Non-linear Arithmetic Solving for Termination Analysis

Daniel Larraz, Albert Oliveras, Enric Rodríguez-Carbonell and Albert Rubio

Universitat Politècnica de Catalunya, Barcelona, Spain

PDP, March 2013

Overview of the Talk

- Non-linear constraint solving
- Review of [JAR'12]
- Alternative Max-SMT approach
- Constraint-based termination analysis
- Review of program termination and constraint-based program analysis
- Using Max-SMT for termination analysis
- Implementation and experiments
- Conclusions \& future work

Non-linear Constraint Solving

- Problem: Given a quantifier-free formula F containing polynomial inequality atoms, is F satisfiable?
- Applications: system analysis and verification, ... Here, focus will be on termination of imperative programs
- In \mathbb{Z} : undecidable (Hilbert's 10th problem)
- In \mathbb{R} : decidable, even with quantifiers (Tarski) But algorithms have prohibitive complexity
- Goal: Can we have a procedure that works "well" in practice?

Review of [JAR'12]

- Our method is aimed at proving satisfiability in the integers (as opposed to finding non-integer solutions, or proving unsatisfiability)
- Basic idea: use bounds on integer variables to linearize the formula
- Refinement: analyze unsatisfiable cores to enlarge bounds (and sometimes even prove unsatisfiability)

Translating into Linear Arithmetic

- For any formula there is an equisatisfiable one of the form

$$
F \wedge\left(\bigwedge_{i} y_{i}=M_{i}\right)
$$

where F is linear and each M_{i} is non-linear

- Example

$$
\begin{gathered}
u^{4} v^{2}+2 u^{2} v w+w^{2} \leq 4 \wedge 1 \leq u, v, w \leq 2 \\
x_{u^{4} v^{2}}+2 x_{u^{2} v w}+x_{w^{2}} \leq 4 \wedge 1 \leq u, v, w \leq 2 \wedge \\
x_{u^{4} v^{2}}=u^{4} v^{2} \wedge x_{u^{2} v w}=u^{2} v w \wedge x_{w^{2}}=w^{2}
\end{gathered}
$$

Translating into Linear Arithmetic

- Idea: linearize non-linear monomials with case analysis on some of the variables with finite domain
- Assume variables are in \mathbb{Z}
- $F \wedge x_{u^{4} v^{2}}=u^{4} v^{2} \wedge x_{u^{2} v w}=u^{2} v w \wedge x_{w^{2}}=w^{2}$ where F is $x_{u^{4} v^{2}}+2 x_{u^{2} v w}+x_{w^{2}} \leq 4 \wedge 1 \leq u, v, w \leq 2$
- Since $1 \leq w \leq 2$, add $x_{u^{2} v}=u^{2} v$ and

$$
\begin{aligned}
& w=1 \rightarrow x_{u^{2} v w}=x_{u^{2} v} \\
& w=2 \rightarrow x_{u^{2} v w}=2 x_{u^{2} v}
\end{aligned}
$$

Translating into Linear Arithmetic

Applying the same idea recursively, the following linear formula is obtained:
$x_{u^{4} v^{2}}+2 x_{u^{2} v w}+x_{w^{2}} \leq 4$
$\wedge 1 \leq u, v, w \leq 2$
$\wedge w=1 \rightarrow x_{u^{2} v w}=x_{u^{2} v}$
A model can be computed:
$\wedge w=2 \rightarrow x_{u^{2} v w}=2 x_{u^{2} v}$

$$
\wedge u=1 \rightarrow x_{u^{2} v}=v
$$

$$
\wedge u=2 \rightarrow x_{u^{2} v}=4 v
$$

$$
\wedge w=1 \rightarrow x_{w^{2}}=1
$$

$$
\wedge w=2 \rightarrow x_{w^{2}}=4
$$

$$
\wedge v=1 \rightarrow x_{u^{4} v^{2}}=x_{u^{4}}
$$

$$
\wedge v=2 \rightarrow x_{u^{4} v^{2}}=4 x_{u^{4}}
$$

$$
\wedge u=1 \rightarrow x_{u^{4}}=1
$$

$$
\begin{aligned}
& u=1 \\
& v=1 \\
& w=1 \\
& x_{u^{4} v^{2}}=1 \\
& x_{u^{4}}=1 \\
& x_{u^{2} v w}=1 \\
& x_{u^{2} v}=1 \\
& x_{w^{2}}=1
\end{aligned}
$$

$$
\wedge u=2 \rightarrow x_{u^{4}}=16
$$

Unsatisfiable Core Analysis

- If linearization achieves a linear formula then we have a sound and complete decision procedure
- If we don't have enough variables with finite domain...
... we can add bounds at cost of losing completeness We cannot trust UNSAT answers!
- But we can analyze why the CNF is UNSAT: an unsatisfiable core (= unsatisfiable subset of clauses) can be obtained from the trace of the DPLL execution [Zhang \& Malik'03]
- If core contains no extra bound: truly UNSAT

