Generation of

Polynomial Equality Invariants

by Abstract Interpretation

Enric Rodríguez-Carbonell
Universitat Politècnica de Catalunya (UPC)
Barcelona
Joint work with Deepak Kapur (UNM)

Introduction Why Care about Invariants ? (1)

- It is necessary to verify safety properties of systems:
no program execution reaches an erroneous state (state $=$ values of variables)
- For instance in:
- Imperative programs
- Reactive systems
- Concurrent systems
- ...

Introduction Why Care about Invariants ? (2)

- Systems often have an infinite number of states \rightarrow methods for finite-state systems (e.g. model checking) suffer from the state explosion problem
- Exact reachable set of a system is not computable generally
- Solution: overapproximate reachable states \rightarrow

INVARIANTS: properties that hold for all states

Introduction
 Why Care about Invariants ? (3)

System never reaches a bad state!!

Introduction Abstract Interpretation (1)

Abstract interpretation allows to compute invariants:

- intervals (Cousot \& Cousot 1976, Harrison 1977)

$$
x \in[0,1] \wedge y \in[0, \infty)
$$

- congruences (Granger 1991)

$$
x \equiv y \bmod (2)
$$

- linear inequalities (Cousot \& Halbwachs 1978, Colón \& Sankaranarayanan \& Sipma 2003)

$$
x+2 y-3 z \leq 3
$$

- octagonal inequalities (Mine 2001)

$$
x-y \leq 3
$$

- octahedral inequalities (Clariso \& Cortadella 2004)

$$
x-y+z \leq 2
$$

- polynomial equalities (Müller-Olm \& Seidl 2004, Sankaranarayanan \& Sipma\& Manna 2004, Colón 2004, Rodríguez-Carbonell \& Kapur 2004)

$$
x=y^{2}
$$

Introduction
 Abstract Interpretation (2)

Concrete variable values overapproximated by abstract values

Introduction Abstract Interpretation (3)

- Program semantics expressed in terms of abstract values
- Operations on states that must be abstracted:

Projection
assignments

Union

merging in loops and conditionals

Intersection

guards in loops and conditionals

Introduction

Abstract Interpretation (4)

- Invariants are generated by symbolic execution of the program using the abstract semantics
- Termination is not guaranteeed in general:
\longrightarrow union in loops must be extrapolated

- Widening operator introduced to ensure termination

Related Work Overview Polynomial Invariants

Work	Restrictions	Equality Conditions	Disequality Conditions	Complete
MOS, POPL'04	bounded degree	no	no	yes
SSM, POPL'04	prefixed form	yes	no	no
MOS, IPL'04	prefixed form	no	yes	yes
RCK, ISSAC'04	no restriction	no	no	yes
COL, SAS'04	bounded degree	yes	no	no
RCK, SAS'04	bounded degree	yes	yes	yes*

Overview of the Talk

1. Overview of the Method
2. Ideals of Polynomials
3. Abstract Semantics
4. Widening Operator
5. Examples
6. Alternative Solution
7. Future Work \& Conclusions

Overview of the Method (1)

- Finds polynomial equality invariants
- States abstracted to ideal of polynomials evaluating to 0
- Programming language admits
- Polynomial assignments: variable $:=$ polynomial
- Polynomial equalities and disequalities in conditions:

$$
\text { polynomial }=0 \quad, \quad \text { polynomial } \neq 0
$$

- Parametric widening ∇_{d}
- If conditions are ignored and assignments are linear, finds all polynomial invariants of degree $\leq d$

Overview of the Method (2)

- Our implementation has been successfully applied to a number of programs
- Ideals of polynomials represented by finite bases of generators: Gröbner bases
- There are several tools manipulating ideals, Gröbner bases
- Our implementation uses Macaulay 2

Overview of the Talk

1. Overview of the Method
2. Ideals of Polynomials
3. Abstract Semantics
4. Widening Operator
5. Examples
6. Alternative Solution
7. Future Work \& Conclusions

Ideals of Polynomials Preliminaries (1)

- Intuitively, an ideal is a set of polynomials and all their consequences
- An ideal is a set of polynomials I such that

1. $0 \in I$
2. If $p, q \in I$, then $p+q \in I$
3. If $p \in I$ and q any polynomial, $p q \in I$

Ideals of Polynomials Preliminaries (2)

