
AUTHOR C
OPY

AI Communications 28 (2015) 143–158 143
DOI 10.3233/AIC-140615
IOS Press

An efficient closed frequent itemset miner for
the MOA stream mining system

Massimo Quadrana a,b, Albert Bifet c and Ricard Gavaldà a,∗
a U. Politècnica de Catalunya, BarcelonaTech, Barcelona, Spain
E-mails: massimo.quadrana@polimi.it, gavalda@lsi.upc.edu
b Politecnico di Milano, Milano, Italy
c Yahoo! Research, Barcelona, Spain
E-mail: abifet@yahoo.com

Abstract. Mining itemsets is a central task in data mining, both in the batch and the streaming paradigms. While robust, efficient,
and well-tested implementations exist for batch mining, hardly any publicly available equivalent exists for the streaming scenario.
The lack of an efficient, usable tool for the task hinders its use by practitioners and makes it difficult to assess new research
in the area. To alleviate this situation, we review the algorithms described in the literature, and implement and evaluate the
IncMine algorithm by Cheng, Ke and Ng [J. Intell. Inf. Syst. 31(3) (2008), 191–215] for mining frequent closed itemsets from
data streams. Our implementation works on top of the MOA (Massive Online Analysis) stream mining framework to ease its use
and integration with other stream mining tasks. We provide a PAC-style rigorous analysis of the quality of the output of IncMine
as a function of its parameters; this type of analysis is rare in pattern mining algorithms. As a by-product, the analysis shows
how one of the user-provided parameters in the original description can be removed entirely while retaining the performance
guarantees. Finally, we experimentally confirm both on synthetic and real data the excellent performance of the algorithm, as
reported in the original paper, and its ability to handle concept drift.

Keywords: Data mining, data streams, stream mining, itemset mining, MOA

1. Introduction

Computing frequent itemsets is a central data min-
ing task, both in the static and the streaming scenarios.
In few words, given a binary table where rows repre-
sent transactions or sets of items and columns represent
items, the goal is to find all subsets of items that oc-
cur together in transactions with a minimum prescribed
frequency. Formal definitions are given in Section 2.

Intense research effort has produced a substantial
number of methods for the streaming case, and the
problem is relatively well understood now. We noticed,
however, that there are almost no public, easy-to-use
implementations of the streaming methods described
in the literature, a situation that effectively prevents
their application in practice and conditions further re-
search.

The aim of this paper is to describe, analyze, and
evaluate an efficient implementation of an algorithm
for mining frequent closed itemsets over data streams.

*Corresponding author. E-mail: gavalda@lsi.upc.edu.

The implementation works over MOA [2,21], an open-
source framework for stream mining developed at the
University of Waikato. It is designed to be efficient and
easy to learn, use, modify and extend. Implementing
on top of MOA ensures portability and maintainability,
as well as not having to implement from scratch the
basic stream processing primitives.

We believe that this constitutes a double contribu-
tion: On the one hand, it will allow more practitioners
to actually use itemset mining techniques in stream-
ing scenarios with mild learning curves, given MOA’s
user-friendly and public character. On the other hand,
for the research community, it provides a state-of-the-
art implementation which may be used as reference for
evaluation of new methods. It may constitute a first el-
ement in a future repository of stream itemset mining
method, analogous to the one in [8] for batch itemset
mining.

After thorough examination of several algorithms in
the literature, we decided to implement the IncMine
algorithm by Cheng et al. [3], for reasons to be ex-
plained. Two main gaps in the original description had

0921-7126/15/$27.50 © 2015 – IOS Press and the authors. All rights reserved

AUTHOR C
OPY

144 M. Quadrana et al. / Closed frequent itemset stream mining in MOA

to be filled in: One was the batch method to mine item-
sets in the successive stream batches in which IncMine
processes the stream; we used the efficient implemen-
tation in [7] of the CHARM algorithm [26,27]. The
other was how to perform a certain merging opera-
tion of inverted index lists, and we selected a particu-
lar method reported to be often best in the multiple set
intersection literature.

Additionally, the algorithm and our implementation
are able to deal by design with so-called “concept
drift”, that is, temporal evolution of the data stream, in
the form of both abrupt and gradual changes in the em-
pirical distribution of the itemsets it contains. This abil-
ity is extremely important in real applications, that con-
tain unpredictable concept drift more often than not.

We evaluate our implementation on both synthetic
and real datasets. For the synthetic ones, we study the
influence of the parameters of the algorithm on accu-
racy, throughput, and memory usage, as well as how it
reacts and adapts to (known, measurable) concept drift.
We also test our solution over a data stream generated
from real data from the MovieLens database, obtaining
intuitively appealing results.

In addition, we provide a theoretical analysis of the
quality of the output of IncMine as a function of the
several parameters of the algorithm, which matches
well with the results obtained. The analysis is in the
formal PAC learning model [11] and requires moder-
ate probabilistic assumptions on the source generating
the stream of transactions. This type of analysis is rare
in the stream pattern mining literature; in fact, we are
not aware of any that takes concept drift into account.
We believe that the result illuminates the trade-offs be-
tween the different parameters of the algorithm and the
quality of its approximation and reaction to concept
drift. Also interestingly, the analysis points out that a
design decision in the algorithm (the choice of a cer-
tain sequence of support thresholds) is far from opti-
mal, and in fact produces an alternative that satisfies
the same theoretical guarantees and gets rid of a some-
what opaque parameter that originally had to be pro-
vided, or guessed, by the user.

The software described here is available from the
MOA project site [21] as a MOA extension since
September 2012. Let us note that there was already
a MOA extension, due to M. Jarka, implementing
the MOMENT method [5] for frequent closed item-
set mining. However, it is reported in [3] and we con-
firm here that IncMine is typically much faster than
MOMENT with only minor loss in output quality.

2. Background

In this section we recall the definitions of Frequent
(Closed) Itemset Mining and related concepts. We sur-
vey the main batch methods and those for data streams,
highlighting the differences that determined our choice
of one to be implemented. Finally we present the es-
sentials of the MOA framework on which our imple-
mentation runs.

2.1. The frequent itemset mining problem

The discovery of frequent itemsets is one of the ma-
jor families of techniques for characterizing data. Its
goal is to find correlations among data attributes, and
it is closely linked to association rule discovery.

Let I = {x1,x2, . . . ,xm} be a set of binary-valued
attributes called items. A set X ⊆ I is called an item-
set. A transaction is a tuple of the form 〈t,X〉, where
t ∈ T is a unique transaction identifier (tid) and X
is an itemset. A binary database D is a set of trans-
actions, all with distinct tids. We say that transaction
(t,X) contains item x if x ∈ X . For an itemset X and
an implicit D, t(X) is the set of transactions that con-
tain all the items in X . In particular, t(X) is the set of
tids that contain the single item x ∈ I.

The support of an itemset X in a dataset D, denoted
supp(X ,D), is the number of transactions in D that
contain X , or supp(X ,D) = |t(X)|. The relative sup-
port of X in D is rsupp(X ,D) = |t(X)|/|D|. Rela-
tive support also makes sense when D is a distribution
over all itemsets: it is the probability that an itemset Y
drawn according to D is such that X ⊆ Y .