If core contains extra bound: guide to enlarge domains

Unsatisfiable Core Analysis

- $u^{4} v^{2}+2 u^{2} v w+w^{2} \leq 3$ cannot be linearized
- Consider $u^{4} v^{2}+2 u^{2} v w+w^{2} \leq 3 \wedge 1 \leq u, v, w \leq 2$
- The linearization is unsatisfiable:

$$
\begin{aligned}
& x_{u^{4} v^{2}}+2 x_{u^{2} v w}+x_{w^{2}} \leq 3 \\
& \wedge 1 \leq x_{u^{4} v^{2}} \wedge x_{u^{4} v^{2}} \leq 64 \\
& \wedge 1 \leq x_{u^{2} v w} \wedge x_{u^{2} v w} \leq 16 \\
& \wedge 1 \leq x_{w^{2}} \wedge x_{w^{2}} \leq 4 \\
& \wedge 1 \leq u \wedge u \leq 2 \\
& \wedge 1 \leq v \wedge v \leq 2 \\
& \wedge 1 \leq w \wedge \sim \leq 2
\end{aligned}
$$

- Should decrease lower bounds for u, v, w

An Alternative Max-SMT Approach

- Max-STM(T): Given a set of weighted clauses, find a T-consistent assignment that minimizes cost ($=$ sum of weights) of falsified clauses
- Assume we are given a non-linear formula and have computed a linearization (possibly with extra bounds).
Then we transform the linear formula into a weighted one as follows:
- Clauses C of extra bounds are given finite weights ω_{C} (soft clauses)
- Rest of clauses are given weight ∞ (hard clauses)
- So we have a Max-SMT(LIA) problem, instead of an SMT(LIA) one
- If found model with null cost, we have a solution
- Else falsified soft clauses show bounds to relax

An Alternative Max-SMT Approach

- There exist simple Branch \& Bound algorithms for Max-SMT [Nieuwenhuis \& Oliveras, SAT'06], [Cimatti et al., TACAS'10]
- Advantages over the analysis of unsatisfiable cores
- Max-SMT approach is easier to implement and maintain
- Leads naturally to an extension to Max-SMT(NIA):

Given a set of weighted clauses in NIA, linearize as usual but

- Original clauses keep their weight
- Clauses of case splits are given weight ∞
- Clauses of extra bounds are given weights $\omega>W$, where W is the sum of the weights of the original soft clauses

So models that violate original clauses are preferred over those violating case splits (that ensure a true model for NA can be reconstructed)

An Alternative Max-SMT Approach

- Example revisited
- $u^{4} v^{2}+2 u^{2} v w+w^{2} \leq 3$ cannot be linearized
- Consider $u^{4} v^{2}+2 u^{2} v w+w^{2} \leq 3 \wedge 1 \leq u, v, w \leq 2$, with extra bounds having weight 1
- Linearization does not have 0 -cost solution: optimal solutions have weight 1 , e.g. falsifying $1 \leq w$
- Should decrease lower bound of w

Termination

Current set of targeted programs:

- Imperative programs: iterative and recursive (ignoring return values)
- Integer variables and linear expressions (other constructions considered unknowns)

Example

int gcd (int a, int b) \{ int tmp;
while $(\mathrm{a}>=0 \& \& \mathrm{~b}>0)\{$
$\mathrm{tmp}=\mathrm{b}$;
if $(a==b) \quad b=0$;
else \{
int $\mathrm{z}=\mathrm{a}$;
while ($\mathrm{z}>\mathrm{b}$) $\mathrm{z}-=\mathrm{b}$;
$\mathrm{b}=\mathrm{z}$;
\}
$a=\operatorname{tmp} ;$
\}
return a;
$\}$

Example

As a transition system:

Example

As a transition system:

$$
\begin{array}{lllllll}
\tau_{0}: & & & a^{\prime}=?, & b^{\prime}=?, & t m p^{\prime}=?, & z^{\prime}=? \\
\tau_{1}: & b \geq 1, & a \geq 0, & a=b, & a^{\prime}=b, & b^{\prime}=0, & t m p^{\prime}=b, \\
\tau_{2}: & b \geq 1, & a \geq 0, & a<b, & a^{\prime}=a, & b^{\prime}=b, & t m p^{\prime}=b, \\
\tau_{3}: & b \geq 1, & a \geq 0, & a>b, & a^{\prime}=a, & z^{\prime}=a \\
\tau_{4}: & b<z, & & & a^{\prime}=a, & b^{\prime}=b, & t m p^{\prime}=b, \\
\tau_{5}: & b \geq z, & & & a^{\prime}=t m p, & b^{\prime}=t, & t m p^{\prime}=t m p, \\
z^{\prime}=t m p, & z^{\prime}=z-b \\
z^{\prime}=z
\end{array}
$$

Proving Termination

- Idea: prove that no transition can be executed infinitely many times.
- In order to discard a transition τ_{i} we need either:
- an unfeasibility argument, or
- a ranking function f over \mathbb{Z} such that
(1) $\tau_{i} \Longrightarrow f\left(x_{1}, \ldots, x_{n}\right) \geq 0$ (bounded)
(2) $\tau_{i} \Longrightarrow f\left(x_{1}, \ldots, x_{n}\right)>f\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)$
(3) $\tau_{j} \Longrightarrow f\left(x_{1}, \ldots, x_{n}\right) \geq f\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)$ for all j
(strict-decreasing) (non-increasing)

Auxiliary Assertions: Invariants

- We may need invariant assertions to build our termination argument
- We consider inductive invariants:
- Initiation condition
(it holds the first time the location is reached)
- Consecution condition (it is preserved under every cycle back to the location)