- Example 1: polynomials evaluating to 0 on a set of points S

1. 0 evaluates to 0 everywhere

$$
\forall \omega \in S, \quad \mathrm{O}(\omega)=0
$$

2. If p, q evaluate to 0 on S, then $p+q$ evaluates to 0 on S

$$
\forall \omega \in S, \quad p(\omega)=q(\omega)=0 \Longrightarrow p(\omega)+q(\omega)=0
$$

3. If p evaluates to 0 on S, then $p q$ evaluates to 0 on S

$$
\forall \omega \in S, \quad p(\omega)=0 \Longrightarrow p(\omega) \cdot q(\omega)=0
$$

Ideals of Polynomials Preliminaries (3)

- Example 2: multiples of a polynomial $p,\langle p\rangle$

1. $0=0 \cdot p \in\langle p\rangle$
2. $q_{1} \cdot p+q_{2} \cdot p=\left(q_{1}+q_{2}\right) p \in\langle p\rangle$
3. If q_{2} is any polynomial, then $q_{2} \cdot q_{1} \cdot p \in\langle p\rangle$

- In general, ideal generated by p_{1}, \ldots, p_{k} :

$$
\left\langle p_{1}, \ldots, p_{k}\right\rangle=\left\{\sum_{j=1}^{k} q_{j} \cdot p_{j} \text { for arbitrary } q_{j}\right\}
$$

- Hilbert's basis theorem: all ideals are finitely generated
\longrightarrow finite representation for ideals

Ideals of Polynomials Operations with Ideals

- Several operations available. Given ideals I, J in the variables x_{1}, \ldots, x_{n} :
- projection: $I \cap \mathbb{C}\left[x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right]$
- addition: $I+J=\{p+q \mid p \in I, q \in J\}$
- quotient: $I: J=\{p \mid \forall q \in J, p \cdot q \in I\}$
- intersection: $I \cap J$
- All operations implemented using Gröbner bases
- These operations will be used when defining abstract semantics

Ideals of Polynomials Ideals as Abstract Values (1)

- States abstracted to ideal of polynomials evaluating to 0
- Abstraction function I

$$
\begin{aligned}
I:\{\text { sets of states }\} & \longrightarrow \\
S & \{\text { ideals }\} \\
S & \{\text { polynomials evaluating } \\
& \text { to } 0 \text { on } S\}
\end{aligned}
$$

- Concretization function V

$$
\begin{aligned}
V:\{\text { ideals }\} & \longrightarrow\{\text { sets of states }\} \\
I & \longmapsto \text { zeroes of } I\}
\end{aligned}
$$

Ideals of Polynomials

 Ideals as Abstract Values (2)

Overview of the Talk

1. Overview of the Method
2. Ideals of Polynomials
3. Abstract Semantics
4. Widening Operator
5. Examples
6. Alternative Solution
7. Future Work \& Conclusions

Abstract Semantics Programming Model (1)

Programs \equiv finite connected flowcharts

- Entry node
- Assignment nodes: polynomial assignments
- Test nodes: polynomial dis/equalities
- Simple/loop junction nodes
- Exit nodes

Abstract Semantics Programming Model (2)

Abstract Semantics Assignments (1)

- Assignment node labelled with $x_{i}:=f\left(x_{1}, \ldots, x_{n}\right)$
- Input ideal: $\left\langle p_{1}, \ldots, p_{k}\right\rangle$
- Output ideal:
- Want to express in terms of ideals

$$
\exists x_{i}^{\prime}\left(x_{i}=f\left(x_{i} \leftarrow x_{i}^{\prime}\right) \wedge p_{1}\left(x_{i} \leftarrow x_{i}^{\prime}\right)=0 \wedge \cdots \wedge p_{k}\left(x_{i} \leftarrow x_{i}^{\prime}\right)=0\right)
$$

where $x_{i}^{\prime} \equiv$ previous value of x_{i} before the assignment

- Solution: projection
- eliminate x_{i}^{\prime} from the ideal

$$
\left\langle x_{i}-f\left(x_{i} \leftarrow x_{i}^{\prime}\right), p_{1}\left(x_{i} \leftarrow x_{i}^{\prime}\right), \ldots, p_{k}\left(x_{i} \leftarrow x_{i}^{\prime}\right)\right\rangle
$$

Abstract Semantics Assignments (2)

Example:

