposal could be

included in the analytical prediction layer proposed by the

authors. Finally let us remark that our proposal could be

combined with power-saving techniques at the lowest level

such as dynamic voltage scaling and frequency scaling

[9,15,26]. In a recent work [13], the authors use frequency

scaling in a scheme that trades off web application

performance and power usage while coordinating multiple

autonomic managers. In this case the proposals of this

article could be included in the utility function that they are

using.

3. Managing a consolidated and virtualized
environment

The techniques proposed in this paper are studied in the

context of a virtualized data center where applications share

hardware resources and a set of web applications and being

runned by an automatic service management middleware,

such as that described in [29]. At each moment in time, a

number of application server instances are running in the

system to host the applications deployed on the data center.

The management middleware monitors the actual service

level offered by each application and dynamically changes

the configuration of the system to make the applications

meet their goals. In particular, the system has to decide how

many instances must be running for each application to

meet its goal as well as in what nodes these instances are

going to be placed: this is what is known as the placement

problem. For the purpose of our work, we will assume that

the data center uses virtualization technology [24,28] to

control the resources allocated to each application by

running each instance inside of a virtual machine container.

In the scope of this paper we’ll use a simple instance

placement algorithm to illustrate the benefits of our

techniques, but any other approach could be considered.

The placement problem itself is out of the scope of our

work. The techniques described in this paper can be helpful

to any placement algorithm by relaxing one of the hardest

constraint they have to deal with: the system capacity.

Existing dynamic application placement proposals provide

automation mechanisms by which resource allocation may

be continuously adjusted to the changing workload.

Previous work focuses on different goals, such as

maximizing resource utilization [12] and allocating

resources to applications following their service level goals

[22, 6, 25], our proposal could be applied to improve the

mentioned aproaches. In order to correctly define the

placement scenario, we can be assume that the system is

able to derive the relation between resource allocation and

obtained service level for each application in the system, as

is reported in [22].

4. Beyond consolidation and virtualization

In the following two sections we briefly discuss two

simple but effective techniques to relax some of the

constraints present in the placement problem. Both of them

were studied in detail in some previous work and are now

combined in a joint effort towards achieving energy-

efficiency.

Memory compression is used to convert CPU power into

additional system memory. The amount of extra memory

produced using this technique can potentially go beyond

consolidation through virtualization in two aspects: firstly,

allowing the placement of an extra application that did not

 3

fit in a node before, therefore reducing node

underutilization; and secondly, increasing the performance

of a placed application that, with a given amount of

memory, can still run but at a fraction of the maximum

achievable performance (i.e. producing a big volume of

swapping activity).

Request discrimination is introduced to classify web

requests according to the value they have to the system. In

our work, the request classification pursues two different

targets: to identify and reject those requests that consume

system resources but have no value for an application (i.e.

requests coming from web crawlers created by competitor

businesses with content stealing purposes presented in in

[20]); and by prioritiezing those requests that add more

value to the system, in overload conditions.

Notice that both of the techniques described here can

produce a similar effect in a system: reducing the number of

nodes necessary to meet a certain service level criteria. This

extra consolidation is achieved through memory

compression by increasing the number of application

instances that can be placed in a node, and through request

discrimination by reducing the load on the system, thus

allowing more options to collocate applications.

4.1 Reduction through discrimination

A fraction of the resources are wasted on work that

yields no added value for the application or the company

running it: consider an e-commerce site, and the amount of

work performed for customers that will not buy.

Furthermore, some work can be harmful to the system: e.g.

requests coming from denial-of-service attacks, or the

traffic generated by malicious bots. Work with no added

value is a prime candidate for reduction, especially when

the system is overloaded and accepting it causes an overall

loss. On the other hand, any potentially harmful requests

that can be detected should be banned as soon as possible,

even if the system is far from overload.

Let us comment on the work in [21] and [20], which

address these two problems; namely, detecting customers

who generate no revenue in an e-commerce application, and

detecting malicious bots with the purpose of banning them.

The case study in these works is a national online travel

agency that works as an electronic intermediary between

customers and service providers (such as airline

companies), with €40M sales volume during 2006 and an

expected €100M during 2007. More precisely, in [20,21]

and later experiments we have used web traffic logs from

different periods of the year, ranging from one day to a

week of traffic, with up to 3,7 million transactions. Each

transaction is a particular request to the web site (such as

requesting a page download, possibly including many

database searches). Transactions are grouped into user

sessions, with an average length of about 8 transactions per

session for non-buying sessions, and about 18 transactions

per session for sessions that end in a purchase. About 6.7%

of transactions belong to sessions which will end in

purchase. Figure 1 shows the pattern for the amount of

traffic in a high-season week, where the daily and weekly

patterns are clearly visible.