Constraint-based Program Analysis

Introduced in [Colon,Sankaranarayanan \& Sipma, CAV'03]

Keys:

Constraint-based Program Analysis

Introduced in [Colon,Sankaranarayanan \& Sipma, CAV'03]
Keys:

- Fix a template for candidate invariants

$$
c_{1} x_{1}+\ldots+c_{n} x_{n}+d \leq 0
$$

where c_{1}, \ldots, c_{n}, d are unknowns

Constraint-based Program Analysis

Introduced in [Colon,Sankaranarayanan \& Sipma, CAV'03]
Keys:

- Fix a template for candidate invariants

$$
c_{1} x_{1}+\ldots+c_{n} x_{n}+d \leq 0
$$

where c_{1}, \ldots, c_{n}, d are unknowns

- Impose initiation and consecution conditions obtaining $\exists \forall$ problem

Constraint-based Program Analysis

Introduced in [Colon,Sankaranarayanan \& Sipma, CAV'03]
Keys:

- Fix a template for candidate invariants

$$
c_{1} x_{1}+\ldots+c_{n} x_{n}+d \leq 0
$$

where c_{1}, \ldots, c_{n}, d are unknowns

- Impose initiation and consecution conditions obtaining $\exists \forall$ problem
- Transform with Farkas' Lemma into \exists problem over non-linear arith.

Constraint-based Program Analysis

Introduced in [Colon,Sankaranarayanan \& Sipma, CAV'03]
Keys:

- Fix a template for candidate invariants

$$
c_{1} x_{1}+\ldots+c_{n} x_{n}+d \leq 0
$$

where c_{1}, \ldots, c_{n}, d are unknowns

- Impose initiation and consecution conditions obtaining $\exists \forall$ problem
- Transform with Farkas' Lemma into \exists problem over non-linear arith.
- Constraints can be solved with SMT(NA) solver, e.g. Barcelogic.

Constraint-based Program Analysis

Following the ideas in [Bradley, Manna \& Sipma, CAV'05]: constraint-based invariant gen. (IG) + linear ranking function gen. (RG)

Assume a single location:

- Templates
- For the invariant: $I=c_{1} x_{1}+\ldots+c_{n} x_{n}+d \leq 0$
- For the ranking function: $R=r_{0}+r_{1} x_{1}+\ldots+r_{n} x_{n} x$
- Constraints
- Initiation condition on /
- Consecution condition on I
- R is non-increasing for all transitions
- Some transition τ_{i} can be discarded
- $I \Longrightarrow$ unfeasibility of τ_{i}, or
- $I \Longrightarrow$ strict decreasingness and boundedness of τ_{i}

Constraint-based Program Analysis

Although this looks like the way to work, it is not that good in practice:

- Sometimes several invariants needed to generate ranking function Then the problem is unsatisfiable (no solution for ranking function)

Constraint-based Program Analysis

Although this looks like the way to work, it is not that good in practice:

- Sometimes several invariants needed to generate ranking function Then the problem is unsatisfiable (no solution for ranking function)

We need to express that even if our aim is to find a ranking function, if we find just an invariant we've made some progress

Constraint-based Program Analysis

Although this looks like the way to work, it is not that good in practice:

- Sometimes several invariants needed to generate ranking function Then the problem is unsatisfiable (no solution for ranking function)

We need to express that even if our aim is to find a ranking function, if we find just an invariant we've made some progress

We can do it with Max-SMT

Using Max-SMT to combine IG and RG

We can assign weights to the termination conditions:
(1) $I \wedge \tau_{i} \Longrightarrow R \geq 0$
(2) $I \wedge \tau_{i} \Longrightarrow R>R^{\prime}$
(3) $I \wedge \tau_{j} \Longrightarrow R \geq R^{\prime}$ for all j

Using Max-SMT to combine IG and RG

We can assign weights to the termination conditions:
(1) $I \wedge \tau_{i} \Longrightarrow R \geq 0$
(2) $I \wedge \tau_{i} \Longrightarrow R>R^{\prime}$
(3) $I \wedge \tau_{j} \Longrightarrow R \geq R^{\prime}$ for all j
(1) $\left(p_{1}, w_{1}\right)$
where p_{1} represents the bound condition (1)
(2) $\left(p_{2}, w_{2}\right)$ where p_{2} represents the strict-decreasing condition (2)
(3) $\left(p_{3}, w_{3}\right) \quad$ where p_{3} represents the non-increasing condition (3)

Using Max-SMT to combine IG and RG

We can assign weights to the termination conditions:
(1) $I \wedge \tau_{i} \Longrightarrow R \geq 0$
(2) $I \wedge \tau_{i} \Longrightarrow R>R^{\prime}$
(3) $I \wedge \tau_{j} \Longrightarrow R \geq R^{\prime}$ for all j
(1) $\left(p_{1}, w_{1}\right)$
where p_{1} represents the bound condition (1)
(2) $\left(p_{2}, w_{2}\right) \quad$ where p_{2} represents the strict-decreasing condition (2)
(3) $\left(p_{3}, w_{3}\right) \quad$ where p_{3} represents the non-increasing condition (3)

Once the problem is encoded in Max-SMT(NA):

- The Max-SMT solver looks for the best solution getting a ranking function if possible
- Otherwise, the weights can guide the search to get invariants and quasi-ranking functions that satisfy as many conditions as possible

