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Abstract 
 

Virtualization and consolidation are two complementary 

techniques widely adopted in a global strategy to reduce 

system management complexity. In this paper we show how 

two simple and well-known techniques can be combined to 

dramatically increase the energy efficiency of a virtualized 

and consolidated data center. This result is obtained by 

introducing a new approach to the consolidation strategy 

that allows an important reduction in the amount of active 

nodes required to process a web workload without 

degrading the offered service level. Furthermore, when the 

system eventually gets overloaded and no energy can be 

saved without loosing performance, we show how these 

techniques can still improve the overall value obtained 

from the workload. The two techniques are memory 

compression and request discrimination, and were 

separately studied and validated in a previous work to be 

now combined in a joint effort. Memory compression is 

used to convert CPU power into extra memory capacity to 

overcome system underutilization scenarios caused by 

memory constraints. Request discrimination is used to 

identify web clients according to the value they have to the 

system. We study the combined use of these two techniques 

by describing a simple but still representative scenario and 

also by considering the dramatic impact they would have 

for a real workload obtained from a top national travel 

website. Our results indicate that an important 

improvement can be achieved by deciding not only how 

resources are allocated, but also how they are used. 

Moreover, we believe that this serves as an illustrative 

example of a new way of management: tailoring the 

resources to meet high level energy efficiency goals. 

 

 

1. Introduction 
Companies are now focusing more than ever on the need 

to improve energy efficiency. In addition to the cost of 

energy, a new challenge for them is the increasing social 

pressure to reduce their carbon footprint. Commercial 

electricity consumption is a major factor in rising 

atmospheric CO2 levels and data centers are a significant 

part of the problem. While energy costs are rising and data 

center equipment is stressing the power and cooling 

infrastructure, the main issue is not the current amount 

of data center emissions, but the fact that data center 

emissions are increasing faster than any other 

carbon emission. For this reason nowadays there is a big 

interest in “Green” data centers and supercomputer centers 

[10]. In this scenario, the research community is being 

challenged to rethink data center strategies, and add energy 

efficiency to a list of critical operating parameters that 

already includes service ability, reliability and performance.  

Consolidation and virtualization can be combined to 

reduce the management complexity of large data centers as 

well as to increase the energy efficiency of such a system. 

But even in a scenario where the resources are consolidated 

and virtualized, utilizing all the capacity of the components 

that are switched on (and consuming power) is not always 

simple. To determine a set of applications to be collocated 

in a node to perfectly fit and exploit all the resources of the 

system is a hard problem to solve, especially when tenths or 

even hundreds of nodes and applications can be found in a 

data center. Furthermore, the fact that the demand 

associated with each system resource for a given 

application may not be related in any way to its demand for 

other resources (i.e. an application with a large memory 

footprint may not be very demanding in terms of CPU 

power) which creates a structural problem requiring 

constraints to be relaxed in order to overcome it.  

In this paper we present how these two simple and well-

known techniques can be combined to dramatically increase 

the energy efficiency of a virtualized and consolidated data 

center. Increased energy efficiency is obtained through the 

introduction of a new approach to the consolidation strategy 

by combining: memory compression and request 

discrimination.  Combining these techniques enables an 

important reduction in the amount of active nodes required 

to process a web workload by dynamically classifying and 

shaping the workload, without degrading the offered service 

level. Furthermore, when the system eventually gets 

overloaded and no energy can be saved without loosing 

performance, we show how request discrimination can still 

improve the overall value obtained from the workload. The 

two techniques were separately studied and validated in a 

previous work to be now combined in a joint effort. 
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Memory compression is used to convert CPU power into 

extra memory capacity to overcome system underutilization 

scenarios caused by memory constraints. Request 

discrimination is used to characterize web clients by 

predicting their class and the value they will have on the 

system.  Our experiments performed on a real workload, 

obtained from a top national travel service exemplify the 

dramatic improvement these thechniques offer in energy 

and performance efficiency.  