For some user-defined minimum support threshold
minsupp, X is said to be frequent in D if supp(X ,D) �
minsupp. When only one dataset D and a support
threshold minsupp are considered, we will drop them
from the notation and simply say “X is frequent”
and write its support as supp(X). We use σ to de-
note the relative support equivalent to minsupp, i.e.
σ = minsupp /|D|.

The frequent itemset mining problem is that of
computing all frequent itemsets in the database, w.r.t.
a user-specified minsupp value. The seminal Apriori
algorithm [1], ECLAT [25] and FP-GROWTH [10] are
three of the best known proposals for the task.

The search space for frequent itemsets often grows
exponentially with the number of items, and further-
more the frequent itemsets themselves are often many
and highly redundant, which makes the a posteriori
analysis tedious and difficult. Several approaches for

AUTHOR C
OPY

M. Quadrana et al. / Closed frequent itemset stream mining in MOA 145

focusing on the interesting itemsets have been pro-
posed. Here we consider frequent closed itemsets.

A frequent itemset X ∈ F is closed if it has no
frequent superset with the same support. A most im-
portant property is that although in practice there are
far fewer frequent closed itemsets (FCIs) than frequent
itemsets, the latter set (and the supports) can be com-
puted from the first (and the supports). To be pre-
cise, an itemset is frequent if and only if it is a sub-
set of some frequent closed itemset. Consequently, al-
gorithms that obtain frequent closed sets directly with-
out internally generating all frequent itemsets provide
essentially the same information with potentially large
savings in computational resources and less redundant
output. Three of the batch methods in the literature
for mining frequent closed itemsets are CLOSET [16],
CHARM [27] and CLOSET+ [22]; while we focus on
streaming methods, we will require the use of a batch
method as a subroutine, as we will see.

In data streams, the goal is roughly speaking the
same as in the batch case, except that the set of de-
sired frequent closed patterns is defined not with re-
spect to a fixed database of transactions but with re-
spect to an imaginary window W over the stream that
shifts (and perhaps grows or shrinks) with time. We
thus adopt notions and notations, for instance the sup-
port on a database supp(X ,D), to the stream mining
scenario, in this instance then supp(X ,W).

Several different approaches were proposed in the
last decade. Most of them can be classified accord-
ing to the window model they adopt or other fea-
tures. The window may be landmark (contains all el-
ements since time 0) or sliding (contains only some
number of most recent elements); it may be time sen-
sitive (contains stream elements arrived in the last T
time units) or transaction sensitive (contains the last
N items, no matter how spaced in time they have ar-
rived), may perform updates per transaction or up-
dates in batches. Most importantly, they may be exact
or approximate, depending on whether they will pro-
duce the exact set of desired patterns or whether they
may have false positives and/or false negatives. Exact
mining requires tracking all items in the window and
their exact frequencies, because any infrequent itemset
may become frequent later in the stream. However, that
quickly becomes infeasible for large windows and fast
data streams, and approximate mining is sufficient for
most scenarios.

Some references discussing and comparing algo-
rithms for frequent itemset mining, as well as variants
of the problem, are [4,12,14,15,17,20].

2.2. Choosing a method for frequent closed itemset
mining on streams

We next mention some of the most important meth-
ods discussed in the literature, highlighting their fea-
tures relevant for our choice of a method to imple-
ment. We discuss only sliding-window approaches,
since landmark-window ones cannot be expected to
deal with concept drift.

Also, and this is an important decision, we restrict
ourselves to closed itemset miners, making the as-
sumption that in most cases this will result in improved
efficiency due to the much smaller number of mined
itemset. In any case, if and when the full set of frequent
itemsets is required, it can be computed from the set of
closed ones in a straightforward way.

MOMENT, proposed by Chi et al. [5], was the
first method for incremental mining of closed frequent
itemsets over a data stream, and perhaps for that rea-
son has become a reference for all solutions proposed
later. It is an exact mining algorithm, using a sliding
window and an update per transaction policy. To mon-
itor a dynamically selected set of itemsets over the slid-
ing window, MOMENT adopts an in-memory prefix-
tree-based data structure, called closed enumeration
tree (CET). This tree stores information about infre-
quent nodes, nodes that are likely to become frequent
and closed nodes. MOMENT also uses a variant of the
FP-tree, proposed by Han et al. [10] in the batch case,
to store the information of all transactions in the slid-
ing window, with no pruning of infrequent itemsets.

CLOSTREAM, proposed by Yen et al. [23], main-
tains the complete set of closed itemsets over a trans-
action-sensitive sliding window without any support
information. It uses an update per transaction policy.
Update is performed by two procedures CloStream+
and CloStream−, respectively used when a transaction
arrives and when a transaction leaves the sliding win-
dow. Both procedures use two temporary hash tables
to perform an efficient update. CLOSTREAM does not
easily handle concept drift, since all closed itemsets in
the (possibly long) sliding window are equally consid-
ered, even if a change has occurred within the window.

NEWMOMENT, proposed by Li et al. [13], main-
tains a transaction-sensitive sliding window and uses
bit-sequence representations to reduce time and mem-
ory consumption w.r.t. MOMENT. Also, it uses a new
type of closed enumeration tree (NewCET) to store
only the set of frequent closed itemsets into the sliding
window. Otherwise, it inherits most characteristics of

AUTHOR C
OPY

146 M. Quadrana et al. / Closed frequent itemset stream mining in MOA

MOMENT, such as update per transaction policy and
exactness.

IncMine, proposed by Cheng et al. [3], offers an ap-
proximate solution to the problem, using a relaxed min-
imal support threshold to keep an extra set of infre-
quent itemsets that are likely to become frequent later,
and using an inverted index to facilitate the update pro-
cess. In also introduces the notion of semi-FCI, which
associates a progressively increasing minimal support
threshold for an itemset that is retained longer in the
window. It uses an update per batch policy to main-
tain the updated the approximate set of frequent closed
itemsets over the current sliding window, which results
in a much better average time-per-transaction, at the
risk of temporarily loosing accuracy of the maintained
set while each batch is being collected. The original
proposal considers time-sensitive sliding windows, but
it can be easily adapted to transaction-sensitive con-
texts with fixed-length batches. The incremental up-
date algorithm exploits the properties of semi-FCIs to
perform an efficient update in terms of memory and
timing consumption. Semi frequent closed itemsets are
stored into several FCI-arrays, which are efficiently
addressed by an Inverted FCI Index. A more detailed
description of IncMine is given in the next section.

CLAIM was proposed by Song et al. [19] for ap-
proximate mining using a transaction-sensitive sliding
window. The authors define the concepts of relaxed in-
terval and relaxed closed itemset, in order to reduce the
maintenance cost of drifted closed itemsets in a data
stream. CLAIM uses a double linked representation to
manage the itemsets in each relaxed interval, which
is efficiently addressed by several bipartite graphs.
Such bipartite graph is arranged using a HR-tree (Hash
based Relaxed Closed Itemset tree), which combines
the characteristics of a hash table and a prefix tree.

We can now compare the algorithms above in or-
der to choose one for our implementation. MOMENT’s
main drawback is that it internally stores all transac-
tions in a modified FP-tree, with considerable mem-
ory overhead, and the data structure is optimized for
the case in which change is very rare. NEWMO-
MENT partially improves on this problem, but in
any case exact methods (MOMENT, NEWMOMENT,
CLOSTREAM) pay a large computational price for
exactness. Among the two approximate ones we con-
sidered, IncMine and CLAIM, CLAIM is described
in the paper as performing update-per-transaction. We
did not see evidence that the relatively complex update
CLAIM rules would translate to better performance
than IncMine’s approach, even if we changed CLAIM
to batch updates. We thus chose IncMine for imple-
mentation on MOA.