Example

$\begin{array}{llllll}\tau_{0}: & & & a^{\prime}=?, & b^{\prime}=?, & t m p^{\prime}=?, \\ \tau_{1}: & b \geq 1, & a \geq 0, \quad a=b, & a^{\prime}=b, & b^{\prime}=0, & t m p^{\prime}=b, \\ \tau_{2}: & b \geq 1, & a \geq 0, & a<b, & a^{\prime}=a, & b^{\prime}=b, \\ \tau_{3}: & b \geq 1, & a \geq 0, & a>b, & a^{\prime}=a, & b^{\prime}=b, \\ \tau_{4}: & b<z, & & a^{\prime}=a, & b^{\prime}=b, & t m p^{\prime}=b, \\ \tau_{5}: & b \geq z, & & a^{\prime}=t m p, & b^{\prime}=z, & z^{\prime}=a \\ & & & & & t m p^{\prime}=t m p, \\ z^{\prime}=z-b & z^{\prime}=z\end{array}$

Example

$\begin{array}{llllll}\tau_{0}: & & & a^{\prime}=?, & b^{\prime}=?, & t m p^{\prime}=?, \\ \tau_{1}: & b \geq 1, & a \geq 0, \quad a=b, & a^{\prime}=b, & b^{\prime}=0, & t m p^{\prime}=b, \\ \tau_{2}: & b \geq 1, & a \geq 0, & a<b, & a^{\prime}=a, & z^{\prime}=b \\ \tau_{3}: & b \geq 1, & a \geq 0, & a>b, & a^{\prime}=a, & b^{\prime}=b, \\ \tau_{4}: & b<z, & & a^{\prime}=a, & b^{\prime}=b, & t m p^{\prime}=b, \\ \tau_{5}: & b \geq z, & & a^{\prime}=t m p, & b^{\prime}=a, & z^{\prime}=a \\ & & & & & t m p^{\prime}=t m p, \\ z^{\prime}=z-b \\ & & z^{\prime}=z\end{array}$
Solver finds invariant $b \geq 1$ at I_{8} and ranking function b for τ_{1}

Example

$\tau_{0}:$

$$
a^{\prime}=?, \quad b^{\prime}=?, \quad t m p^{\prime}=?, \quad z^{\prime}=?
$$

$\tau_{2}: \quad b \geq 1, \quad a \geq 0, \quad a<b, \quad a^{\prime}=a, \quad b^{\prime}=b, \quad t m p^{\prime}=b, \quad z^{\prime}=a$
$\tau_{3}: \quad b \geq 1, \quad a \geq 0, \quad a>b, \quad a^{\prime}=a, \quad b^{\prime}=b, \quad t m p^{\prime}=b, \quad z^{\prime}=a$
$\tau_{4}: b<z, \quad a^{\prime}=a, \quad b^{\prime}=b, \quad t m p^{\prime}=t m p, \quad z^{\prime}=z-b$
$\tau_{5}: \quad b \geq z, \quad a^{\prime}=t m p, \quad b^{\prime}=z, \quad t m p^{\prime}=t m p, \quad z^{\prime}=z$

Solver finds invariant $b \geq 1$ at I_{8} and ranking function b for τ_{1}

Example

$\tau_{0}:$

$$
a^{\prime}=?, \quad b^{\prime}=?, \quad t m p^{\prime}=?, \quad z^{\prime}=?
$$

$\tau_{2}: \quad b \geq 1, \quad a \geq 0, \quad a<b, \quad a^{\prime}=a, \quad b^{\prime}=b, \quad t m p^{\prime}=b, \quad z^{\prime}=a$
$\tau_{3}: \quad b \geq 1, \quad a \geq 0, \quad a>b, \quad a^{\prime}=a, \quad b^{\prime}=b, \quad t m p^{\prime}=b, \quad z^{\prime}=a$
$\tau_{4}: b<z, \quad a^{\prime}=a, \quad b^{\prime}=b, \quad t m p^{\prime}=t m p, \quad z^{\prime}=z-b$
$\tau_{5}: \quad b \geq z, \quad a^{\prime}=t m p, \quad b^{\prime}=z, \quad t m p^{\prime}=t m p, \quad z^{\prime}=z$

Nothing else can be done, but ...

Example

$\begin{array}{llllll}\tau_{0}: & & & a^{\prime}=?, & b^{\prime}=?, & t m p^{\prime}=?, \\ \tau_{2}: & b \geq 1, \quad a \geq 0, \quad a<b, & a^{\prime}=a, & b^{\prime}=b, & t m p^{\prime}=b, & z^{\prime}=a \\ \tau_{3}: & b \geq 1, \quad a \geq 0, \quad a>b, & a^{\prime}=a, & b^{\prime}=b, & t m p^{\prime}=b, & z^{\prime}=a \\ \tau_{4}: & b<z, & & a^{\prime}=a, & b^{\prime}=b, & t m p^{\prime}=t m p, \\ \tau_{5}: & b \geq z, & & a^{\prime}=z-b \\ \end{array}$