The main contribution of this article is to demonstrate 

that the consolidation of dynamic workloads does not end 

with virtualization, but there is even more to consolidate 

when energy-efficiency is pursued. We will present two 

alternatives to rescue resources that consolidation does not 

currently capitalize on while using virtualization.  

The rest of the paper is organized as follows. In Section 

2 we study the related work found in the literature. Section 

3 describes the basics in dynamic resource management that 

we assume as available in our work.  Section 4 discusses 

the memory compression and request discrimination 

techniques applied in our work. Section 5 formally states 

the problem we address. Section 6 discusses our study and 

obtained results. Finally, some conclusions and future work 

are discussed in Section 7. 

 

2. Related Work 
 

Server consolidation has become very popular following 

the advances in virtualization technologies [17,9,2], it 

allows the control of  how resources  are allocated to the 

running applications.  Dynamic allocation of server 

resources to applications has been extensively studied 

[4,6,12,14,23], however these proposals do not benefit from 

the techniques we are introducing to go beyond 

virtualization by tailoring resources. The problematic of 

consolidating multi-tier applications considered in [19] is 

complementary to our proposal . Also of great importance 

is the topic considered in [18] regarding the power-efficient 

management of enterprise workloads which exploits the 

heterogeneity of the platforms. Our proposal could be 

included in the analytical prediction layer proposed by the 

authors. Finally let us remark that our proposal could be 

combined with power-saving techniques at the lowest level 

such as dynamic voltage scaling and frequency scaling 

[9,15,26]. In a recent work [13], the authors use frequency 

scaling in a scheme that trades off web application 

performance and power usage while coordinating multiple 

autonomic managers. In this case the proposals of this 

article could be included in the utility function that they are 

using.  

 

 

 

 

3. Managing a consolidated and virtualized 
environment 
 

The techniques proposed in this paper are studied in the 

context of a virtualized data center where applications share 

hardware resources and a set of web applications and being 

runned by an automatic service management middleware, 

such as that described in [29]. At each moment in time, a 

number of application server instances are running in the 

system to host the applications deployed on the data center. 

The management middleware monitors the actual service 

level offered by each application and dynamically changes 

the configuration of the system to make the applications 

meet their goals. In particular, the system has to decide how 

many instances must be running for each application to 

meet its goal as well as in what nodes these instances are 

going to be placed: this is what is known as the placement 

problem. For the purpose of our work, we will assume that 

the data center uses virtualization technology [24,28]  to 

control the resources allocated to each application by 

running each instance inside of a virtual machine container. 

In the scope of this paper we’ll use a simple instance 

placement algorithm to illustrate the benefits of our 

techniques, but any other approach could be considered.  

The placement problem itself is out of the scope of our 

work. The techniques described in this paper can be helpful 

to any placement algorithm by relaxing one of the hardest 

constraint they have to deal with: the system capacity. 

Existing dynamic application placement proposals provide 

automation mechanisms by which resource allocation may 

be continuously adjusted to the changing workload.  

Previous work focuses on different goals, such as 

maximizing resource utilization [12] and allocating 

resources to applications following their service level goals 

[22, 6, 25],  our proposal could be applied to improve the 

mentioned aproaches. In order to correctly define the 

placement scenario, we can be assume that the system is 

able to derive the relation between resource allocation and 

obtained service level for each application in the system, as 

is reported in [22]. 

 

4. Beyond consolidation and virtualization 
 

In the following two sections we briefly discuss two 

simple but effective techniques to relax some of the 

constraints present in the placement problem. Both of them 

were studied in detail in some previous work and are now 

combined in a joint effort towards achieving energy-

efficiency.  