2.3. MOA

MOA (Massive Online Analysis) [2,21] is a data
stream mining framework developed at the University
of Waikato. It is closely related in spirit and structure to
the popular WEKA framework for batch data mining.

We decided to implement on top of the MOA frame-
work for a number of reasons, including:

• It is the most complete public framework for
stream mining, with a fast-growing user base.

• It is implemented in Java, which ensures portabil-
ity, with both API and GUI interfaces intended to
hide much of the process complexity to the user.

• It provides substantial help for developers, as
most of the stream-managing functionalities are
already there, and researchers, as it provides also
functionality for synthetic data generation and
evaluation.

• No particular running environment or data source
is assumed: any kind of itemset stream that can be
passed to MOA via its API can be processed.

As a downside, currently MOA runs in a single ma-
chine (no support for parallel or distributed process-
ing), with the consequent limitation in processing
speed and memory.

3. IncMine and our implementation

IncMine [3] is an algorithm for incremental update
of frequent closed itemsets (FCIs) over a high-speed
data stream. We first provide a high-level description
of the algorithm, at the level required to understand the
performance analysis in Section 4, and then indicate
three points where we departed from or completed the
original description. More detail can be found in the
original paper.

3.1. A high-level description of IncMine

The main features of IncMine are:

• It is an approximate solution to the problem, us-
ing a relaxed minimal support threshold to keep
an extra set of infrequent itemsets that likely can
become frequent later. Itemsets near (below) the
support threshold may or may not be reported as
frequent, i.e., be false negatives.

• It uses a time-sensitive approach: the sliding win-
dow contains the elements arrived in the last W
steps, be it none or many.

AUTHOR C
OPY

M. Quadrana et al. / Closed frequent itemset stream mining in MOA 147

• It also introduces the notion of semi-FCIs, which
associate a progressively increasing minimal sup-
port threshold for an itemset that is retained
longer in the window. This way, FCIs that were
once frequent have to keep proving their high fre-
quency to be retained. This, together with the use
of the window in itself, contributes to IncMine
handling of concept drift.

• It builds and maintains an inverted index of the
semi-FCIs to efficiently perform updates.

• It performs batch rather than per-transaction up-
dates. As discussed, this is crucial to have reason-
able efficiency, and in many cases one can assume
stationarity in moderately long segments of the
stream, or live with slight inaccuracies for short
transitory periods. Within each batch, itemsets in
the batch are mined using some batch method and
then the result is used to update a global data
structure.

We now give a high-level description of IncMine, aim-
ing at the analysis in Section 4.

Let parameter W be duration of the time-sensitive
sliding window. IncMine aims at reporting the closed
itemsets that are frequent in the window determined
by W . Let L denote the set of FCIs mined at any given
time from the current time window. At each time unit,
a new set of transactions B arrives and L must be up-
dated to reflect the transactions in B and forget the
effect of the transactions received W time units ago.
Roughly speaking, IncMine performs this by first min-
ing the set C of FCIs in B, and then updating L with
the contents of C, according to a clever set of rules
which also implement the forgetting of expired trans-
actions.

However, a direct implementation of this idea is
costly. The number of itemsets that have to be stored in
order to perform this task exactly can grow to be very
large, because even itemsets that seem very infrequent
at this time have to be kept in L, just in case they start
appearing more often now and become frequent in the
window within the next W time units.

Exact algorithms are bound to be costly by this re-
quirement. In contrast, IncMine adopts the following
heuristic to cut down on memory and computation. Re-
call that an itemset X is frequent on a window contain-
ing W transactions if it has support at least σW there.
Imagine, say, that in the last W/2 time units we have
received W/2 transactions and that an itemset has been
seen in only σW/10 of them, instead of the σW/2 one
would expect. It is possible that in the next W/2 time
units X appears sufficiently frequently to achieve sup-

port σW , but it seems unlikely. One is tempted to de-
clare X non-promising at this point in time and drop
it from L. This creates the possibility that X is a false
negative W/2 times units later, i.e., it is frequent but
not reported.

One can then use a relaxation parameter r ∈ [0, 1]
and declare that all itemsets not having relative sup-
port rσ at any moment are dropped. IncMine takes this
idea a bit further, by noticing that the longer an item-
set has been in the window, a higher relaxation param-
eter should be used. That is, to keep X promising for a
window W one should require a higher relative support
for X after seeing 3/4 of the elements in W than when
only 1/4 of them have been seen, as in the latter X
has more time to catch up with the required minimum
support. Thus, IncMine uses r to define an increasing
sequence of supports as follows:

• For k ∈ [1, . . . ,W], define r(k) = (k − 1) ·
(1 − r)/(W − 1) + r. Observe that r(1) = r and
r(W) = 1.

• For any two time units a, b, let Ta,...,b be the set
of time units comprised between a and b, and
Na,...,b the number of transactions received during
Ta,...,b.

• X is a semi-FI at any given time t if there is a k ∈
{1, . . . ,W} such that supp(X ,Tt−k+1,...,t) �
r(k) · σNt−k+1,...,t, i.e., if it was r(k)σ-frequent
at some point during the last W time units. Fur-
thermore, it is a semi-FCI if in addition it is closed
w.r.t. the set of transactions in Tt−W+1,...,t−k+1.

• At any time t, an itemset may be dropped from
L because it does not seem promising: if for ev-
ery k ∈ {1, . . . ,W − 1} its frequency is lower
than r(k)σ, it seems unlikely that it will become
σ-frequent in the next 1 or 2 or . . . W time steps,
so it is dropped.

• The set L kept by IncMine at time t is, pre-
cisely speaking, the set of semi-FCI in the win-
dow Tt−W+1,...,t or, in words, the set of FCIs that
have not been dropped as unpromising during the
last W time units.

It is clear thus that a key part of the algorithm is the
update procedure for maintaining the set L of FCIs up-
dated in this way. We omit its somewhat lengthy de-
scription here and refer to the original paper, since it is
not required for understanding neither the analysis nor
the experiments that follow.

3.2. Some details of our implementation

We departed from the description in [3] (or com-
pleted it) in the following three points:

AUTHOR C
OPY

148 M. Quadrana et al. / Closed frequent itemset stream mining in MOA

(1) Window type. We decided to implement a trans-
action-sensitive window instead of the time-
sensitive window proposed in [3], mainly to ease
our testing as it is easier to compare performance
when sliding windows have a fixed number of
transactions. It is also the norm in MOA.

(2) Batch miner. We had to choose a particular
batch method for mining a given batch for fre-
quent closed sets. Our choice was the CHARM
method [27], partly because of the superior per-
formance reported in [27] and partly because
of we found a well-tested and publicly avail-
able implementation. Indeed, it is part of the Se-
quential Frequent Pattern Mining framework [7],
a package for sequence, itemset, and associa-
tion rule mining available under GPL3 License.
In fact, the framework provides two versions of
CHARM, the original one and an improved one
which uses bitsets to represent transactions. We
used the improved, bitset-based one as it pro-
vided better performance in our tests. We con-
sider replacing it with an independent, standalone
version of CHARM in the future.