Figure 1. A week’s traffic in the online travel agency.

The problem tackled in [20] is that of detecting stealing

bots in e-commerce applications. Content stealing on the

web is becoming a serious concern for information and e-

commerce websites. In the practices known as web fetching

or web scraping [11], a stealer bot simulates a human web

user to extract desired content off the victim’s website. Not

only that, but in a B2B scenario, the victim incurs the costs

of searching the provider’s web for a supposed “customer”

that will never buy, and looses the real customers who will

instead buy via the stealer’s web.

The work in [20] investigated whether it was possible to

identify with reasonable certainty bots accessing a web site

for automated banning so that the system could stop the

corresponding session and free the allocated resources. In

the mentioned online travel agent website, [20] concluded

that around 15% to 20% of the traffic corresponds to bots

other than simple crawlers; note that a feature of stealer

bots is the large amount of search requests, hence this large

traffic figure. Applying machine learning techniques, the

authors were able to detect around 10%-12% of the total

traffic as bots with a low % of “false alarms” and negligible

overhead at runtime. This percentage of traffic could be

banned in the real scenario, even when the system is not

overloaded, since it is actually harmful to the company’s

interests to serve them. While the interest of the authors in

[20] is leveraging revenue loss from the spurious

transactions, it is easy to see this technique as a way to

reduce the allocated resources: If we expect that we could

ban 10%-12% of the incoming traffic as bots, we can

reduce the resources assigned to the application by a similar

percentage when deploying it.

In any case, a key point is finding the relation between

load reduction and resource reduction. The experiments in

some of our EU-funded projects [5], where we have

researched the dynamic management of resources, let us

 4

conclude that there is essentially a linear relation among

load volume and CPU usage. That is, if we reduce the

number of requests by 10% or 15%, the CPU requirement

will be reduced by at least 10% or 15%. The reduction will

probably be larger if the transactions we discard are

especially heavy ones (which is the case for stealing bots).

We cannot at this moment, make similar claims for other

resources, such as memory, which we are still investigating.

For this reason we center our work only on CPU even

though we believe that we will be able to extend the

conclusions to other resources soon.

We turn now to the case of traffic that could be reduced in

case of overload. The workload of the site mentioned above

and similar sites has clear daily, weekly, and seasonal

patterns, but is also affected by engine rankings,

promotions, and advertising campaigns. These external

events make capacity planning and resource management a

complex task: it is difficult to predict when these user peaks

are going to occur, before they start happening. So for an

online intermediary, these situations are frequent and not

serving users is a loss in revenue. One way to meet peaks in

such dynamic workloads is, of course, by over-

provisioning. But over-provisioning means having

resources that are idle most of the time, and consumes

power. The approach taken in the AUGURES system [21]

is to use the same machine learning module as in [20] to

predict, as early as possible, whether a user session is going

to end in a purchase or not, so that in case of overload non-

promising sessions can be delayed or dropped. The net

effect is that of simulating a certain amount of over-

provisioning, because during high load peaks we will accept

a part of the revenue (buying customers) that would

otherwise be lost.

Figure 2 shows the percentage of buyers in the traffic

admitted by AUGURES when the percentage of admitted

traffic varies from 100% to 10%, in comparison with the

basic strategy that accepts requests at random. The area

between both plots represents admitted buyers that would

otherwise be lost. For example, when the % of admitted

traffic is 40% of the total traffic, the % of accepted buyers

is double that which would be accepted by randomly

accepting customers. Recall that, in average, if all the traffic

is accepted, the percentage of buyer clients is observed to

be around a 6.7%.

Note that, from a marketing point of view, dropping a

user’s session does have a cost in prestige or user

dissatisfaction, so this technique should be used only when

no more requests can be served. On the other hand, when

power consumption is thrown into the equation, its cost may

well balance the marketing cost of rejecting a few, clearly

non-buying, sessions even in non-overload situations.

Figure 2. Number of buyers accepted in case of overload for

AUGURES vs. random

4.2 Recycling though resource transformation

After virtualizing a system, some resources may still not

be used by any application. The demand associated with

each resource of the system for a given application may not

be related in any way to the demand of other resources (i.e.

an application with a large memory footprint may not be

very demanding in terms of CPU power), which can

potentially lead to an underutilization of some resources in

the system.