Memory compression is used to convert CPU power into 

additional system memory. The amount of extra memory 

produced using this technique can potentially go beyond 

consolidation through virtualization in two aspects: firstly, 

allowing the placement of an extra application that did not 
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fit in a node before, therefore reducing node 

underutilization; and secondly, increasing the performance 

of a placed application that, with a given amount of 

memory, can still run but at a fraction of the maximum 

achievable performance (i.e. producing a big volume of 

swapping activity). 

Request discrimination is introduced to classify web 

requests according to the value they have to the system. In 

our work, the request classification pursues two different 

targets: to identify and reject those requests that consume 

system resources but have no value for an application (i.e. 

requests coming from web crawlers created by competitor 

businesses with content stealing purposes presented in in 

[20]); and by prioritiezing those requests that add more 

value to the system, in overload conditions.  

Notice that both of the techniques described here can 

produce a similar effect in a system: reducing the number of 

nodes necessary to meet a certain service level criteria. This 

extra consolidation is achieved through memory 

compression by increasing the number of application 

instances that can be placed in a node, and through request 

discrimination by reducing the load on the system, thus 

allowing more options to collocate applications. 

4.1 Reduction through discrimination 

A fraction of the resources are wasted on work that 

yields no added value for the application or the company 

running it: consider an e-commerce site, and the amount of 

work performed for customers that will not buy. 

Furthermore, some work can be harmful to the system: e.g. 

requests coming from denial-of-service attacks, or the 

traffic generated by malicious bots.  Work with no added 

value is a prime candidate for reduction, especially when 

the system is overloaded and accepting it causes an overall 

loss.  On the other hand, any potentially harmful requests 

that can be detected should be banned as soon as possible, 

even if the system is far from overload. 

Let us comment on the work in [21] and [20], which 

address these two problems; namely, detecting customers 

who generate no revenue in an e-commerce application, and 

detecting malicious bots with the purpose of banning them. 

The case study in these works is a national online travel 

agency that works as an electronic intermediary between 

customers and service providers (such as airline 

companies), with €40M sales volume during 2006 and an 

expected €100M during 2007. More precisely, in [20,21] 

and later experiments we have used web traffic logs from 

different periods of the year, ranging from one day to a 

week of traffic, with up to 3,7 million transactions. Each 

transaction is a particular request to the web site (such as 

requesting a page download, possibly including many 

database searches). Transactions are grouped into user 

sessions, with an average length of about 8 transactions per 

session for non-buying sessions, and about 18 transactions 

per session for sessions that end in a purchase. About 6.7% 

of transactions belong to sessions which will end in 

purchase. Figure 1 shows the pattern for the amount of 

traffic in a high-season week, where the daily and weekly 

patterns are clearly visible.  

 
Figure 1. A week’s traffic in the online travel agency. 

 

The problem tackled in [20] is that of detecting stealing 

bots in e-commerce applications. Content stealing on the 

web is becoming a serious concern for information and e-

commerce websites. In the practices known as web fetching 

or web scraping [11], a stealer bot simulates a human web 

user to extract desired content off the victim’s website. Not 

only that, but in a B2B scenario, the victim incurs the costs 

of searching the provider’s web for a supposed “customer” 

that will never buy, and looses the real customers who will 

instead buy via the stealer’s web.  

The work in [20] investigated whether it was possible to 

identify with reasonable certainty bots accessing a web site 

for automated banning so that the system could stop the 

corresponding session and free the allocated resources. In 

the mentioned online travel agent website, [20] concluded 

that around 15% to 20% of the traffic corresponds to bots 

other than simple crawlers; note that a feature of stealer 

bots is the large amount of search requests, hence this large 

traffic figure. Applying machine learning techniques, the 

authors were able to detect around 10%-12% of the total 

traffic as bots with a low % of “false alarms” and negligible 

overhead at runtime. This percentage of traffic could be 

banned in the real scenario, even when the system is not 

overloaded, since it is actually harmful to the company’s 

interests to serve them. While the interest of the authors in 

[20] is leveraging revenue loss from the spurious 

transactions, it is easy to see this technique as a way to 

reduce the allocated resources: If we expect that we could 

ban 10%-12% of the incoming traffic as bots, we can 

reduce the resources assigned to the application by a similar 

percentage when deploying it. 