Example

$$
\begin{array}{lllllll}
\tau_{0}: & & & a^{\prime}=?, & b^{\prime}=?, & t m p^{\prime}=?, & z^{\prime}=? \\
\tau_{2}: & b \geq 1, & a \geq 0, & a<b, & a^{\prime}=a, & b^{\prime}=b, & t m p^{\prime}=b, \\
\tau_{3}: & b \geq 1, & a \geq 0, & a>b, & a^{\prime}=a, & b^{\prime}=b, & t m p^{\prime}=b, \\
\tau_{4}: & b<z, & & a^{\prime}=a, & b^{\prime}=b, & t m p^{\prime}=t m p, & z^{\prime}=z-b \\
\tau_{5.1}: & b \geq z, & b \leq 0, & a^{\prime}=t m p, & b^{\prime}=z, & t m p^{\prime}=t m p, & z^{\prime}=z \\
\tau_{5.2}: & b \geq z, & b \geq 0, & b>b^{\prime}, & a^{\prime}=t m p, & b^{\prime}=z, & t m p^{\prime}=t m p, \\
\tau_{5.3}: & b \geq z, & b \geq 0, & b=b^{\prime}=z \\
a^{\prime}=t m p, & b^{\prime}=z, & t m p^{\prime}=t m p, & z^{\prime}=z
\end{array}
$$

We can split τ_{5} in three subcases and

Example

$$
\begin{array}{llllll}
\tau_{0}: & & & a^{\prime}=?, & b^{\prime}=?, & t m p^{\prime}=?, \\
\tau_{2}: & b \geq 1, & a \geq 0, & a<b, & a^{\prime}=a, & b^{\prime}=b, \\
\tau_{3}: & b \geq 1, & a \geq 0, & a>b, & a^{\prime}=a, & b^{\prime}=b, \\
\tau_{4}: & b<z, & t m p^{\prime}=b, & z^{\prime}=a \\
\tau_{5.1}: & b \geq z, & b \leq 0, & & a^{\prime}=a, & b^{\prime}=b, \\
\tau_{5.2}: & b \geq z, & b \geq 0, & b>b^{\prime}=t m p, & z^{\prime}=z-b \\
\tau_{5.3}: & b \geq z, & b \geq 0, & b=a^{\prime}=t m p, & b^{\prime}=z, & t m p^{\prime}=t m p, \\
a^{\prime}=t m p, & b^{\prime}=z, & t m p^{\prime}=t m p, & z^{\prime}=z \\
a^{\prime}=t m p, & b^{\prime}=z, & t m p^{\prime}=t m p, & z^{\prime}=z
\end{array}
$$

We can split τ_{5} in three subcases and remove 5.2 by strict decreasingness

Example

$$
\begin{array}{lllllll}
\tau_{0}: & & & a^{\prime}=?, & b^{\prime}=?, & t m p^{\prime}=?, & z^{\prime}=? \\
\tau_{2}: & b \geq 1, & a \geq 0, \quad a<b, & a^{\prime}=a, & b^{\prime}=b, & t m p^{\prime}=b, & z^{\prime}=a \\
\tau_{3}: & b \geq 1, & a \geq 0, \quad a>b, & a^{\prime}=a, & b^{\prime}=b, & t m p^{\prime}=b, & z^{\prime}=a \\
\tau_{4}: & b<z, & & a^{\prime}=a, & b^{\prime}=b, & t m p^{\prime}=t m p, & z^{\prime}=z-b \\
\tau_{5.1}: & b \geq z, \quad b \leq 0, & a^{\prime}=t m p, & b^{\prime}=z, & t m p^{\prime}=t m p, & z^{\prime}=z
\end{array}
$$

$\tau_{5.3}: \quad b \geq z, \quad b \geq 0, \quad b=b^{\prime}, \quad a^{\prime}=t m p, \quad b^{\prime}=z, \quad t m p^{\prime}=t m p, \quad z^{\prime}=z$
We can split τ_{5} in three subcases and remove 5.1 by unfeasibility

Example

$\begin{array}{llllll}\tau_{0}: & & a^{\prime}=?, & b^{\prime}=?, & t m p^{\prime}=?, & z^{\prime}=? \\ \tau_{2}: & b \geq 1, \quad a \geq 0, \quad a<b, & a^{\prime}=a, & b^{\prime}=b, & t m p^{\prime}=b, & z^{\prime}=a \\ \tau_{3}: & b \geq 1, \quad a \geq 0, \quad a>b, & a^{\prime}=a, & b^{\prime}=b, & t m p^{\prime}=b, & z^{\prime}=a \\ \tau_{4}: & b<z, & & a^{\prime}=a, & b^{\prime}=b, & t m p^{\prime}=t m p, \\ z^{\prime}=z-b\end{array}$
$\tau_{5.3}: \quad b \geq z, \quad b \geq 0, \quad b=b^{\prime}, \quad a^{\prime}=t m p, \quad b^{\prime}=z, \quad t m p^{\prime}=t m p, \quad z^{\prime}=z$