To illustrate this situation, figure 3a shows a usual

placement problem: some applications could be placed in a

node in terms of CPU power (they would meet their

performance goals), but the memory capacity of the system

makes it impossible to place all the applications together.

As a result, one extra node must be used to place one of the

applications, and both of the nodes remain underutilized in

terms of CPU.

Figure 3. Resources can be changed from one form to another: (a)

cpu to (b) memory.

Memory compression is a widely studied topic that can

be really helpful for the placement problem. It allows the

system to increase the density of the placement (number of

applications placed on a node) to better exploit the

resources of the system. This process can be understood as

a resource transformation: CPU cycles are converted into

extra memory. Figure 3b shows the same placement

problem but considers hat some extra memory can be

gained at the price of losing some CPU power.

 5

Figure 4. Trade-off between memory and computational power

required to achieve it.

Some of our recent work, described in [3], is focused on

revisiting the memory compression topic by targeting

advanced hardware architectures (current multiprocessors

and multi-core technologies such as CELL [27] and Niagara

[16]). This study concludes that memory compression can

be carried out without observing a significant performance

impact in many commercial applications (the study is

performed over the SPECWeb2005 [30] application). The

relation between the CPU power dedicated to compress

memory and the memory gain obtained for three different

levels of memory compressibility is represented in figure 4.

Obviously, this relation is always defined by the level of

memory compression achievable given a set of applications.

From the point of view of the applications, the overhead

produced by memory compression techniques is negligible

because although accessing compressed data is slower than

accessing regular memory, it is still faster than accessing a

standard SCSI disk. This means that the reduction in

swapping by adding compressed memory as well as caching

more data in the compressed memory can still result in a

performance improvement for most applications.

Current work in this area covers offloading the

compression process (i.e. using the SPU units of the CELL

processor) and also adding compression support to the most

extended virtualization products. Thus, the results presented

in this paper are expected to even improve in the future.

5. Problem statement

5.1.1 The placement problem

In order to formally specify our proposal we will start by

formulating the placement problem and then include our

proposals in the placement algorithm.

We are given a set of servers S={1, . . . ,S} and a set of

applications A={1, . . . ,A}. We use s and a to index into

the sets of servers and applications, respectively. With each

server Ss we associate a memory and CPU capacity (noted

as Ωs and Γs respectively).

With each application aa, we associate its memory

demand, γa that represents the amount of memory

consumed by this application whenever it is started on a

machine, which we assume to be load-independent as

described in [22]. In general the CPU requirements of

applications, ωa, are given as being variable and are

specified in different forms depending of the type of the

application aa.

In this context, the placement problem is to find matrix I
which denotes a placement matrix of applications on

servers, where im,n is 1 if an instance of application m is

running on server n.

The placement problem is known to be NP-hard [12,6]

and heuristics must be used to solve it. While finding the

best possible placement, the heuristic must observe a

number of placement constraints, such as collocation and

allocation restrictions. For any server, s, it must be enforced

that ∑m im,s γm ≤ Γs and ∑m im,s ωm ≤ Ωs to guarantee that

the nodes are not overallocated. Given a certain workload,

changing the allocated CPU power to an application makes

a significant difference in the service level offered by that

application. But changing the amount of memory allocated

to an application results in an even higher impact, because

the application can be placed or not, depending on whether

the amount of memory reserved to run it is enough or not to

place it. This leads to a scenario where the placement

problem can be represented as two different problems:

placing applications following memory constraints and

spreading CPU resources amongst the placed instances.

The objective of our work is not to focus on solving the

placement problem as defined above but to introduce a new

degree of freedom into it to allow the system find a new set

of application placements that offer the same service level

to each application but require different resource

allocations. This objective is achieved by relaxing the

allocation constraints, and by relaxing the hardest constraint

in the system: the available physical resources in each node

of the data center.

5.1.2 Relaxing some placement constraints

In order to incorporate the resource transformation

property into the problem, first we should model the

compression memory system. We assume that for each

application we can determine if it could take advantage of

this property. In this case we could define a function Φ that

establishes the relation between CPU power dedicated to

compress memory and the amount of gained memory (as

shown in figure 4). Now the memory constraint becomes

∑m im,s γm ≤ Γs + Ψ and the CPU constraint becomes ∑m

im,s ωm ≤ Ωs-Φ (Ψ), where Ψ is the amount of CPU

dedicated to memory compression.

