Applications of
 Polynomial Invariants

Enric Rodríguez-Carbonell
Universitat Politècnica de Catalunya (UPC)
Barcelona

Joint work with Robert Clarisó, Jordi Cortadella (UPC)
Ashish Tiwari (SRI)
Overview of the Talk

- Petri Nets
 1. Introduction
 2. Modelling with Petri Nets
 3. Generating Invariants
 4. Related Work
 5. Conclusions

- Hybrid Systems
Introduction

- **Petri nets**: mathematical model for studying systems
 - concurrency
 - parallelism
 - non-determinism

- **Applications**:
 - Manufacturing and Task Planning
 - Communication Networks
 - Hardware Design
Overview of the Talk

- **Petri Nets**
 1. Introduction
 2. Modelling with Petri Nets
 3. Generating Invariants
 4. Related Work
 5. Conclusions

- **Hybrid Systems**
Modelling with Petri Nets
Preliminaries

- A **directed graph** is a graph where all edges are oriented.

- A **bipartite graph** is a graph where
 1. there are two kinds of nodes
 2. edges connect only nodes that belong to different kinds.
Modelling with Petri Nets
Definitions (1)

- A **Petri net** is a *bipartite directed* graph where:
 - Nodes partitioned into places (○) and transitions (⏐)
 - Arcs (edges) are labelled with a natural number

```
  p₁
  t₁  1  1
  1   3
  1
  t₂

  p₂

  p₃
```
Modelling with Petri Nets
Definitions (2)

- Petri nets can be *executed*: the execution shows the dynamics of the modelled system
- Tokens (●) are non-distinguishable objects located in places
- A marking maps a (natural) number of tokens to each place of the net
Modelling with Petri Nets
Dynamics (1)

- **Dynamics** of a Petri net described by
 - initial marking
 - firing of transitions

- A transition is **enabled** if there are \(\geq \) tokens in each **input place** than indicated in the arcs

- When a transition is enabled, it can **fire**:
 1. the number of tokens indicated in the arcs is **removed** from **input places**
 2. tokens are **generated** in **output places** according to arcs
The diagram shows a network with three processes: p_1, p_2, and p_3, and two transitions: t_1 and t_2. The network transitions according to the rules of the system. When t_1 fires, the state of the system changes as indicated by the arrows and labels on the diagram.
Modelling with Petri Nets
Dynamics (2)

- Enabling of transitions may also depend on inhibitor arcs
- An inhibitor arc is an arc connecting place p to transition t so that there cannot be tokens in p for t to be enabled

![Diagram of Petri Nets showing enabling and disabling of transitions](image.png)
Modelling with Petri Nets Dynamics (3)

- The **reachability set** are all markings reachable by successive firings of transitions from initial marking.
- **Deadlocks** are markings for which all transitions are disabled.

![Petri Net Diagram]

Given a Petri net with an initial marking:
- Invariant properties of reachable states?
- Any deadlocks?
Modelling with Petri Nets
Example: Automated Manufacturing System

- Four machines M_1, M_2, M_3, M_4
- Two robots R_1, R_2
- Two buffers B_1, B_2 with capacity 3
Overview of the Talk

- **Petri Nets**
 1. Introduction
 2. Modelling with Petri Nets
 3. Generating Invariants
 4. Related Work
 5. Conclusions

- **Hybrid Systems**
Generating Invariants
Translation into Loop Programs (1)

Given a Petri net with \(n \) places \(p_i \) and \(m \) transitions \(t_j \):

- Define variable \(x_i \) meaning number of tokens at place \(p_i \)
- Initial marking \(\mu_1, \ldots, \mu_n \) transformed into assignments
 \[
 x_1 := \mu_1; \cdots; x_m := \mu_m;
 \]
- Enabling of transition \(t_j \) with input place \(p_i \) and label \(c_i \):
 \[
 \cdots (x_i \neq 0) \land (x_i \neq 1) \land \cdots \land (x_i \neq c_i - 1) \cdots
 \]
- Enabling of transition \(t_j \) with inhibitor place \(p_i \): \(x_i = 0 \)
- Firing of transition \(t_j \)
 - with input place \(p_i \) and label \(c_i \): \(x_i := x_i - c_i; \)
 - with output place \(p_i \) and label \(c_i \): \(x_i := x_i + c_i; \)
Generating Invariants
Translation into Loop Programs (2)