Example

$\tau_{0}:$
$\tau_{2}: \quad b \geq 1, \quad a \geq 0, \quad a<b$,
$a^{\prime}=?, \quad b^{\prime}=?, \quad t m p^{\prime}=?, \quad z^{\prime}=?$
$\tau_{3}: \quad b \geq 1, \quad a \geq 0, \quad a>b$,
$a^{\prime}=a$,
$b^{\prime}=b, \quad t m p^{\prime}=b, \quad z^{\prime}=a$
$\tau_{4}: \quad b<z$,
$a^{\prime}=a$,
$b^{\prime}=b, \quad t m p^{\prime}=b$,
$z^{\prime}=a$
$\tau_{5.3}: \quad b \geq z, \quad b \geq 0, \quad b=b^{\prime}$,
$a^{\prime}=a$,
$b^{\prime}=b, \quad t m p^{\prime}=t m p$,
$z^{\prime}=z-b$
$a^{\prime}=t m p, \quad b^{\prime}=z, \quad t m p^{\prime}=t m p, \quad z^{\prime}=z$

Example

$$
\begin{array}{lllllll}
\tau_{0}: & & a^{\prime}=?, & b^{\prime}=?, & t m p^{\prime}=?, & z^{\prime}=? \\
\tau_{2}: & b \geq 1, & a \geq 0, & a<b, & a^{\prime}=a, & b^{\prime}=b, & t m p^{\prime}=b, \\
\tau_{3}: & b \geq 1, & a \geq 0, & z^{\prime}=a \\
\tau_{4}: & b<z, & a^{\prime}=a, & b^{\prime}=b, & t m p^{\prime}=b, & z^{\prime}=a \\
\tau_{5.3}: & b \geq z, & b \geq 0, & b=b^{\prime}, & a^{\prime}=a, & b^{\prime}=b, & t m p^{\prime}=t m p, \\
z^{\prime}=z, b & b^{\prime}=z, & t m p^{\prime}=t m p, & z^{\prime}=z
\end{array}
$$

Now, we cannot find a ranking function but get the invariant $a \geq z$ at l_{8}.

Example

$$
\begin{array}{lllllll}
\tau_{0}: & & a^{\prime}=?, & b^{\prime}=?, & t m p^{\prime}=?, & z^{\prime}=? \\
\tau_{2}: & b \geq 1, & a \geq 0, & a<b, & a^{\prime}=a, & b^{\prime}=b, & t m p^{\prime}=b, \\
\tau_{3}: & b \geq 1, & a \geq 0, & z^{\prime}=a \\
\tau_{4}: & b<z, & a^{\prime}=a, & b^{\prime}=b, & t m p^{\prime}=b, & z^{\prime}=a \\
\tau_{5.3}: & b \geq z, & b \geq 0, & b=b^{\prime}, & a^{\prime}=a, & b^{\prime}=b, & t m p^{\prime}=t m p, \\
b^{\prime}=z, & t m p^{\prime}=t m p, & z^{\prime}=z-b
\end{array}
$$

Now, we cannot find a ranking function but get the invariant $a \geq z$ at l_{8}. Next, again, we only generate the invariant $t m p=b$ at l_{8}.

Example

$\tau_{0}:$
$\tau_{2}: \quad b \geq 1, \quad a \geq 0, \quad a<b$,

$$
\begin{array}{lll}
a^{\prime}=?, & b^{\prime}=?, & t m p^{\prime}=?, \\
a^{\prime}=a, & b^{\prime}=b, & t m p^{\prime}=b,
\end{array} z^{\prime}=a
$$

$$
\tau_{3}: \quad b \geq 1, \quad a \geq 0, \quad a>b, \quad a^{\prime}=a, \quad b^{\prime}=b, \quad t m p^{\prime}=b, \quad z^{\prime}=a
$$

$$
\tau_{4}: \quad b<z, \quad a^{\prime}=a, \quad b^{\prime}=b, \quad t m p^{\prime}=t m p, \quad z^{\prime}=z-b
$$

$$
\tau_{5.3}: \quad b \geq z, \quad b \geq 0, \quad b=b^{\prime}, \quad a^{\prime}=t m p, \quad b^{\prime}=z, \quad t m p^{\prime}=t m p, \quad z^{\prime}=z
$$

With the invariant $a \geq 0$ at l_{8} we have that function $a+b$ fulfills for $\tau_{5.3}$:
p_{1} (bounded) and p_{3} (non-increasing) but not p_{2} (strict-decreasing)

Example

$$
\begin{array}{lllllll}
\tau_{0}: & & a^{\prime}=?, & b^{\prime}=?, & t m p^{\prime}=?, & z^{\prime}=? \\
\tau_{2}: & b \geq 1, & a \geq 0, & a<b, & a^{\prime}=a, & b^{\prime}=b, & t m p^{\prime}=b, \\
\tau_{3}: & b \geq 1, & a \geq 0, & z^{\prime}=a \\
\tau_{4}: & b<z, & a^{\prime}=a, & b^{\prime}=b, & t m p^{\prime}=b, & z^{\prime}=a \\
\tau_{5.3}: & b \geq z, & b \geq 0, & b=b^{\prime}, & a^{\prime}=a, & b^{\prime}=b, & t m p^{\prime}=t m p, \\
b^{\prime}=z, & t m p^{\prime}=t m p, & z^{\prime}=z-b
\end{array}
$$

With the invariant $a \geq 0$ at l_{8} we have that function $a+b$ fulfills for $\tau_{5.3}$:
p_{1} (bounded) and p_{3} (non-increasing) but not p_{2} (strict-decreasing)
The Max-SMT solver generates $a+b$