 6

Regarding the request discrimination, in this section we

will assume a non-overloaded system (section 6.4 will focus

on overloading conditions). We have shown in section 4.1

that under these circumstances a percentage of traffic could

be banned since it is actually harmful for the company’s

interests to serve them. This means that we can assume that

a certain application m can see its resource demand reduced

by a factor δm. A summary of the differenct constraint

scenarios is shown in Table 1.

In the experiments presented in the next section we

consider the impact (in terms of energy-efficiency) that

using the new constraints would have for a system,

assuming that the overall performance is kept unaltered.

Scenario Constrains

Virtualization
∑m im,s γm ≤ Γs

∑m im,s ωm ≤ Ωs

Transformation
∑m im,s γm ≤ Γs : ∑m im,s γm ≤ Γs + Ψ

∑m im,s ωm ≤ Ωs : ∑m im,s ωm ≤ Ωs-Φ (Ψ)

Discrimination
∑m im,s γm ≤ Γs

∑m im,s ωm ≤ Ωs : ∑m im,s (ωm - δm)≤ Ωs

Transformation +

Discrimination

∑m im,s γm ≤ Γs : ∑m im,s γm ≤ Γs + Ψ

∑m im,s ωm ≤ Ωs : ∑m im,s (ωm - δm) ≤ Ωs-Φ (Ψ)

Table 1. A summary of the constraints under different scenarios

6. Experiments

In this section we evaluate our proposal using two

different experiments. First we demonstrate how memory

compression can help save energy in a synthetic but

illustrative scenario. Later, using a real workload provided

by the travel website described in [20,21], we evaluate the

impact and options opened up by the combination of

memory compression and request discrimination when a

system gets eventually overloaded. Before that, we describe

the synthetic scenario and discuss how a state-of-the-art

automatic management middleware (without energy-saving

goals) would work for this scenario.

6.1 Scenario description

We consider a scenario composed of 3 identical servers

and 4 different web applications. Neither allocation

restrictions nor collocation restrictions are defined, but

placement is still subject to resource constraints, such as the

node memory and CPU capacity.

We consider that each server has four 2.2GHz CPU and

4Gb of memory (based on an IBM JS21 blade). We assume

that the virtualization overhead is 1Gb of memory and 1

CPU. This assumption is based on our previous experience

[5]. Table 2 summarizes the specifications of each node.

No virtualization Virtualization overhead

CPU
capacity

Memory
capacity

Effective CPU
capacity

Effective mem.
capacity

4x 2.2Ghz 4096MB
3x 2.2Ghz
(6.6 Ghz)

3072 MB

Table 2. Memory and CPU capacity of each node before and after

considering the virtualization overhead

The characteristics of each application are described in

table 3. Notice that application 1 can not be placed together

with any other application because of the memory

constraints. Applications 2, 3 and 4 can be collocated, but

only two of them can be placed together in each node.

Applications Minimum Memory
required

Maximum CPU
required (spike)

A1 2300 Mb 2200

A2 1300 Mb 2000

A3 1100 Mb 2000

A4 1000 Mb 1900

Table 3. Memory and CPU required by the Applications used in the
experiments

Figure 5 shows the CPU demand required by each

application over time to meet its service level goals. That

is, the minimum amount of CPU power that must be

allocated to each application if its service level goal wants

to be met. Notice that there is no overloading at any point

of the experiment (the aggregated CPU power of the four

nodes can satisfy the requirement of all applications over

the time), as can be seen in figure 6. Notice that this

placement lead to a situation where the three nodes are

clearly underutilized Labels A, B, C, D indicate 4 key

points in the experiment that will be used later to analyze it

in detail.

Figure 5. CPU demand of applications to meet their service level

goals

 7

Figure 6. Aggregated CPU demand

Figure 7. (a) Application placement: (b) memory used and (c) CPU

used

6.2 Baseline placement

In this section we describe what a modern management

middleware would do in the scenario described above. As

we said before, application 1 can not be placed together

with any other of the other applications because of its

memory requirements. Given that the CPU demand of

application 1 can be satisfied by one single node, we

assume that this application would be placed in one node

for the whole length of the experiment. The other

applications must be placed in the two remaining nodes.