(3) Inverted indexing. One of IncMine’s most so-
phisticated contributions is the Inverted Index
Structure to manage efficiently all the semi-FCIs
stored in the sliding window. Each set is parti-
tioned accordingly to the size of the semi-FCIs
in the last window. Each partition is stored in
an array, called FCI-array, and each semi-FCI
in the FCI-array is assigned an ID, which corre-
sponds to its position in the array, and its approx-
imate support. An array containing semi-FCIs
of size n is named a size-n FCI-array. To each
size-n FCI-array is associated a garbage queue.
When a semi-FCI is deleted from an FCI-array,
its ID is pushed into the garbage queue. When
a new semi-FCI have to be inserted into a FCI-
array, its ID (position) is popped out from the
garbage queue. If the garbage queue is empty,
then the new semi-FCI is appended to the array.
Along with the set of FCI-array, an inverted in-
dex, called Inverted FCI Index(IFI), is used. Its
components are an Item Array(IA), which stores
all items in I in lexicographical order, and, asso-
ciated to each item in the IA is associated with
a list of variable-length arrays called ID-arrays.
Each ID-array stores the IDs of size-n semi-FCIs
in ascending order of their integral values (a size-
n ID-array).

With this structure we can, given an itemset X , effi-
ciently get its position in the corresponding FCI-array,
select its Smallest Semi-FCI Superset (SFS), and in-
sert or delete it. The efficiency of the inverted indexing
comes from the fact that joining two sorted arrays is
simple and fast. But when several sorted arrays have
to be joined into the inverted index, the order for pair-
wise (or k-wise) joining has a significant impact on ef-
ficiency, and the policy is not discussed in [3]. Luckily,
the problem has been extensively studied, for exam-
ple in the Information Retrieval field. Culpepper et al.
in [6] provide a survey of algorithms for efficient mul-
tiple set intersection for inverted indexing. We adopted
the Small vs. Small approach [6]: Essentially, the in-
tersection is computed by proceeding from smallest to
largest list. This tends to produce smallest intermedi-
ate results, therefore to be the most efficient processing
order.

4. Analysis of IncMine

In this section we prove a PAC-style guarantee on
the quality of approximation of IncMine or, more pre-
cisely, on the transaction-sensitive variant that we have
implemented. We believe the result is interesting be-
cause it explains theoretically some of the results we
will observe experimentally, and also because PAC-
analyses of frequent pattern mining algorithms are rel-
atively rare so far.

We first state the probabilistic assumptions on the
data stream to be processed. It is a formalization of
the intuition behind the idea of progressive support
central to IncMine: there is an underlying distribution
that remains stable for reasonable stretches of time and
generates the observed items; the sliding window of
size W can then be viewed as a sample from that dis-
tribution.

Time t = 1, 2, . . . is discrete. At each time t, exactly
one transaction is received from a distribution Dt on
the set of all possible transactions. Samples at different
times are independently drawn. Distributions Dt may
evolve (“drift”) over time. Obviously, if their evolution
is arbitrarily complex and fast there is no way to per-
form any mining, as we only receive one sample from
any one distribution. Informally speaking, one hopes
that drastic changes from t to t+1 do not occur too of-
ten, or else that distributions may change at every step,
but only very slightly.

The algorithm maintains a sliding of size W and the
overall goal at time t is to provide an approximation of

AUTHOR C
OPY

M. Quadrana et al. / Closed frequent itemset stream mining in MOA 149

the set of FCIs in the window t − W + 1, . . . , t. The
algorithm partitions the stream in batches of size B,
with B � W .

IncMine(σ,r) denotes the result of executing In-
cMine with minimum support parameter σ and param-
eter relaxation r on a given data stream of itemsets.

Theorem 1. For an arbitrary time t, assume that
Dt−W = · · · = Dt−1 = Dt, that is, there has been no
distribution change in the previous W time steps. Let
Ot be the set of FCI output by IncMine(σ, r) at time t.
Then, for every itemset X and every δ ∈ (0, 1),

(1) if rsupp(X ,Dt) � (1−ε)σ then, with probability
at least 1 − δ, X is not in Ot,

(2) if rsupp(X ,Dt) � (1+ε)σ then, with probability
at least 1 − δ, X is in Ot,

provided ε �
√

3
σW ln W

δB and r � 1 −
√

2
σB ln W

δB .

Note that because IncMine may not have false pos-
itives, only false negatives, part (2) of the algorithm
may seem unnecessary. However, here the notion of
false positive/negative is with respect to the generat-
ing distribution, not with respect to the actual stream
of transactions observed by IncMine.

A qualitative interpretation of the bounds may be
as follows: Let W be a window size and B a batch
size. Clearly, itemsets whose probability or expected
support is very close to σ may go either way (i.e., ap-
pear or not appear in the output). The bound on ε tells
what “very close” means in this context. Observe that,
as W grows, ε tends to 0, i.e., the uncertainty margin
narrows for larger windows and fixed batch size. The
bound on r tells the highest value of r that one should
use, mainly as a function of σB. Observe that if σB
is large, r can be taken closer to 1; in any case σB
should be somewhat larger than 1, as otherwise even σ-
frequent itemsets will not reliably show up in batches
of size B.

The bounds can be used in the reverse direction:
given a desired support σ and a desired value of the
tolerance margin ε, determine what values of W , B
and r are appropriate. Also, the result is stated for the
case in which there has been no drift at all during the
last W steps. It can be generalized, at the expense of
more parameters and more involved bounds, to the case
in which itemset frequency has changed only slightly,
with respect to σ, B and W .

The proof of the theorem is given in the Appendix. It
uses crucially the Chernoff bounds on large deviations

of sums of random variables, a standard tool in analysis
of probabilistic algorithms.

Interestingly, the proof indicates that the simple se-
quence of supports r(k) proposed in [3] is very gen-
erous in its definition of non-promising; this explains
the very small false negative rate we will report in
our experiments. In fact, the analysis suggests a bet-
ter, perhaps optimal, sequence that will drop more non-
promising itemsets earlier while at the same time main-
taining the performance guarantees given by the theo-
rem. Additionally, this new sequence does not require
the user to enter or guess a parameter r, because it is
deduced from the values of the other parameters. To be
precise, for k = 1, . . . ,W , it suffices to choose

r(k) = 1 −
(√

1
k
−
√

1
W

)√
2
σ

ln
W

δB
.

Let us note that r(W) = 1 as intended, and that the
sequence will be used in the algorithm only for values
of the form kB, k = 1, . . . ,W/B. Also, it can be ap-
preciated that for fixed values of δ, σ, W and B, this
value of r(k) is 1 − O(1/

√
k), much closer to 1 than

the original r(k) � r+k/W in most of the range of k.
This means that now a higher support is required to
remain promising, hence more non-frequent itemsets
are dropped, and dropped earlier. Future releases of our
implementation may incorporate this improvement.

5. Experiments

We evaluated our implementation with both syn-
thetic and reality-based data streams. In this section
we first explain how we generated these data streams.
We then report the performance of IncMine under dif-
ferent types of input, i.e. streams with and without
drift, compared with the MOMENT algorithm, which
is still the standard for (exact) frequent itemset mining
in data streams. We finally describe our experiments
with a real-world dataset drawn from the MovieLens
database.