\[
x_1 := 1; x_2 := 1; x_3 := 2;
\]
while ? do
\[
t_1: \text{if } x_1 \neq 0 \land x_2 \neq 0 \land x_3 \neq 0 \rightarrow \\
 x_1 := x_1 - 1; \\
 x_2 := x_2 + 2; \\
 x_3 := x_3 - 1;
\]
\[
t_2: [] x_2 \neq 0 \land x_3 \neq 0 \land x_3 \neq 1 \rightarrow \\
 x_1 := x_1 + 1; \\
 x_2 := x_2 - 1; \\
 x_3 := x_3 - 2;
\]
end if
end while
Generating Invariants
Translation into Loop Programs (3)

\[
x_1 := 1; x_2 := 1; x_3 := 2;
\]
while ? do
\[
t_1: \text{if } x_1 = 0 \land x_2 \neq 0 \land x_3 \neq 0 \rightarrow
\]
\[
x_1 := x_1 - 1;
\]
\[
x_2 := x_2 + 2;
\]
\[
x_3 := x_3 - 1;
\]
\[
t_2: \text{[} x_2 \neq 0 \land x_3 \neq 0 \land x_3 \neq 1 \rightarrow
\]
\[
x_1 := x_1 + 1;
\]
\[
x_2 := x_2 - 1;
\]
\[
x_3 := x_3 - 2;
\]
end if
end while
Generating Invariants
Applying Abstract Interpretation

- Abstract interpretation is applied to the loop program to obtain polynomial invariants of the Petri net
- Example:

DEADLOCK

INITIAL MARKING

DEADLOCK
Polynomial invariants obtained:

\[
Inv = \begin{cases}
5x_1 + 3x_2 + x_3 - 10 &= 0 \\
5x_2^2 + 2x_2 - 11x_3 &= 0 \\
x_2x_3 + 2x_3^2 - 5x_3 &= 0 \\
5x_2^2 - 17x_2 + 6x_3 &= 0
\end{cases}
\]

In this example invariants \textit{characterize} reachability set

\[
Inv \Leftrightarrow \begin{cases}
(x_1, x_2, x_3) &= (0, 3, 1) \\
(x_1, x_2, x_3) &= (1, 1, 2) \\
(x_1, x_2, x_3) &= (2, 0, 0)
\end{cases}
\]

In general \textit{overapproximation} of reachability set is obtained
Generating Invariants
Deadlock Analysis (1)

- Assume no inhibitor arcs
- Generate polynomial invariants Inv of the Petri net
- Codify disabling conditions as polynomial equations Dis

\[
\neg((x_i \neq 0) \land (x_i \neq 1) \land \cdots \land (x_i \neq c_i - 1)) \equiv \\
\equiv (x_i = 0) \lor (x_i - 1 = 0) \lor \cdots \lor (x_i - c_i + 1 = 0) \\
\equiv x_i(x_i - 1) \cdots (x_i - c_i + 1) = 0
\]

- If there is a deadlock, there is a solution to $Inv \cup Dis$
 \implies If the system $Inv \cup Dis$ is unfeasible, no deadlocks
Generating Invariants

Deadlock Analysis (2)

$$\text{Inv} = \begin{cases} 5x_1 + 3x_2 + x_3 - 10 &= 0 \\ 5x_2^2 + 2x_2 - 11x_3 &= 0 \\ x_2x_3 + 2x_3^2 - 5x_3 &= 0 \\ 5x_2^2 - 17x_2 + 6x_3 &= 0 \end{cases}$$

$$\text{Dis} = \begin{cases} x_1x_2x_3 &= 0 \\ x_3(x_3 - 1)x_2 &= 0 \end{cases}$$

$$\text{Inv} \cup \text{Dis} = \begin{cases} (x_1, x_2, x_3) &= (0, 3, 1) \\ \lor \\ (x_1, x_2, x_3) &= (2, 0, 0) \end{cases}$$
Generating Invariants
Deadlock Analysis (3)

$$Inv = \begin{cases} \frac{x_1}{x_2} + \frac{x_2}{x_1} = 1 \\ \frac{x_1}{x_2} = x_1 \end{cases}$$

$$Dis = \begin{cases} x_1 = 0 \\ x_2 = 0 \end{cases}$$

$$Inv \cup Dis = \begin{cases} 1 = 0 \end{cases}$$

UNFEASIBLE!!
Generating Invariants
Deadlock Analysis (4)