Given that all three applications don’t fit in one single node

because of the memory constraint, two of them will have to

be placed together while the other application will be alone

in one node. Thus, the placement algorithm should decide

at this point what two applications are going to be placed

together. For this experiment we decide to pick application

2 and 3 to be deployed on node 2, and application 4 to be

placed in node 1. Notice that other choices are possible but

that the result would be analogous to that presented here.

Figure 7 shows the application placement as well as the

aggregated CPU and memory demand satisfied by each

node.

Figure 8. (a) Application placement using tailoring (b) memory used

and (c) CPU used

6.3 Adding memory compression

At this point, we introduce the use of memory

compression to increase the memory capacity of a node on

demand. The memory, as discussed in Section 4.2, is

produced at a cost in terms of CPU power. Notice that in

the scenario described in section 6.2, memory constraints

lead to a situation where the three nodes are clearly

underutilized in terms of CPU power.

Looking at the data provided in Section 4.2 (which is

based on real experiments conducted with realistic

applications on top of an IBM JS21 blade server) one can

observe how, depending on the compression rate achievable

for a given set of applications placed in a node, a relation

can be established between the CPU power required to

compress memory and the increase in available memory

observed. In the scope of this experiment, we assume an

achievable compression factor of 47% (see Figure 3 for

more details), and will use an increased memory capacity

for each active node of 6GB at a cost of 1320MHz of CPU

power.

With the new constraints, a new range of possible

placements is opened up, including the option of having all

four applications placed together on one single node.

 8

For our experiment we picked that described in Figure 8.

Initially, the four applications are placed in node 3, until

point A is reached. Looking at Figure 9 we can see that

before that point, all the CPU power required by the four

applications can be satisfied, including the memory

compression overhead of up to 1320MHz. Notice that 2

nodes can be switched off before time A when only

applying a software memory compression technique, and

also that in Figure 8 more memory can be allocated to each

application than the physical memory capacity of a single

node.

When time A is reached, the aggregated CPU demand

exceeds the capacity of a single node. At that point,

application 1 is migrated to a second node which is

switched on for this purpose.

At time B, the CPU demand for application 1 is reduced

while the demand for the other applications keeps raising.

At time C the aggregated CPU demand put on server 3 by

applications 2, 3 and 4 exceeds the capacity of the node.

Hence one of the applications must be migrated to another

server; in this case S2. Finally, at point D, aggregated CPU

demand for all the applications can be satisfied again with

one single node and thus all the applications are placed

again in server S1.

Figure 9. Total CPU used with and without tailoring

6.4 Overloaded scenario

Once a placement is decided, the resources allocated to

each application are determined. After that, the application

can be either overloaded or not, depending on the observed

load. In the case an application is overloaded and not all the

demand can be satisfied, a portion of the received requests

must be dropped. Even in this hard scenario, request

discrimination can be useful to increase the aggregated

value of the system by considering the value associated to

each request. In this section we provide an illustrative

example of the benefits of this technique under overload

conditions. In this section we provide an illustrative

example of the benefits of this technique under overload

conditions.

Looking at Figure 10 (derived from Figure 2 but

expressed in terms of overload instead of admission rate) it

can be observed that for the workload (previously described

in section 4.1) the average percentage of requests that

belong to a web session that will end in purchase (the

percentage of buyers) is around 6.7% when no overload is

present. As peak loads increase, our request discrimination

technique is able to identify those clients with a higher

potential revenue and avoid most profitable sessions to be

dropped.

Figure 11 is derived from the data shown in Figure 1. It

summarizes real traffic data coming from the travel website

for two week days (48 hours) in 5 minute samples. Over

this data we assume that the resources allocated to this

application satisfy only around 60% percent of the

maximum observed load. That is, when the load is higher

than 9000 requests every 5 minutes, the system starts

dropping requests.

Figure 10. Effect of applying resource-tailoring when different % of

the incoming traffic can be handled by the system.

Figure 11. Real workload Vs accepted workload (assuming only

60% of the peak load can be processed)

Figure 12 shows the total number of requests corresponding

to buying clients, represented by the solid line. This number

is estimated to be 6.7% in average for this particular

workload as it is discussed in Section 4.1. Using the data

obtained from [20,21] and summarized in Figure 10, we can

compute the fraction of requests corresponding to

purchasing sessions that will be processed if no

discrimination is applied (dashed line) and if the request

discrimination technique is applied (dotted line).It can be

 9

observed from the figure, that in periods of time when the

system is not overloaded all the requests are accepted and

thus all the requests corresponding to purchasing sessions

are processed. On the other hand, when the system is

overloaded the request discrimination technique

(AUGURES) can improve the obtained result by dropping

first the requests corresponding to non-purchasing sessions

(those with a lower value to the system).