Since IncMine is an approximate algorithm, we de-
tail its accuracy in terms of two well-known accuracy
measures, recall and precision. In our setting, recall is
the fraction of true FCIs that do appear in the system’s
output, and precision is the fraction of itemsets in the
output that truly are FCI. Thus, 1 minus the recall is
also the false negative rate. We also provide an evalua-
tion of the throughput (transactions processed per sec-
ond) and of the amount of memory used.

AUTHOR C
OPY

150 M. Quadrana et al. / Closed frequent itemset stream mining in MOA

At the time of testing, the only Java implementa-
tion of MOMENT we could find was M. Jarka’s MOA-
MOMENT, available as well as a MOA extension.
In our initial experiments with synthetic datasets, we
found that this implementation often could not finish
execution correctly because it quickly ran out of mem-
ory. Furthermore, it was orders of magnitude slower
than our IncMine implementation. We decided to use
the original C++ implementation provided by the au-
thors of MOMENT [24]. C++ code is commonly ac-
cepted to be more efficient than the equivalent Java
code (by variable and somewhat unpredictable fac-
tors), so this difference must be taken into account
when discussing throughput.

5.1. Experimental setting

We used MOA Release 2012.03 [21] and worked
with NetBeans 7.1.1 IDE (Build 201203012225), us-
ing the Sun Java 1.7.0_03 JVM. We developed and
tested the software on a system with an Intel Core
i5 M450 2.40 GHz Dual Core CPU and 4 Gb RAM
running Windows 7. We set the Maximum heap size
(-Xms) of the JVM to 1 Gb for every IncMine execu-
tion.

Unless otherwise stated, in the following experi-
ments the batch size B of IncMine is fixed to 500 trans-
actions, while its window size W is fixed to 10 batches.
This corresponds to using a window length of 5000
transactions for MOMENT.

5.2. Experiments with synthetic data

5.2.1. Generating synthetic data streams
Since there is no standard synthetic stream gener-

ator adapted for frequent itemset patterns, usually re-
searchers create (large) static transactions databases
and provide them to the algorithm in a stream fash-
ion. The most used synthetic data generator for itemset
patterns is M. Zaki’s IBM Datagen software [24]. Us-
ing standard notation, Datagen’s synthetic datasets are
named with the syntax TxIyDz[Pu][Cv], where x
is the average transaction length, y is the size of the set
of items (in thousands), z is the number of generated
transactions (in thousands), u is the average length of
the maximal pattern, v is the correlation among pat-
terns, and [] denotes optional parameters. For exam-
ple, T40I10D100K names a dataset of 105 transac-
tions, with an average of 40 items per transaction over
a dictionary of 104 different items.

The initial testing phase was intended to measure the
performances of our solution when the input contains
no drift. We used the T40I10D100K dataset, a sparse
dataset also provided by Zaki [24] and used as test set
in several previous papers. We analyzed our IncMine
implementation in terms of precision and recall, and its
throughput and memory usage, comparing it to MO-
MENT.

5.2.2. Accuracy
We performed two experiments to estimate the effect

on accuracy on the algorithm parameters. In the first
experiment, we fixed the minimum support threshold
to σ = 0.1 and varied the relaxation rate r in [0.1, 1],
thus evaluating the effect of the variation on the preci-
sion and recall (equivalently, false negative rate) of the
algorithm. We recovered the set of FIs from the set of
FCIs that are obtained by IncMine at every entire win-
dow slide and compared it to the real set of FIs com-
puted with an implementation of the ECLAT algorithm
available in [7]. The results, in terms of recall and pre-
cision averaged over all windows, are as follows for
IncMine: Precision is always 1, as it should be in any
no-false-positives algorithm. Recall is 1 up to r = 0.6,
then decreases to 0.993, 0.949, 0.821 and 0.696 re-
spectively for r = 0.7, 0.8, 0.9, 1, i.e. a reasonable
degradation. Results for MOMENT are always 1 since
it is an exact algorithm.

In the second experiment we measured accuracy as
we varied the minimum support threshold σ, with r
fixed to 0.5. Recall and prediction are essentially 1 for
all values, even for a relaxation rate of 0.5. In a few
cases precision is not exactly 1 as expected, but never
goes below 0.994. Upon examination, these small dis-
crepancies are due to a few itemsets placed exactly at
the border between frequent and non-frequent itemsets
(i.e., itemsets whose expected support is almost ex-
actly σ|S|, hence empirically go “in the wrong side”
because of random fluctuation when generating the
dataset with given parameters). Hence, precision is 1
on the actual dataset, though not exactly 1 w.r.t. the un-
derlying generating model.

5.2.3. Throughput
It is also important to measure the effects of such

variation in the parameters over the processing speed
of the algorithm. We measured the average through-
put, expressed in transactions per second (trans/s), of
processing, for the entire data stream and for different
ranges of relaxation rate and minimum support thresh-
old.

Figure 1 reports the average throughput values for
r ∈ [0.1, 1], with a logarithmic scale in the y axis. Pro-

AUTHOR C
OPY

M. Quadrana et al. / Closed frequent itemset stream mining in MOA 151

Fig. 1. Throughput in trans/s for different values of r (σ = 0.1). The minimum support used for MOMENT is equal to 500. Note the logarithmic
scale in the y axis. (Colors are visible in the online version of the article; http://dx.doi.org/10.3233/AIC-140615.)

cessing speed grows as the relaxation factor increases,
since higher values of r imply a lower number of fre-
quent closed itemsets mined in every batch. The fig-
ure also includes the result of executing MOMENT on
the same data stream, with minimum support threshold
minsupp = σ · |S| = 0.1 · 5000 = 500. Since MO-
MENT does not use a relaxation rate, its throughput is
constant in this test. IncMine clearly outperforms MO-
MENT for every value of r � 0.2, and only for r � 0.1
the performances of the two algorithms are compara-
ble, that is, when forcing IncMine to be an almost exact
algorithm. For example, for r = 0.5 the throughput of
IncMine is more than two orders of magnitude larger
that MOMENT’s. At the same time, IncMine achieves
almost perfect accuracies with this value of r , so we
decided to adopt r = 0.5 for every future experiment.

Like before, we also studied the behavior of the
throughput with respect to the minimum support
threshold σ. We fixed r = 0.5 and averaged the
throughput obtained for σ ∈ [0.02, 0.10]. Figure 2
clearly shows that IncMine outperforms MOMENT in
every case, and the difference between them grows as
the minimum support threshold increases. Except be-
low σ = 0.02, IncMine’s throughput is at least one
order of magnitude higher than MOMENT’s.

IncMine’s authors [3] performed similar tests com-
paring their C++ implementation of IncMine using
CHARM author’s code [27] and the same implementa-
tion of MOMENT we used here. Our results are qual-
itatively comparable to theirs (a quantitative compari-

son is impossible due to the differences in coding lan-
guage and experimental platform), which we take as
evidence for the correctness of our implementation.

5.2.4. Memory usage
Memory consumption is one of the key parameters

in data stream algorithms, as it is often the limiting re-
source when the volume or complexity of the incom-
ing data is large. For example, as mentioned already,
we could not finish the experiments with the exist-
ing MOA-MOMENT package as it ran out of mem-
ory early in the execution. In fact, we decided to not
compare IncMine with MOMENT in this case, because
of the large differences between the two architectures
they are based on. In particular the Java Virtual Ma-
chine (and garbage collection) directly influences the
memory measurement we obtain for IncMine; this fac-
tor does not exist for a C++ written program. We fo-
cused instead on analyzing the effect of the different
parameters of IncMine on its memory consumption.