Automated Manufacturing System Revisited

- For $1 \leq p \leq 8$ Petri net is shown to be deadlock-free using polynomial invariants
- For $p \geq 9$ there are deadlocks
Overview of the Talk

- Petri Nets
 1. Introduction
 2. Modelling with Petri Nets
 3. Generating Invariants
 4. Related Work
 5. Conclusions

- Hybrid Systems
Related Work (1)

- (Sankaranarayanan et al., 2003): linear inequality invariants for Petri nets
 - **Advantages:** good to express boundedness
 - **Disadvantages:** bad at expressing disjunctions; but with polynomial equalities:
 \[x_1 = 0 \lor x_2 = 1 \iff x_1(x_2 - 1) = 0 \]

- (Müller-Olm & Seidl, 2004): polynomial equality invariants in programs with just disequality conditions
 - **Disadvantages:** inhibitor arcs cannot be considered
Related Work (2)

Alternating Bit Protocol

- Linear inequality analysis is too coarse
- There are inhibitor arcs
- Polynomial invariants prove the protocol correct
Overview of the Talk

- **Petri Nets**
 1. Introduction
 2. Modelling with Petri Nets
 3. Generating Invariants
 4. Related Work
 5. Conclusions

- **Hybrid Systems**
Conclusions

- Generated invariants for Petri nets using polynomial invariant inference
- Applied polynomial invariants to show absence of deadlocks
- Shown several non-trivial examples that can be analyzed
Overview of the Talk

- Petri Nets
- Hybrid Systems
 1. Introduction
 2. Preliminaries
 3. Invariants of Linear Systems
 4. Invariants of Hybrid Systems
 5. Related Work
 6. Conclusions
Introduction

- **Hybrid Systems**: discrete systems embedded in analog environments

- **Examples:**
 - A **thermostat** that heats/cools depending on the temperature in the room
 - A **robot controller** that changes the direction of movement if the robot is too close to a wall.
 - A **biochemical reaction** whose behaviour depends on the concentration of the substances in the environment.
Introduction (2)

- **Applications:**
 - Automotive Control
 - Avionics
 - Transportation Networks
 - Manufacturing
 - Robotics
 - Analysis of Biological Processes

Need for verification of safety properties!
Overview of the Talk

- Petri Nets
- Hybrid Systems
 1. Introduction
 2. Preliminaries
 3. Invariants of Linear Systems
 4. Invariants of Hybrid Systems
 5. Related Work
 6. Conclusions
A hybrid system is a finite automaton with real-valued variables that change continuously according to a system of differential equations at each location of the automaton.

Restrict to linear differential equations at locations.
\[\dot{x} = v_x, \quad \dot{y} = v_y, \quad \dot{v}_x = -\frac{v_y}{2}, \quad \dot{v}_y = \frac{v_x}{2} \]

\[x = 0 \rightarrow v_x := -v_x \]
Preliminaries (2)

- **A computation** is a sequence of states (discrete location, valuation of variables)

 \[(l_0, x_0), (l_1, x_1), (l_2, x_2), \ldots\]

 such that

 1. **Initial state** \((l_0, x_0)\) satisfies the initial condition

 2. For each **consecutive pair** of states \((l_i, x_i), (l_{i+1}, x_{i+1})\):

 - **Discrete transition**: there is a transition of the automaton \((l_i, l_{i+1}, \rho)\) such that \((x_i, x_{i+1}) \models \rho\)

 or

 - **Continuous evolution**: there is a trajectory going from \(x_i\) to \(x_{i+1}\) along the flow determined by the differential equation \(\dot{x} = Ax + B\) at location \(l_i = l_{i+1}\)
Preliminaries (3)

- A state is reachable if there exists a computation where it appears.

- **Goal:** generate invariant polynomial equalities
 - We know how to deal with discrete systems.
 - How to handle continuous evolution?