Figure 12. Total requests corresponding to buyer clients Vs
accepted buyers with and without request discrimination

7. Conclusions

In this paper we demonstrate how consolidation with

energy efficiency goals still has a long way to go beyond

the use of virtualization. The use of virtual machine

containers to run applications in consolidated data centers

can save energy, while at the same time reducing system

management complexity; however, under sole

virtualization, system resources will still remain

underutilized incurring in energy consumption. In this

work, we identify new opportunities to improve the energy

efficiency of systems, reducing the resources required,

without negatively impacting the performance or user

satisfaction. Obtained results show that a combined use of

memory compression (to convert CPU power into extra

memory) and request discrimination (to reduce the load put

on the systems as well as to overcome overloading

conditions) can boost the energy savings in a data center.

Overall, we consider that this work is only an illustrative

scenario of a new way of management: tailoring the

resources to meet high level energy efficiency goals.

We are already working on the implementation of a

prototype system that applies the techniques described in

this paper. We would like to extend our work to consider

other techniques that could be added in terms of availability

such as self-healing techniques [1] and therefore take better

advantage of the resources available. Our current work on

the memory compression technique is focused on the use of

hardware accelerators to offload the computational cost of

the compression (i.e. using the SPE units in the CELL

processor) and to include compression as a feature of the

most widely used virtualization technologies.

Our interest as a group involves creating power-aware

middleware to contribute to building energy-efficient data

centers. Somehow, the next generation of computing

systems must achieve significantly lower power needs,

higher performance/watt ratio, and higher reliability than

ever before.

8. Acknowledgments
The authors would like to thank Manish Parashar, Jeff

Kephart and Ricardo Bianchini for their comments on this

topic. Also the authors would like to thank Iñigo Goiri for

the resource usage measurement required in Section 4. This

work is supported by the Ministry of Science and

Technology of Spain and the European Union (FEDER

funds) under contracts TIN2004-07739-C02-01 and

TIN2005-08832-C03-03

9. References

[1] J. Alonso, L. Silva, A. Andrzejak, P. Silva and J.

Torres “High-Availability Grid Services through

the use of Virtualized Clustering“. The 8th

IEEE/ACM International Conference on Grid

Computing (GRID 2007). September 19-21, 2007,

Austin, Texas, USA.

[2] P. Barham, B. Dragovic, K. Fraser, S. Hand, T.

Harris, A. Ho, R. Neugebauer, I. Pratt, and A.

Warfield, “Xen and the art of virtualization” in

Symposium on Operating Systems Principles

(SOSP), Bolton Landing, NY, 2003

[3] V.Beltran, J. Torres and E. Ayguade “Improving

Disk Bandwidth-Bound Applications Through

Main Memory Compression” MEDEA Workshop

MEmory performance: DEaling with Applications,

systems and architecture. Brasov, Romania. Held

in conjunction with PACT 2007 Conference Sept.

15-19 2007

[4] N. Bobroff, A. Kochut, and K. Beatty, “Dynamic

placement of virtual machines for managing SLA

violations,” in Integrated Network Management,

Munich, Germany, May 2007.

[5] BREIN Project. http://www.eu-brein.com/

[6] D. Carrera, M. Steinder, I. Whalley, J. Torres and

E. Ayguadé. Utility-based Placement of Dynamic

Web Applications with Fairness Goals. Submitted

to IEEE/IFIP Network Operations and

Management Symposium (NOMS 2008).

 10

[7] J. Chase, D. C. Anderson, P. N. Thakar, A. M.

Vahdat, and R. P. Doyle, “Managing energy and

server resources in hosting centers,” in ACM

Symposium on Operating Systems Principles,

2001.

[8] Elnozahy, M. Kistler, and R. Rajamony, “Energy

conservation policies for server clusters,” in 4th

USENIX Symposium on Internet Technologies

and Systems, Seattle, WA, Mar. 2003.

[9] R. Figueiredo, P. Dinda, and J. Fortes, “A case for

grid computing on virtual machines” in

International Conference on Distributed

Computing, Providence, RI, May 2003.