For all experiments in this section, the results re-
ported are the average of 10 independent executions,
to smooth transient effects caused by dynamic memory
allocation and collection.

First we analyzed the memory consumption of In-
cMine as a function of the minimum support thresh-
old σ, with fixed r = 0.5. In Table 1 we compare the
overall memory consumption with the effective size
in memory of the main data structures of IncMine.
The average memory consumption correctly increases

AUTHOR C
OPY

152 M. Quadrana et al. / Closed frequent itemset stream mining in MOA

Fig. 2. Throughput in trans/s for different values of σ (r = 0.5). The minimum support used for MOMENT is equal to σ · 5000. Note the
logarithmic scale in the y axis. (Colors are visible in the online version of the article; http://dx.doi.org/10.3233/AIC-140615.)

Table 1

Average memory consumption for varying σ (r = 0.5) in MB

σ 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

Total memory usage 225.2 266.5 226.6 221.1 217.8 202.6 198.3 192.3 187.2

Data structure size 23.1 6.3 3.1 1.4 0.9 0.6 0.5 0.4 0.3

Note: We report the overall (total) memory usage and the real size in memory of IncMine’s data structures (FCI-arrays + Inverted FCI Index).

as the minimum support threshold decreases, because
a higher number of frequent closed itemsets have to
mined and stored.

In Table 1 we also report the average size in mem-
ory of the main data structures specific to IncMine (the
FCI-arrays and the Inverted FCI Index). Their size is
one or two orders of magnitude smaller than the whole
memory consumption of the algorithm or, in other
words, the bulk of the memory is not really used by In-
cMine but by the batch miner it uses as a subroutine.
This suggests that an important point of optimization
for the algorithm could be reducing the memory used
for the frequent closed itemset mining of each batch,
possibly by a specialized algorithm. Observe, though,
that it is the size of IncMine’s structures the one that
grows dangerously fast as the support decreases; with
this dataset and parameters, it seems to follow a law of
the form O(1/σα), for α ∼= 2.5.

We also analyze the effects of changing window size.
We fixed the minimum support threshold σ = 0.05 and
studied how the overall memory consumption and the
size of the data structures varies.

In Fig. 3 we can see the behavior of the total memory
consumption. For values lower than 60 times batch size
(500), memory consumption is almost constant, and
for larger windows the average memory consumption
increases linearly. This is due to the fact that the JVM
reserves a certain amount of memory at the start of the
execution. Instead, if we look at the size in memory of
the FCI-arrays and Inverted FCI Index shown in Fig. 4,
we can see that there is a linear dependence between
the number of batches retained in the window and the
size in memory of such data structures. As before, it
remains several times lower than the memory used by
the batch miner, proving the memory efficiency of the
data structures that have been used.

5.2.5. Introducing drift
We tested our implementation on datasets contain-

ing both sudden and gradual drift.
For sudden drift, reaction time can be crisply de-

fined (less so in gradual drift) and is the measure on
which we focused. The starting time of the concept
drift can be defined exactly (i.e., looking at the trans-
action where we pass from one concept to the other in

AUTHOR C
OPY

M. Quadrana et al. / Closed frequent itemset stream mining in MOA 153

Fig. 3. Average overall memory consumption for different window size values (σ = 0.05, r = 0.5). Window size is in number of times batch
size (500).

Fig. 4. Average memory consumption of IncMine’s data structures for different window size values (σ = 0.05, r = 0.5). Window size is in
number of times batch size (500).

the synthetic dataset with drift); we can consider that a
frequent itemset data stream algorithm ‘reaches’ a con-
cept when its set of FCI is ‘close’ to the true set of FCI
of this concept. To be precise, we decided by conven-
tion that a concept is reached when the size of the dif-
ference set is less than 5% of the number of true FCI
for the new concept. We define the reaction time of the
algorithm as time elapsed from the time the change oc-
curs until the new concept is reached.

We created a new dataset by joining the two datasets
T40I10kD1MP6 and T50I10kD1MP6C05, passing
from one to the other at transaction 8 · 105. Since the

Table 2

Reaction time for window_size ∈ [10, 100] (in number of batches of
size 500)

win_size 10 20 30 40 50 60 70 80 90 100

react_time 9 18 27 36 46 55 64 73 82 91

former has lower correlation between transactions than
the latter, it has a higher density and more frequent
itemsets can be extracted. This difference between the
two streams is sufficient to evaluate correctly the qual-
ity of the reaction to every kind of concept drift.

Reaction times are presented in Table 2, as a func-

AUTHOR C
OPY

154 M. Quadrana et al. / Closed frequent itemset stream mining in MOA

Fig. 5. Number of extracted FCIs over time for window size ∈ {10, 20, 50, 100} (in number of batches of size 500). (Colors are visible in the
online version of the article; http://dx.doi.org/10.3233/AIC-140615.)

tion of window size. We find them remarkably small
compared to typical results in evaluating reaction time
in stream mining. Also, Fig. 5 presents the evolution of
the number of mined FCIs over time for different win-
dow sizes. Again one can see that longer windows im-
ply larger reaction time, but an additional phenomenon
can be observed: the plots for shorter windows are
spiky, and become smoother as window size increases.
This is due to the effect of random fluctuations which
are of course more visible in shorter windows. In ef-
fect, window size controls a trade-off between stability
and reaction time.

We also used datasets with gradual drift by smoothly
merging the two datasets. Using MOA’s “sigmoidal
drift” capability for merging data streams, we could
specify the duration and slope of the transition. In ev-
ery case, the behavior was almost the same we noticed
for abrupt changes, that is, longer windows correspond
to longer reaction times, but provide more stable re-
sults.

5.3. Experiments with real data

Given the scarcity of accepted real benchmark
streams with drift, and particularly for frequent pat-
tern tasks, we transformed a real, but batch dataset as
a basis. The MovieLens dataset, a free dataset provided
by Group Lens Research [9], records user movie rat-
ings. A rating is a value between (1, . . . , 5) with half-
point ratings, that a user provides after seeing it. The
database contains about 10 million ratings applied to

10,681 movies by 71,567 users, from January 1996 to
August 2007. The MovieLens dataset is intended for
recommending systems research and evaluation. In its
original form it is suitable neither for online process-
ing nor for itemset mining purposes. The former point
effectively was not a problem, since we have already
seen how to treat static datasets as data streams. But the
latter was real issue, since we have to convert data com-
ing from a film recommendation system into a transac-
tional, binary database to be used by our method. Im-
portantly, the transactions generated were ordered by
the timestamp of the corresponding rating, so in in-
creasing chronological order. This introduced naturally
some drift in the transaction database.