 → computing polynomial invariants of linear systems of differential equations.
Overview of the Talk

- Petri Nets
- Hybrid Systems
 1. Introduction
 2. Preliminaries
 3. Invariants of Linear Systems
 4. Invariants of Hybrid Systems
 5. Related Work
 6. Conclusions
Invariants of Linear Systems

Problem

Given a system $\dot{x} = Ax + B$ and a set of initial values $Init$, find polynomials p evaluating to 0 at reachable points:

$$\forall x^* \in Init, \quad \forall t \geq 0 \quad p(\Phi(x^*, t)) = 0$$

where $\Phi(x^*, t)$ is the flow solution to $\dot{x} = Ax + B$ with initial condition x^*
InvariantsofLinearSystems

Form of the Flow

Solution to \(\dot{x} = Ax + B \) with initial condition \(x^* \)

\[
\Phi(x^*, t) = e^{At}x^* + e^{At}(\int_0^t e^{-A\tau}d\tau) B
\]

Can be expressed as polynomials in \(t, e^{\pm at}, \cos(bt), \sin(bt) \), where \(\lambda = a + bi \) are eigenvalues of matrix \(A \).

\[
\begin{pmatrix}
\dot{x} \\
\dot{y} \\
\dot{v}_x \\
\dot{v}_y
\end{pmatrix}
= \begin{pmatrix}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & -1/2 \\
0 & 0 & 1/2 & 0
\end{pmatrix}
\begin{pmatrix}
x \\
y \\
v_x \\
v_y
\end{pmatrix}
\]

\[
\begin{align*}
x &= x^* + 2\sin(t/2) v_x^* + (2\cos(t/2) - 2) v_y^* \\
y &= y^* + (-2\cos(t/2) + 2) v_x^* + 2\sin(t/2) v_y^* \\
v_x &= \cos(t/2) v_x^* - \sin(t/2) v_y^* \\
v_y &= \sin(t/2) v_x^* + \cos(t/2) v_y^*
\end{align*}
\]
Invariants of Linear Systems
Elimination of Time (1)

- **Idea:** eliminate terms depending on t from the flow

- **Simple case:**

eigenvalues of matrix A have real and imaginary parts in \mathbb{Q}

 - $\exists p \in \mathbb{Q}$ such that for all exponential terms e^{at}:

 $$e^{at} = (e^{pt})^c$$

 for a certain $c \in \mathbb{Z}$

 If we introduce new variables $u = e^{pt}$, $v = e^{-pt}$, then either $e^{at} = u^{|c|}$ or $e^{at} = v^{|c|}$

 - For trigonometric terms similarly for $q \in \mathbb{Q}$ and new variables $w = \cos(qt)$, $z = \sin(qt)$
Invariants of Linear Systems
Elimination of Time (2)

- Eliminate auxiliary variables using \(uv = 1 \) and \(w^2 + z^2 = 1 \) by means of Gröbner bases
- Use elimination term ordering with the auxiliary variables the biggest ones

FLOW

\[
\begin{align*}
x &= x^* + 2zv_x^* + (2w - 2)v_y^* \\
y &= y^* + (-2w + 2)v_x^* + 2zv_y^* \\
v_x &= wv_x^* - zv_y^* \\
v_y &= zv_x^* + wv_y^*
\end{align*}
\]

INITIAL CONDITIONS

\[
\begin{align*}
v_x^* &= 2 \\
v_y^* &= -2
\end{align*}
\]

AUXILIARY EQUATIONS

\[
\begin{align*}
w^2 + z^2 &= 1 \\
v_x^2 + v_y^2 &= 8
\end{align*}
\]

(conservation of energy)
Invariants of Linear Systems

Elimination of Time (3)

- **General case:** similarly by computing \mathbb{Q}-bases of the real and imaginary parts of eigenvalues of matrix A
 - **Exponential terms:** new variables $x_1, y_1, \ldots, x_k, y_k$ satisfying $x_i y_i = 1$
 - **Trigonometric terms:** new variables $w_1, z_1, \ldots, w_l, z_l$ satisfying $w_j^2 + z_j^2 = 1$
- **All** polynomial invariants of linear system are generated
Overview of the Talk

- Petri Nets
- Hybrid Systems
 1. Introduction
 2. Preliminaries
 3. Invariants of Linear Systems
 4. Invariants of Hybrid Systems
 5. Related Work
 6. Conclusions
InvariantsofHybridSystems