In any case, a key point is finding the relation between 

load reduction and resource reduction. The experiments in 

some of our EU-funded projects [5], where we have 

researched the dynamic management of resources, let us 
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conclude that there is essentially a linear relation among 

load volume and CPU usage. That is, if we reduce the 

number of requests by 10% or 15%, the CPU requirement 

will be reduced by at least 10% or 15%. The reduction will 

probably be larger if the transactions we discard are 

especially heavy ones (which is the case for stealing bots). 

We cannot at this moment, make similar claims for other 

resources, such as memory, which we are still investigating. 

For this reason we center our work only on CPU even 

though we believe that we will be able to extend the 

conclusions to other resources soon.  

We turn now to the case of traffic that could be reduced in 

case of overload. The workload of the site mentioned above 

and similar sites has clear daily, weekly, and seasonal 

patterns, but is also affected by engine rankings, 

promotions, and advertising campaigns. These external 

events make capacity planning and resource management a 

complex task: it is difficult to predict when these user peaks 

are going to occur, before they start happening. So for an 

online intermediary, these situations are frequent and not 

serving users is a loss in revenue. One way to meet peaks in 

such dynamic workloads is, of course, by over-

provisioning. But over-provisioning means having 

resources that are idle most of the time, and consumes 

power. The approach taken in the AUGURES system [21] 

is to use the same machine learning module as in [20] to 

predict, as early as possible, whether a user session is going 

to end in a purchase or not, so that in case of overload non-

promising sessions can be delayed or dropped. The net 

effect is that of simulating a certain amount of over-

provisioning, because during high load peaks we will accept 

a part of the revenue (buying customers) that would 

otherwise be lost.   

Figure 2 shows the percentage of buyers in the traffic 

admitted by AUGURES when the percentage of admitted 

traffic varies from 100% to 10%, in comparison with the 

basic strategy that accepts requests at random. The area 

between both plots represents admitted buyers that would 

otherwise be lost. For example, when the % of admitted 

traffic is 40% of the total traffic, the % of accepted buyers 

is double that which would be accepted by randomly 

accepting customers. Recall that, in average, if all the traffic 

is accepted, the percentage of buyer clients is observed to 

be around a 6.7%. 

Note that, from a marketing point of view, dropping a 

user’s session does have a cost in prestige or user 

dissatisfaction, so this technique should be used only when 

no more requests can be served. On the other hand, when 

power consumption is thrown into the equation, its cost may 

well balance the marketing cost of rejecting a few, clearly 

non-buying, sessions even in non-overload situations.  

 
Figure 2. Number of buyers accepted in case of overload for 

AUGURES vs. random 

4.2 Recycling though resource transformation 

After virtualizing a system, some resources may still not 

be used by any application. The demand associated with 

each resource of the system for a given application may not 

be related in any way to the demand of other resources (i.e. 

an application with a large memory footprint may not be 

very demanding in terms of CPU power), which can 

potentially lead to an underutilization of some resources in 

the system. 

To illustrate this situation, figure 3a shows a usual 

placement problem: some applications could be placed in a 

node in terms of CPU power (they would meet their 

performance goals), but the memory capacity of the system 

makes it impossible to place all the applications together. 

As a result, one extra node must be used to place one of the 

applications, and both of the nodes remain underutilized in 

terms of CPU. 

 
Figure 3. Resources can be changed from one form to another: (a) 

cpu to (b)  memory. 