We created a transaction database using each movie
ID as an item, grouping ratings by timestamp with
5-min granularity, then sorting by timestamp order.
As a consequence, a “transaction” with timestamp T
records the set of all movies that were rated together
between times T and T+5 (in minutes), independently
of the users that emitted the ratings. We imposed a
maximum of 50 items for each transaction, and split
longer transactions into several different ones of the
same length. This approximation becomes necessary
to reduce the effect of a few very skewed transactions
that appeared after grouping. This way, we obtained a
data stream with 622,265 transactions and an average
of 10.37 items per transaction. Transactions are cer-
tainly not uniformly distributed along this time inter-
val. Considering that the number of different items is
similar to what we used in the synthetic tests (about

AUTHOR C
OPY

M. Quadrana et al. / Closed frequent itemset stream mining in MOA 155

10 K), we used the knowledge we acquired there to
guide the choice of execution parameters; we omit de-
tails.

One advantage of using the MovieLens database is
that we can actually check whether the itemsets found
make sense with regard to the external reality: Typi-
cally, a movie will receive the highest number of rat-
ings shortly after it is released. We verified that this
seems to occur for major hits. For example, {Ocean’s
Eleven, Lord of the Rings: The Fellowship of the Ring}
is a frequent itemset in 2001, while {Spider-Man, Star
Wars: Episode II – Attack of the Clones} appears in
2002, and {Lord of the Rings: The Two Towers, Pi-
rates of the Caribbean: The Curse of the Black Pearl}
is frequent in 2003, coinciding with their release dates.
A batch, non-streaming method will miss this fine tem-
poral structure, even though it is often of highest inter-
est in applications.

On the other hand, we may conjecture that drift is
continuously occurring in the database, but unlike the
synthetic case, we have not direct way of quantifying
it, i.e., we do not know the ground truth. We propose,
as a candidate empirical measure of drift, the num-
ber of itemsets that enter and leave the set of frequent
itemsets per time unit, since we should expect no such
changes when there is no drift. Indeed, we found high
fluctuations of this measure in the MovieLens stream
(corresponding perhaps to times with many releases)
but it remained essentially zero over time for synthetic
streams without drift.

6. Conclusions

We believe we have produced an efficient, solid, us-
able tool for frequent closed itemset mining on stream-
ing scenarios that may help bringing this technology
to actual industrial usage. At the same time, our im-
plementation can be used as a reference or baseline for
evaluation of further research in the area.

Potential extensions of our work include building
self-tuning algorithms that choose their parameters
(semi)automatically; the definition of and evaluation
on both truly streaming benchmarks; and possibly try-
ing other base (batch) miners besides CHARM, opti-
mized for this purpose, that may reduce memory con-
sumption. An important question, but to our knowl-
edge not yet addressed, is the possibility of paralleliz-
ing this or another method for closed itemset mining
on streams, in order to increase the throughput. As al-
ready mentioned, MOA does not currently support par-
allel or distributed processing, but that is the goal of
the ongoing SAMOA project [18].

Acknowledgements

M. Quadrana and R. Gavaldà’s work was par-
tially supported by MICINN project TIN2011-27479-
C04-03 and by the SGR2009-1428 project (LARCA).
A preliminary version of this work was presented at the
CCIA 2013 conference. We are grateful to the CCIA
2013 reviewers and the reviewers of this version for
many helpful comments.

Appendix. Proof of Theorem 1

We will use the following well known bounds on
the tails of sums of independent random variables; see
e.g. [11].

Lemma 1 (Chernoff bounds). Let X1, . . . ,Xn be in-
dependent 0/1-valued random variables with Pr[Xi =
1] = μ. Let S be the random variable (

∑n
i=1 Xi)/n.

Then for every ε < 1 we have:

(1) Pr[S � (1 − ε)μ] � exp(−ε2μn/2), and
(2) Pr[S � (1 + ε)μ] � exp(−ε2μn/3).

Consider itemset X , time t, window size W , and
batch size B. Let B1,B2, . . . ,BW/B denote the most
recent transaction batches (B1 is oldest and BW/B is
most recent). We use Ba,...,b to denote the union of
Ba through Bb. Recall that Ot is the set of FCI output
at time t, and also that IncMine maintains an internal
set Lt of semi-FCI with the invariant that X ∈ Lt if
and only if, for all k ∈ 1, . . . ,W , rsupp(X ,B1,...,k) �
r(k)σ. Observe that for a set to be in Ot it must (1)
enter Lt′ at some t′ � t, (2) not be dropped be-
tween t′ and t (remain in the L set), and (3) have
relative support at least σ in W . Let D denote Dt

(= Dt−1 = · · ·Dt−W+1); we omit X from the rsupp
function as only one X is considered.

To prove (1), suppose that rsupp(D) � (1 − ε)σ.
Because IncMine has no false positives, if X is in Ot

then rsupp(B1,...,W/B) � σ, that is, it has empirical
support at least σW in the window of the last W el-
ements. Therefore, we have to bound the probability
that X has empirical support above σW although its
expected support according to D is at most (1−ε)σW .

AUTHOR C
OPY

156 M. Quadrana et al. / Closed frequent itemset stream mining in MOA

This is

Pr[X ∈ Ot]

� Pr
[
rsupp(B1,...,W/B) � σW

]
� Pr

[
rsupp(B1,...,W/B) � (1 + ε)(1 − ε)σW

]

= exp

(
−1

3
ε2σW

)
,

where we have used that 1 � (1 + ε)(1 − ε) and the
Chernoff bound. This is less than δ if and only if

ε �
√

3
σW

ln
1
δ

,

which is implied by the bound on ε given in the theo-
rem.

Proving (2) is more complex as it involves the rule
for dropping non-promising itemsets. For notational
simplicity, define function s(k) as the value of the cut-
point at the beginning of the kth batch Bk; that is,
s(k) = r(Bk) = (1 − r)(Bk − 1)/W + r.

Suppose that rsupp(D) � (1 + ε)σ. We claim that
if X is not in Ot then for some k ∈ {1, . . . ,W} we
have rsupp(B1,...,k) � s(k)σ. This may be (as dis-
cussed above) because it never entered the set L in the
last W time units, or because it did but it was dropped
later, or because it was not dropped and reached the
end of W , but then did not have the required support σ.
All three cases are included in the condition for s(k)
and the range of k given above. Therefore, we bound:

Pr[X /∈ Ot]

� Pr
[
∃k ∈ {1, . . . ,W/B}:

rsupp(B1,...,k) � s(k)σ
]

�
∑

k∈{1,...,W/B}

Pr
[
rsupp(B1,...,k) � s(k)σ

]

� W

B
· max
k∈{1,...,W/B}

Pr

[
rsupp(B1,...,k)

� s(k)
1 + ε

(1 + ε)σ

]

� W

B
· max
k∈{1,...,W/B}

exp

(
− (1 + ε)σBk

2

×
(

1 − s(k)
1 + ε

)2)
.

Define f (k) = (1 − s(k)
1+ε)2k. The max in the inequal-

ity above is attained by the k that minimizes f (k). The
derivative of f has a single zero in the range of k,
which is a maximum. Therefore f (k) achieves its min-
imum at one of the two endpoints of the range, that is,
either k = 1 or k = W/B. We thus need to verify that

W

B
· exp

(
−1

2

(
1 − s(1)

1 + ε

)2

(1 + ε)σB · 1

)

� δ

and

W

B
· exp

(
−1

2

(
1 − s(W/B)

1 + ε

)2

(1 + ε)σB · W
B

)

� δ.

For the first inequality, use that s(1) = r, and then that
the inequality is true if

1
2

(
1 − r

1 + ε

)2

(1 + ε)σB � ln
W

δB
,

which is certainly true if

(1 − r)2 � 2
σB

ln
W

δB
,

which is the bound on r given in the theorem.
For the second inequality, use that s(W/B) = 1, and

the inequality is true if

1
2

(
1 − 1

1 + ε

)2

(1 + ε)σW � ln
W

δB
. (1)

Given that (1−1/(1+ε))2(1+ε) � ε2 for all ε > 0, the
inequality trivially follows from the bound given for ε
by the theorem. This completes the proof.