[10] Green Grid Consortium, 2006

http://www.thegreengrid.org/

[11] Hepp, M., D. Bachlechner, and K. Siorpaes.

Harvesting Wiki Consensus - Using Wikipedia

Entries as Ontology Elements. Proceedings of the

ESWC2006, Budva, Montenegro, 2006.

[12] A. Karve, T. Kimbrel, G. Pacifici, M. Spreitzer,

M. Steinder, M. Sviridenko, A. Tantawi,

“Dynamic placement for clustered web

applications” In WWW Conference, Edinburgh,

Scotland (2006)

[13] J. O. Kephart, H. Chan, R. Das, D. W. Levine, G.

Tesauro, and F. R. an C. Lefurgy, “Coordinating

multiple autonomic managers to achieve specified

power-performance tradeoffs,” in IEEE Fourth

International Conference on Autonomic

Computing, Jun. 2007.

[14] T. Kimbrel, M. Steinder, M. Sviridenko, A.

Tantawi, ”Dynamic application placement under

service and memory constraints”. In International

Workshop on Efficient and Experimental

Algorithms, Santorini Island, Greece (2005)

[15] B. Khargharia, S. Hariri, and M. S. Youssif,

“Autonomic power and performance management

for computing systems,” in IEEE International

Conference on Autonomic Computing, June 2006.

[16] P. Kongetira, K. Aingaran, and K. Olukotun.

“Niagara: A 32-way multithreaded sparc

processor”. IEEE Micro. 2005 (Vol. 25, No. 2).

[17] S. Nanda and T. Chiueh, “A survey of

virtualization technologies” Stony Brook

University, Tech. Rep. TR-179, Feb. 2005.

[18] R. Nathuji, C. Isci, E. Gorbatov. “Exploiting

Platform Heterogeneity for Power Efficient Data

Centers”. In IEEE Fourth International Conference

on Autonomic Computing, June. 2007.

[19] P. Padala, X. Zhu, M. Uysal, Z. Wang, S. Singhal,

A. Merchant, K. Salem, and K. Shin. “Adaptive

control of virtualized resources in utility

computing environments”. In Proc. European

Conference on Computer Systems (EuroSys'07),

March 2007.

[20] N. Poggi, J.L. Berral, T. Moreno, R. Gavaldà and

J. Torres. “Automatic Detection and Banning of

Content Stealing Bots for E-commerce”. In

Workshop on Machine Learning in Adversarial

Environments for Computer Security (NIPS

2007).British Columbia, Canada. Dec. 2007

[21] N.Poggi, T. Moreno, J. Berral, R. Gavaldà, J.

Torres. “Web Customer Modeling for Automated

Session Prioritization on High Traffic Sites”. In

11th International Conference on User Modeling.

Corfu, Greece, June, 2007.

[22] M. Steinder, I. Whalley, D. Carrera, I. Gaweda

and D. Chess. “Server virtualization in autonomic

management of heterogeneous workloads”. In 10th

IFIP/IEEE International Symposium on Integrated

Management (IM 2007), May 2007.

[23] C.-H. Tsai, K. G. shin, J. Reumann, and S.

Singhal, “Online web cluster capacity estimation

and its application to energy conservation,” IEEE

Transactional on Parallel and distributed Systems,

vol. 18, no. 7, 2007.

[24] VMware EMC. http://www.vmware.com

[25] X. Wang, D. Lan, G. Wang, X. Fang, M. Ye, Y.

Chen, Q. Wang. ”Appliance-Based Autonomic

Provisioning Framework for Virtualized

Outsourcing Data Center”. in IEEE Fourth

International Conference on Autonomic

Computing, June 2007.

[26] M. Wang, N. Kandasamy, A. Guea, and M. Kam,

“Adaptive performance control of computing

systems via distributed cooperative control:

Application to power management in computing

clusters,” IEEE 3th International Conference on

Autonomic Computing, June 2006.

[27] S. Williams, J. Shalf, L. Oliker, S. Kamil, P.

Husbands, and K. Yelick. “The potential of the

cell processor for scientific computing”. In CF

’06: Proceedings of the 3rd conference on

Computing frontiers, New York, NY, USA, 2006.

ACM Press.

[28] Xen. http://www.xensource.com

[29] “WebSphere eXtended Deployment,” http://www-

306.ibm.com/software/webservers/appserv/extend/

[30] Standard Performance Evaluation Corporation.

SPECweb2005. http://www.spec.org/web2005/