 

Memory compression is a widely studied topic that can 

be really helpful for the placement problem. It allows the 

system to increase the density of the placement (number of 

applications placed on a node) to better exploit the 

resources of the system. This process can be understood as 

a resource transformation: CPU cycles are converted into 

extra memory. Figure 3b shows the same placement 

problem but considers hat some extra memory can be 

gained at the price of losing some CPU power.  
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Figure 4. Trade-off between memory and computational power 

required to achieve it. 
 

 

Some of our recent work, described in [3], is focused on 

revisiting the memory compression topic by targeting 

advanced hardware architectures (current multiprocessors 

and multi-core technologies such as CELL [27] and Niagara 

[16]). This study concludes that memory compression can 

be carried out without observing a significant performance 

impact in many commercial applications (the study is 

performed over the SPECWeb2005 [30] application).  The 

relation between the CPU power dedicated to compress 

memory and the memory gain obtained for three different 

levels of memory compressibility is represented in figure 4. 

Obviously, this relation is always defined by the level of 

memory compression achievable given a set of applications.  

From the point of view of the applications, the overhead 

produced by memory compression techniques is negligible 

because although accessing compressed data is slower than 

accessing regular memory, it is still faster than accessing a 

standard SCSI disk. This means that the reduction in 

swapping by adding compressed memory as well as caching 

more data in the compressed memory can still result in a 

performance improvement for most applications. 

Current work in this area covers offloading the 

compression process (i.e. using the SPU units of the CELL 

processor) and also adding compression support to the most 

extended virtualization products. Thus, the results presented 

in this paper are expected to even improve in the future. 

 

5. Problem statement 

5.1.1 The placement problem 

In order to formally specify our proposal we will start by 

formulating the placement problem and then include our 

proposals in the placement algorithm. 

We are given a set of servers S={1, . . . ,S} and a set of 

applications A={1, . . . ,A}. We use s and a to index into 

the sets of servers and applications, respectively. With each 

server Ss we associate a memory and CPU capacity (noted 

as Ωs and Γs respectively).  

With each application aa, we associate its memory 

demand, γa  that represents the amount of memory 

consumed by this application whenever it is started on a 

machine, which we assume to be load-independent as 

described in [22]. In general the CPU requirements of 

applications, ωa, are given as being variable and are 

specified in different forms depending of the type of the 

application aa.  

In this context, the placement problem is to find matrix I 
which denotes a placement matrix of applications on 

servers, where im,n is 1 if an instance of application m is 

running on server n.  

The placement problem is known to be NP-hard [12,6] 

and heuristics must be used to solve it. While finding the 

best possible placement, the heuristic must observe a 

number of placement constraints, such as collocation and 

allocation restrictions. For any server, s, it must be enforced 

that ∑m im,s  γm  ≤ Γs  and ∑m im,s  ωm  ≤ Ωs  to guarantee that 

the nodes are not overallocated. Given a certain workload, 

changing the allocated CPU power to an application makes 

a significant difference in the service level offered by that 

application. But changing the amount of memory allocated 

to an application results in an even higher impact, because 

the application can be placed or not, depending on whether 

the amount of memory reserved to run it is enough or not to 

place it. This leads to a scenario where the placement 

problem can be represented as two different problems: 

placing applications following memory constraints and 

spreading CPU resources amongst the placed instances. 

The objective of our work is not to focus on solving the 

placement problem as defined above but to introduce a new 

degree of freedom into it to allow the system find a new set 

of application placements that offer the same service level 

to each application but require different resource 

allocations. This objective is achieved by relaxing the 

allocation constraints, and by relaxing the hardest constraint 

in the system: the available physical resources in each node 

of the data center. 