It can be seen from the analysis that the increasing
sequence r(k) chosen in the original IncMine paper is
not optimal. The main loss occurs when we bound

Pr
[
∃k: rsupp(B1,...,k) � s(k)σ

]

� W

B
· max

k
Pr
[
rsupp(B1,...,k) � s(k)σ

]
,

which is very loose if the probabilities for different k
are very unequal. A better sequence of s(k) keeps these
probabilities constant over k so that the bound above is
tight. More precisely:

AUTHOR C
OPY

M. Quadrana et al. / Closed frequent itemset stream mining in MOA 157

• Require s(W/B) = 1, which forces the value of
ε by Eq. (1) to (ignoring small terms)

ε =

√
2

σW
ln

W

δB
.

• For any k < W/B, let s(k) be defined by

(
1 − s(k)

1 + ε

)2

· k

=

(
1 − s(W/B)

1 + ε

)2

· W
B

,

or, equivalently,

s(k)

= (1 + ε)

(
1 −

(
1 − s(W/B)

1 + ε

)√
W

Bk

)
,

which, after using the values of s(W/B) and ε
and some routine algebra, gives

s(k) = 1 −
(√

1
Bk

−
√

1
W

)√
2
σ

ln
W

δB
.

Now one obtains a new definition of r using
r(k) = s(k/B).

Note that the new sequence does not depend on param-
eter r, which therefore becomes unnecessary to the al-
gorithm.

References

[1] R. Agrawal and R. Srikant, Fast algorithms for mining associ-
ation rules in large databases, in: Proc. 20th Intl. Conf. on Very
Large Data Bases, VLDB, Morgan Kaufmann Publishers Inc.,
1994, pp. 487–499.

[2] A. Bifet, G. Holmes, R. Kirkby and B. Pfahringer, MOA: Mas-
sive online analysis, Journal of Machine Learning Research 11
(2010), 1601–1604.

[3] J. Cheng, Y. Ke and W. Ng, Maintaining frequent closed item-
sets over a sliding window, J. Intell. Inf. Syst. 31(3) (2008),
191–215.

[4] J. Cheng, Y. Ke and W. Ng, A survey on algorithms for min-
ing frequent itemsets over data streams, Knowl. Inf. Syst. 16(1)
(2008), 1–27.

[5] Y. Chi, H. Wang, P. Yu and R. Muntz, Catch the moment: main-
taining closed frequent itemsets over a data stream sliding win-
dow, Knowledge and Information Systems 10(3) (2006), 265–
294.

[6] J.S. Culpepper and A. Moffat, Efficient set intersection for in-
verted indexing, ACM Trans. Inf. Syst. 29(1) (2010), 1:1–1:25.

[7] P. Fournier-Viger, A sequential pattern mining framework,
available at: http://www.philippe-fournier-viger.com/spmf/
index.php, last access: April 25th, 2014.

[8] B. Goethals, A frequent itemset mining implementations
repository, available at: http://fimi.ua.ac.be/, last access: April
25th, 2014.

[9] GroupLens, Social computing research at the University of
Minnesota, available at: http://www.grouplens.org/, last ac-
cess: April 25th, 2014.

[10] J. Han, J. Pei and Y. Yin, Mining frequent patterns without
candidate generation, SIGMOD Rec. 29(2) (2000), 1–12.

[11] M.J. Kearns and U.V. Vazirani, An Introduction to Computa-
tional Learning Theory, MIT Press, 1994.

[12] C.K.-S. Leung and F. Jiang, Frequent itemset mining of un-
certain data streams using the damped window model, in:
Proc. 2011 ACM Symp. Applied Computing, SAC, ACM, 2011,
pp. 950–955.

[13] H.-F. Li, C.-C. Ho and S.-Y. Lee, Incremental updates of closed
frequent itemsets over continuous data streams, Expert Syst.
Appl. 36(2) (2009), 2451–2458.

[14] H.-F. Li and S.-Y. Lee, Mining frequent itemsets over data
streams using efficient window sliding techniques, Expert Syst.
Appl. 36(2) (2009), 1466–1477.

[15] M. Memar, M. Deypir, M.H. Sadreddini and S.M. Fakhrah-
mad, An efficient frequent itemset mining method over high-
speed data streams, The Computer Journal 55(11) (2012),
1357–1366.

[16] J. Pei, J. Han and R. Mao, CLOSET: An efficient algorithm for
mining frequent closed itemsets, in: ACM SIGMOD Workshop
on Research Issues in Data Mining and Knowledge Discovery,
2000, pp. 21–30.

[17] S. Pramod and O. Vyas, Data stream mining: A review, in:
Proc. the Third Intl. Conf. on Trends in Information, Telecom-
munication and Computing, V.V. Das, ed., Lecture Notes in
Electrical Engineering, Vol. 150, Springer, 2013, pp. 621–
627.

[18] SAMOA, Scalable advanced massive online analysis, avail-
able at: http://yahoo.github.io/samoa/, last access: April 25th,
2014.

[19] G. Song, D. Yang, B. Cui, B. Zheng, Y. Liu and K. Xie,
CLAIM: An efficient method for relaxed frequent closed item-
sets mining over stream data, in: 12th Intl. Conf. on Database
Systems for Advanced Applications, DASFAA, 2007, pp. 664–
675.

[20] S.K. Tanbeer, C.F. Ahmed, B.-S. Jeong and Y.-K. Lee, Sliding
window-based frequent pattern mining over data streams, Inf.
Sci. 179(22) (2009), 3843–3865.

[21] The University of Waikato, MOA: Massive Online Analy-
sis, available at: http://moa.cs.waikato.ac.nz/, last access: April
25th, 2014.

[22] J. Wang, J. Han and J. Pei, CLOSET+: Searching for the best
strategies for mining frequent closed itemsets, in: Proc. Ninth
ACM SIGKDD Intl. Conf. Knowledge Discovery and Data
Mining, KDD, ACM, 2003, pp. 236–245.

[23] S.-J. Yen, C.-W. Wu, Y.-S. Lee, V.S. Tseng and C.-H. Hsieh,
A fast algorithm for mining frequent closed itemsets over
stream sliding window, in: IEEE Intl. Conf. Fuzzy Systems,
FUZZ-IEEE, IEEE, 2011, pp. 996–1002.

AUTHOR C
OPY

158 M. Quadrana et al. / Closed frequent itemset stream mining in MOA

[24] M. Zaki, Software by m.j. zaki, available at: http://www.cs.
rpi.edu/~zaki/www-new/pmwiki.php/Software/Software, last
access: April 25th, 2014.

[25] M.J. Zaki, Scalable algorithms for association mining, IEEE
Trans. Knowl. Data Eng. 12(3) (2000), 372–390.

[26] M.J. Zaki and K. Gouda, Fast vertical mining using diffsets, in:
Proc. Ninth ACM SIGKDD Intl. Conf. Knowledge Discovery
and Data Mining, KDD, 2003, pp. 326–335.

[27] M.J. Zaki and C.-J.H. Charm, An efficient algorithm for closed
itemset mining, in: Proc. Second SIAM Intl. Conf. Data Min-
ing, SDM, 2002, pp. 457–473.