Example

$\tau_{0}:$
$\tau_{2}: \quad b \geq 1, \quad a \geq 0, \quad a<b$,
$a^{\prime}=?, \quad b^{\prime}=?, \quad t m p^{\prime}=?, \quad z^{\prime}=?$
$\tau_{3}: \quad b \geq 1, \quad a \geq 0, \quad a>b$,
$a^{\prime}=a$,
$b^{\prime}=b, \quad t m p^{\prime}=b, \quad z^{\prime}=a$
$\tau_{4}: \quad b<z$,
$a^{\prime}=a$,
$b^{\prime}=b, \quad t m p^{\prime}=b$,
$z^{\prime}=a$
$\tau_{5.3}: \quad b \geq z, \quad b \geq 0, \quad b=b^{\prime}$,
$a^{\prime}=a$,
$b^{\prime}=b, \quad t m p^{\prime}=t m p$,
$z^{\prime}=z-b$
$a^{\prime}=t m p, \quad b^{\prime}=z, \quad t m p^{\prime}=t m p, \quad z^{\prime}=z$

Example

$$
\begin{array}{llllll}
\tau_{0}: & & & a^{\prime}=?, & b^{\prime}=?, & t m p^{\prime}=?, \\
\tau_{2}: & b \geq 1, & a \geq 0, \quad a<b, & a^{\prime}=a, & b^{\prime}=b, & t m p^{\prime}=b, \\
\tau_{3}: & b \geq 1, \quad a \geq 0, \quad a>b, & a^{\prime}=a, & b^{\prime}=b, & t m p^{\prime}=b, & z^{\prime}=a \\
\tau_{4}: & b<z, & & a^{\prime}=a, & b^{\prime}=b, & t m p^{\prime}=t m p, \\
\tau_{5.3}: & b \geq z, \quad b \geq 0, \quad b=b^{\prime}, & a^{\prime}=t m p, & b^{\prime}=z, & t m p^{\prime}=t m p, & z^{\prime}=z
\end{array}
$$

With ranking function $a+b$ we can split $\tau_{5.3}$ into

$$
\tau_{5.4}: \tau_{5.3} \wedge a+b>a^{\prime}+b^{\prime} \quad \tau_{5.5}: \tau_{5.3} \wedge a+b=a^{\prime}+b^{\prime}
$$

Example

$$
\begin{array}{llllll}
\tau_{0}: & & & a^{\prime}=?, & b^{\prime}=?, & t m p^{\prime}=?, \\
\tau_{2}: & b \geq 1, & a \geq 0, \quad a<b, & a^{\prime}=a, & b^{\prime}=b, & t m p^{\prime}=b, \\
\tau_{3}: & b \geq 1, \quad a \geq 0, \quad a>b, & a^{\prime}=a, & b^{\prime}=b, & t m p^{\prime}=b, & z^{\prime}=a \\
\tau_{4}: & b<z, & & a^{\prime}=a, & b^{\prime}=b, & t m p^{\prime}=t m p, \\
\tau_{5.3}: & b \geq z, \quad b \geq 0, \quad b=b^{\prime}, & a^{\prime}=t m p, & b^{\prime}=z, & t m p^{\prime}=t m p, & z^{\prime}=z
\end{array}
$$

With ranking function $a+b$ we can split $\tau_{5.3}$ into

$$
\tau_{5.4}: \tau_{5.3} \wedge a+b>a^{\prime}+b^{\prime} \quad \tau_{5.5}: \tau_{5.3} \wedge a+b=a^{\prime}+b^{\prime}
$$

Then $\tau_{5.4}$ can be removed and $\tau_{5.5}$ simplified: $\tau_{5.5}: \tau_{5.3} \wedge a=a^{\prime}$

Example

$\tau_{0}:$
$\tau_{2}: \quad b \geq 1, \quad a \geq 0, \quad a<b$,
$a^{\prime}=?, \quad b^{\prime}=?, \quad t m p^{\prime}=?, \quad z^{\prime}=?$
$\tau_{3}: \quad b \geq 1, \quad a \geq 0, \quad a>b$,
$a^{\prime}=a$,
$b^{\prime}=b, \quad t m p^{\prime}=b, \quad z^{\prime}=a$
$\tau_{4}: \quad b<z$,
$a^{\prime}=a$,
$b^{\prime}=b, \quad t m p^{\prime}=b$,
$z^{\prime}=a$
$\tau_{5.3}: \quad b \geq z, \quad b \geq 0, \quad b=b^{\prime}$,
$a^{\prime}=a$,
$b^{\prime}=b, \quad t m p^{\prime}=t m p$,
$z^{\prime}=z-b$
$a^{\prime}=t m p, \quad b^{\prime}=z, \quad t m p^{\prime}=t m p, \quad z^{\prime}=z$

Example

$$
\begin{array}{lllllll}
\tau_{0}: & & a^{\prime}=?, & b^{\prime}=?, & t m p^{\prime}=?, & z^{\prime}=? \\
\tau_{2}: & b \geq 1, & a \geq 0, & a<b, & a^{\prime}=a, & b^{\prime}=b, & t m p^{\prime}=b, \\
\tau_{3}: & b \geq 1, & a \geq 0, & z^{\prime}=b, & a^{\prime}=a, & b^{\prime}=b, & t m p^{\prime}=b, \\
\tau_{4}: & b<z, & & z^{\prime}=a \\
\tau_{5.5}: & b \geq z, & b \geq 0, \quad b=b^{\prime}, & a^{\prime}=t m p, & b^{\prime}=b, & t m p^{\prime}=t m p, & z^{\prime}=z-b \\
& a^{\prime}=a & & & & & \\
& & & &
\end{array}
$$

Using the information of the transitions we can infer that $a=b$ after $\tau_{5.5}$.