 

5.1.2 Relaxing some placement constraints 

In order to incorporate the resource transformation 

property into the problem, first we should model the 

compression memory system. We assume that for each 

application we can determine if it could take advantage of 

this property. In this case we could define a function Φ that 

establishes the relation between CPU power dedicated to 

compress memory and the amount of gained memory (as 

shown in figure 4). Now the memory constraint becomes 

∑m im,s  γm  ≤ Γs + Ψ and the CPU constraint becomes       ∑m 

im,s  ωm  ≤ Ωs-Φ (Ψ), where Ψ is the amount of CPU 

dedicated to memory compression. 
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Regarding the request discrimination, in this section we 

will assume a non-overloaded system (section 6.4 will focus 

on overloading conditions). We have shown in section 4.1 

that under these circumstances a percentage of traffic could 

be banned since it is actually harmful for the company’s 

interests to serve them. This means that we can assume that 

a certain application m can see its resource demand reduced 

by a factor δm. A summary of the differenct constraint 

scenarios is shown in Table 1. 

In the experiments presented in the next section we 

consider the impact (in terms of energy-efficiency) that 

using the new constraints would have for a system, 

assuming that the overall performance is kept unaltered. 

 

Scenario Constrains 

Virtualization 
∑m im,s  γm  ≤ Γs 

∑m im,s  ωm ≤ Ωs 

Transformation 
∑m im,s  γm  ≤ Γs   : ∑m im,s  γm  ≤ Γs + Ψ 

∑m im,s  ωm ≤ Ωs  : ∑m im,s  ωm  ≤ Ωs-Φ (Ψ) 

Discrimination 
∑m im,s  γm  ≤ Γs 

∑m im,s  ωm ≤ Ωs  : ∑m im,s  (ωm - δm)≤ Ωs 

Transformation + 

Discrimination 

∑m im,s  γm  ≤ Γs   : ∑m im,s  γm  ≤ Γs + Ψ 

∑m im,s  ωm ≤ Ωs  : ∑m im,s  (ωm - δm) ≤ Ωs-Φ (Ψ) 

 
Table 1. A summary of the constraints under different scenarios 

 

6. Experiments 
 

In this section we evaluate our proposal using two 

different experiments. First we demonstrate how memory 

compression can help save energy in a synthetic but 

illustrative scenario. Later, using a real workload provided 

by the travel website described in [20,21], we evaluate the 

impact and options opened up by the combination of 

memory compression and request discrimination when a 

system gets eventually overloaded. Before that, we describe 

the synthetic scenario and discuss how a state-of-the-art 

automatic management middleware (without energy-saving 

goals) would work for this scenario. 
 

6.1 Scenario description 
 

We consider a scenario composed of 3 identical servers 

and 4 different web applications. Neither allocation 

restrictions nor collocation restrictions are defined, but 

placement is still subject to resource constraints, such as the 

node memory and CPU capacity.  

We consider that each server has four 2.2GHz CPU and 

4Gb of memory (based on an IBM JS21 blade). We assume 

that the virtualization overhead is 1Gb of memory and 1 

CPU. This assumption is based on our previous experience 

[5]. Table 2 summarizes the specifications of each node. 
 

 

No virtualization Virtualization overhead 

CPU 
capacity 

Memory 
capacity 

Effective CPU 
capacity 

Effective mem. 
capacity 

4x  2.2Ghz 4096MB 
3x  2.2Ghz 
(6.6 Ghz) 

3072 MB 

 
Table 2. Memory and CPU capacity of each node before and after 

considering the virtualization overhead 
 

The characteristics of each application are described in 

table 3. Notice that application 1 can not be placed together 

with any other application because of the memory 

constraints. Applications 2, 3 and 4 can be collocated, but 

only two of them can be placed together in each node. 
 

Applications Minimum Memory 
required 

Maximum CPU 
required (spike) 

A1 2300 Mb 2200 

A2 1300 Mb 2000 

A3 1100 Mb 2000 

A4 1000 Mb 1900 
 

Table 3. Memory and CPU required by the Applications used in the 
experiments 

 

Figure 5 shows the CPU demand required by each 

application over time to meet its service level goals.  That 

is, the minimum amount of CPU power that must be 

allocated to each application if its service level goal wants 

to be met. Notice that there is no overloading at any point 

of the experiment (the aggregated CPU power of the four 

nodes can satisfy the requirement of all applications over 

the time), as can be seen in figure 6. Notice that this 

placement lead to a situation where the three nodes are 

clearly underutilized Labels A, B, C, D indicate 4 key 

points in the experiment that will be used later to analyze it 

in detail. 
 