AbstractSemanticsofContinuousEvolution

■ System of linear differential equations \(\dot{x} := Ax + B \) with flow equations \(\Phi_1, \ldots, \Phi_n \) in variables \(x, x^*, u_i, v_i, w_j, z_j \)

■ Input ideal: \(I \)

■ Output ideal:

\[
\langle I(x \leftarrow x^*), \Phi_1, ..., \Phi_n, u_i v_i - 1, w_j^2 + z_j^2 - 1 \rangle \cap \mathbb{R}[x]
\]
Invariants of Hybrid Systems
Examples (1)

Variable b counts the number of bounces against wall

\[v_x = 2 \quad v_y = -2 \quad x = y = b = 0 \]

INITIAL CONDITIONS

RIGHT
- \[\dot{x} = v_x \quad \dot{y} = v_y \quad \dot{v}_x = v_y = 0 \quad \dot{b} = 0 \]
- \[x = d \rightarrow \text{skip} \]

MAGNETIC
- \[\dot{x} = v_x \quad \dot{y} = v_y \quad \dot{v}_x = -v_y / 2 \quad \dot{v}_y = v_x / 2 \quad \dot{b} = 0 \]
- \[x = d \rightarrow \text{skip} \]

LEFT
- \[\dot{x} = v_x \quad \dot{y} = v_y \quad \dot{v}_x = v_y = 0 \quad \dot{b} = 0 \]
- \[x = 0 \rightarrow v_x := -v_x \ ; \ b := b + 1 \]

RIGHT \[v_y = -2 \land v_x = 2 \land 2db - 8b + y + x = 0 \]

MAGNETIC \[x - 2v_y - d = 4 \land v_x^2 + v_y^2 = 8 \land 2v_x + y + 2db - 8b + d = 4 \]

LEFT \[v_y = -2 \land v_x = -2 \land 2db - 8b + y - x = 8 \]
Invariants of Hybrid Systems
Examples (2)

Variable t counts the time at current location
Variable y counts the total time elapsed
Variable z counts the time the heater has been on

Safety requirement: heater on $< 40\%$ of the first 60 seconds
proved using polynomial invariants

\[
\begin{align*}
\text{ON}_2 & \quad \rightarrow \quad y = t \land z = t \\
\text{OFF} & \quad \rightarrow \quad -a^2 + ab + az + bz - by + bt = 0 \\
\text{ON}_1 & \quad \rightarrow \quad a^2 - 2ab - az - bz + by + at = 0
\end{align*}
\]
Overview of the Talk

- Petri Nets
- Hybrid Systems
 1. Introduction
 2. Preliminaries
 3. Invariants of Linear Systems
 4. Invariants of Hybrid Systems
 5. Related Work
 6. Conclusions
Related Work (1)

- (Sankaranarayanan & Sipma & Manna, 2004): discovery of polynomial equality invariants using constrained-based invariant generation and heuristics

- Advantages:
 - Polynomial vector fields allowed in differential equations

- Disadvantages:
 - No completeness result
Related Work (2)

- (Laferriere & Pappas & Yovine, 1999): computation of exact reachability set using polynomial inequalities and quantifier elimination

- Advantages:
 - Polynomial inequalities more expressive than equalities: exact characterization of reachability set

- Disadvantages:
 - More restricted linear systems: eigenvalues in \mathbb{Q} or $i \cdot \mathbb{Q}$
 - No extension to hybrid systems
 - Quantifier elimination more costly than Gröbner bases
Overview of the Talk

- Petri Nets
- Hybrid Systems
 1. Introduction
 2. Preliminaries
 3. Invariants of Linear Systems
 4. Invariants of Hybrid Systems
 5. Related Work
 6. Conclusions
Conclusions

- Method for finding all polynomial equality invariants of general linear systems:
 1. Solve differential equations
 2. Eliminate time with Gröbner bases

- Auxiliary variables
 \[u_i \leftrightarrow e^{pt}, \quad w_i \leftrightarrow \cos(qt) \]
 \[v_i \leftrightarrow e^{-pt}, \quad z_i \leftrightarrow \sin(qt) \]

- Auxiliary equations:
 \[u_i v_i = 1, \quad w_i^2 + z_i^2 = 1 \]

- Extension to hybrid systems using the abstract interpretation framework