Example

$$
\begin{array}{lllllll}
\tau_{0}: & & a^{\prime}=?, & b^{\prime}=?, & t m p^{\prime}=?, & z^{\prime}=? \\
\tau_{2}: & b \geq 1, & a \geq 0, & a<b, & a^{\prime}=a, & b^{\prime}=b, & t m p^{\prime}=b, \\
\tau_{3}: & b \geq 1, & a \geq 0, & z^{\prime}=b, & a^{\prime}=a, & b^{\prime}=b, & t m p^{\prime}=b, \\
\tau_{4}: & b<z, & & z^{\prime}=a \\
\tau_{5.5}: & b \geq z, & b \geq 0, \quad b=b^{\prime}, & a^{\prime}=t m p, & b^{\prime}=b, & t m p^{\prime}=t m p, & z^{\prime}=z-b \\
& a^{\prime}=a & & & & & \\
& & & &
\end{array}
$$

Using the information of the transitions we can infer that $a=b$ after $\tau_{5.5}$. Then the connections between $\tau_{5.5}$ and τ_{2} or τ_{3} are unfeasible.

Example

$$
\begin{array}{ll}
\tau_{0}: \quad a^{\prime}=?, \quad b^{\prime}=?, \quad t m p^{\prime}=?, \quad z^{\prime}=? \\
\tau_{4}: \quad b<z, & a^{\prime}=a, \quad b^{\prime}=b, \quad t m p^{\prime}=t m p, \quad z^{\prime}=z-b
\end{array}
$$

Using the information of the transitions we can infer that $a=b$ after $\tau_{5.5}$. Then the connections between $\tau_{5.5}$ and τ_{2} or τ_{3} are unfeasible.

Example

$$
\begin{aligned}
& \tau_{0} \text { : } \\
& a^{\prime}=?, \quad b^{\prime}=?, \quad t m p^{\prime}=?, \quad z^{\prime}=? \\
& \tau_{4}: \quad b<z, \\
& a^{\prime}=a, \quad b^{\prime}=b, \quad t m p^{\prime}=t m p, \\
& z^{\prime}=z-b
\end{aligned}
$$

Example

$$
\begin{array}{llll}
\tau_{0}: & a^{\prime}=?, & b^{\prime}=?, & t m p^{\prime}=?,
\end{array} \quad z^{\prime}=?, ~=~ a^{\prime}=a, \quad b^{\prime}=b, \quad t m p^{\prime}=t m p, \quad z^{\prime}=z-b
$$

Solver generates ranking function $z-b$ for τ_{4}

Example

We are DONE!

Using Max-SMT to improve termination analysis

Advantages of the method:

- Using Max-SMT we can characterize different ways of progress depending on whether p_{1}, p_{2} or p_{3} are fulfilled.
- Using different weights we can encode which conditions are more important than others.

Implementation and experiments

- We have implemented these techniques
- The prototype reads C code
- Possible answers:
- YES
- NO (few cases)
- Unknown

Implementation and experiments

- Experiments:
- Benchmarks used in the Termination Competition for Java programs. 111 instances of iterative programs and 41 instances of recursive programs where termination follows from scalar information.
- Results are very promising:
- Our first implementation is already competitive compared with tools for Java programs that have been developed since many years ago.

Results from the TermComp full-run December 2011:

	Iterative			Recursive		
	YES	NO	MAYBE	YES	NO	MAYBE
AProVE	77	0	36	32	0	9
Costa	64	0	49	28	0	13
Julia	72	21	20	35	0	6
Max-SMT	76	22	18	32	0	9

Implementation and experiments

- Experiments:
- Programs made by students (can be ugly code). Obtained from an on-line learning environment (Jutge.org). 7924 instances coming from 12 different programming problems.
- Results are very promising:
- These programs can be considered challenging. Most often they are not the most elegant solution but a working one with many more conditional statements than necessary.

	YES	NO	MAYBE
Max-SMT	6139	15	1770

Implementation and experiments

- Experiments:
- Benchmarks taken from [Cook et al., CAV'13] coming from Windows device drivers, the Apache web server, the PostgreSQL server, integer approximations of numerical programs from a book on numerical recipes, integer approximations of benchmarks from LLBMC, ... 260 instances known to be terminating.
- Results are very promising:

	YES
Cooperating-T2	245
Terminator	177
T2	189
ARMC	138
AproVE	197
AproVE+Interproc	185
KITTeL	196
Max-SMT	197

Conclusions

- Approach to SMT(NA) that directly extends to Max-SMT(NA)
- Approach to termination analysis relying on Max-SMT
- Our prototype is already a competitive tool

Future work

There is a very long list...

- Improve invariant generation techniques.
(e.g., by combining with abstract interpretation)
- Improve termination of recursive functions.
- Termination in presence of other data types (arrays, etc.)
- Improve the NA solver combining Barcelogic solver with other methods that are much better proving unsatisfiability (like [Jovanovic and De Moura, IJCAR'12])

Thank you!