 

Figure 5. CPU demand of applications to meet their service level 

goals 
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Figure 6.  Aggregated CPU demand 

 

 

 
Figure 7. (a) Application placement: (b) memory used and (c) CPU 

used 

 

6.2 Baseline placement 
 

In this section we describe what a modern management 

middleware would do in the scenario described above. As 

we said before, application 1 can not be placed together 

with any other of the other applications because of its 

memory requirements. Given that the CPU demand of 

application 1 can be satisfied by one single node, we 

assume that this application would be placed in one node 

for the whole length of the experiment. The other 

applications must be placed in the two remaining nodes. 

Given that all three applications don’t fit in one single node 

because of the memory constraint, two of them will have to 

be placed together while the other application will be alone 

in one node. Thus, the placement algorithm should decide 

at this point what two applications are going to be placed 

together. For this experiment we decide to pick application 

2 and 3 to be deployed on node 2, and application 4 to be 

placed in node 1. Notice that other choices are possible but 

that the result would be analogous to that presented here. 

Figure 7 shows the application placement as well as the 

aggregated CPU and memory demand satisfied by each 

node.  
 

 
 

 
Figure 8. (a) Application placement using tailoring (b) memory used 

and (c) CPU used 
 

6.3 Adding memory compression 
 

At this point, we introduce the use of memory 

compression to increase the memory capacity of a node on 

demand. The memory, as discussed in Section 4.2, is 

produced at a cost in terms of CPU power. Notice that in 

the scenario described in section 6.2, memory constraints 

lead to a situation where the three nodes are clearly 

underutilized in terms of CPU power.  

Looking at the data provided in Section 4.2 (which is 

based on real experiments conducted with realistic 

applications on top of an IBM JS21 blade server) one can 

observe how, depending on the compression rate achievable 

for a given set of applications placed in a node, a relation 

can be established between the CPU power required to 

compress memory and the increase in available memory 

observed. In the scope of this experiment, we assume an 

achievable compression factor of 47% (see Figure 3 for 

more details), and will use an increased memory capacity 

for each active node of 6GB at a cost of 1320MHz of CPU 

power. 

With the new constraints, a new range of possible 

placements is opened up, including the option of having all 

four applications placed together on one single node. 
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For our experiment we picked that described in Figure 8. 

Initially, the four applications are placed in node 3, until 

point A is reached. Looking at Figure 9 we can see that 

before that point, all the CPU power required by the four 

applications can be satisfied, including the memory 

compression overhead of up to 1320MHz. Notice that 2 

nodes can be switched off before time A when only 

applying a software memory compression technique, and 

also that in Figure 8 more memory can be allocated to each 

application than the physical memory capacity of a single 

node. 

When time A is reached, the aggregated CPU demand 

exceeds the capacity of a single node. At that point, 

application 1 is migrated to a second node which is 

switched on for this purpose. 

At time B, the CPU demand for application 1 is reduced 

while the demand for the other applications keeps raising.  

At time C the aggregated CPU demand put on server 3 by 

applications 2, 3 and 4 exceeds the capacity of the node. 

Hence one of the applications must be migrated to another 

server; in this case S2. Finally, at point D, aggregated CPU 

demand for all the applications can be satisfied again with 

one single node and thus all the applications are placed 

again in server S1. 

 

 

Figure 9. Total CPU used with and without tailoring 
 
 
 

6.4 Overloaded scenario 
 

Once a placement is decided, the resources allocated to 

each application are determined. After that, the application 

can be either overloaded or not, depending on the observed 

load. In the case an application is overloaded and not all the 

demand can be satisfied, a portion of the received requests 

must be dropped. Even in this hard scenario, request 

discrimination can be useful to increase the aggregated 

value of the system by considering the value associated to 

each request. In this section we provide an illustrative 

example of the benefits of this technique under overload 

conditions. In this section we provide an illustrative 

example of the benefits of this technique under overload 

conditions. 

Looking at Figure 10 (derived from Figure 2 but 

expressed in terms of overload instead of admission rate) it 

can be observed that for the workload (previously described 

in section 4.1) the average percentage of requests that 

belong to a web session that will end in purchase (the 

percentage of buyers) is around 6.7% when no overload is 

present. As peak loads increase, our request discrimination 

technique is able to identify those clients with a higher 

potential revenue and avoid most profitable sessions to be 

dropped. 

Figure 11 is derived from the data shown in Figure 1. It 

summarizes real traffic data coming from the travel website 

for two week days (48 hours) in 5 minute samples. Over 

this data we assume that the resources allocated to this 

application satisfy only around 60% percent of the 

maximum observed load. That is, when the load is higher 

than 9000 requests every 5 minutes, the system starts 

dropping requests. 

 

 
Figure 10. Effect of applying resource-tailoring when different % of 

the incoming traffic can be handled by the system. 

 
 

 
Figure 11. Real workload Vs accepted workload (assuming only 

60% of the peak load can be processed) 
 

Figure 12 shows the total number of requests corresponding 

to buying clients, represented by the solid line. This number 

is estimated to be 6.7% in average for this particular 

workload as it is discussed in Section 4.1. Using the data 

obtained from [20,21] and summarized in Figure 10, we can 

compute the fraction of requests corresponding to 

purchasing sessions that will be processed if no 

discrimination is applied (dashed line) and if the request 

discrimination technique is applied (dotted line).It can be 
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observed from the figure, that in periods of time when the 

system is not overloaded all the requests are accepted and 

thus all the requests corresponding to purchasing sessions 

are processed. On the other hand, when the system is 

overloaded the request discrimination technique 

(AUGURES) can improve the obtained result by dropping 

first the requests corresponding to non-purchasing sessions 

(those with a lower value to the system). 

 
 

Figure 12. Total requests corresponding to buyer clients Vs 
accepted buyers with and without request discrimination 

 
 

7. Conclusions 

In this paper we demonstrate how consolidation with 

energy efficiency goals still has a long way to go beyond 

the use of virtualization. The use of virtual machine 

containers to run applications in consolidated data centers 

can save energy, while at the same time reducing system 

management complexity; however, under sole 

virtualization, system resources will still remain 

underutilized incurring in energy consumption. In this 

work, we identify new opportunities to improve the energy 

efficiency of systems, reducing the resources required, 

without negatively impacting the performance or user 

satisfaction. Obtained results show that a combined use of 

memory compression (to convert CPU power into extra 

memory) and request discrimination (to reduce the load put 

on the systems as well as to overcome overloading 

conditions) can boost the energy savings in a data center. 

Overall, we consider that this work is only an illustrative 

scenario of a new way of management: tailoring the 

resources to meet high level energy efficiency goals. 

We are already working on the implementation of a 

prototype system that applies the techniques described in 

this paper. We would like to extend our work to consider 

other techniques that could be added in terms of availability 

such as self-healing techniques [1] and therefore take better 

advantage of the resources available. Our current work on 

the memory compression technique is focused on the use of 

hardware accelerators to offload the computational cost of 

the compression (i.e. using the SPE units in the CELL 

processor) and to include compression as a feature of the 

most widely used virtualization technologies. 

Our interest as a group involves creating power-aware 

middleware to contribute to building energy-efficient data 

centers. Somehow, the next generation of computing 

systems must achieve significantly lower power needs, 

higher performance/watt ratio, and higher reliability than 

ever before. 
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