- Assignment $x:=x+1$
- Input ideal: $\langle x\rangle \longleftrightarrow x=0$
- Output ideal:
- Have to eliminate x^{\prime} from the ideal

$$
\left\langle x-x^{\prime}-1, x^{\prime}\right\rangle
$$

- Polynomials of $\left\langle x-x^{\prime}-1, x^{\prime}\right\rangle$ depending only on x :

$$
\langle x-1\rangle \longleftrightarrow x=1
$$

Abstract Semantics Tests: Polynomial Equalities

- Test node labelled with $q=0$
- Input ideal: $\left\langle p_{1}, \ldots, p_{k}\right\rangle$
- Output ideal: (true path)
- Want to express in terms of ideals

$$
p_{1}=0 \wedge \cdots \wedge p_{k}=0 \wedge q=0
$$

- Solution: addition
- Add q to list of generators of input ideal
- Take maximal set of polynomials with same zeroes

$$
\mathbf{I}\left(\mathbf{V}\left(p_{1}, \ldots, p_{k}, q\right)\right)
$$

Abstract Semantics Tests: Polynomial Disequalities

- Test node labelled with $q \neq 0$
- Input ideal: $\left\langle p_{1}, \ldots, p_{k}\right\rangle$
- Output ideal: (true path)
- Want to express in terms of ideals

$$
p_{1}=0 \wedge \cdots \wedge p_{k}=0 \wedge q \neq 0
$$

- Solution: quotient
- quotient ideal $\left\langle p_{1}, \ldots, p_{k}\right\rangle:\langle q\rangle \equiv$ maximal ideal of polynomials evaluating to 0 on zeroes of $\left\langle p_{1}, \ldots, p_{k}\right\rangle \backslash$ zeroes of $\langle q\rangle$

Abstract Semantics Tests

Example:

- Test node labelled with $x=0$
- Input ideal: $\langle x y\rangle \longleftrightarrow x=0 \vee y=0$
- Output ideal: (true path)

$$
\mathbf{I}(\mathbf{V}(\langle x y, x\rangle))=\langle x\rangle \longleftrightarrow x=0
$$

- Output ideal: (false path)

$$
\langle x y\rangle:\langle x\rangle=\langle y\rangle \longleftrightarrow y=0
$$

Abstract Semantics Simple Junction Nodes (1)

- Input ideals (one for each path):

Path 1: $\left\langle p_{11}, \ldots, p_{1 k_{1}}\right\rangle$
Path $l:\left\langle p_{l 1}, \ldots, p_{l k_{l}}\right\rangle$

- Output ideal:
- Want to express in terms of ideals

$$
\bigvee_{i=1}^{l} \bigwedge_{j=1}^{k_{i}} p_{i j}=0
$$

- Solution: intersection
- Take common polynomials for all paths \equiv Compute intersection of all input ideals

$$
\bigcap_{i=1}^{l}\left\langle p_{i 1}, \ldots, p_{i k_{i}}\right\rangle
$$

Abstract Semantics Simple Junction Nodes (2)

Example:

- Input ideal 1st path: $\langle x\rangle \longleftrightarrow x=0$
- Input ideal 2nd path: $\langle x-1\rangle \longleftrightarrow x=1$
- Input ideal 3rd path: $\langle x-2\rangle \longleftrightarrow x=2$
- Output ideal:

$$
\begin{gathered}
\langle x\rangle \cap\langle x-1\rangle \cap\langle x-2\rangle=\langle x(x-1)(x-2)\rangle \\
\longleftrightarrow x=0 \vee x=1 \vee x=2
\end{gathered}
$$

Degree increases !!

Abstract Semantics Loop Junction Nodes (1)

- Input ideals: J_{1}, \cdots, J_{l}
- Output ideal:
- As with simple junction nodes:

$$
\bigcap_{i=1}^{l} J_{i}
$$

- Problem: Non-termination of symbolic execution!
- Solution: WIDENING \longrightarrow bounding degree

Abstract Semantics Loop Junction Nodes (2)

Example:
$x:=0$;
while ? do

$$
x:=x+1
$$

end while
Generating loop invariant by symbolic execution:

- 1st iteration: $\langle x\rangle \longleftrightarrow x=0$
- 2nd iteration: $\langle x(x-1)\rangle \longleftrightarrow x=0 \vee x=1$
- 3rd iteration: $\langle x(x-1)(x-2)\rangle \longleftrightarrow x=0 \vee x=1 \vee x=2$

Unless we bound the degree, the procedure does not terminate

Overview of the Talk

1. Overview of the Method
2. Ideals of Polynomials
3. Abstract Semantics
4. Widening Operator
5. Examples
6. Alternative Solution
7. Future Work \& Conclusions

Widening Operator Definition

- Parametric widening $I \nabla_{d} J$
- Based on taking polynomials of $I \cap J$ of degree $\leq d$
- Definition uses Gröbner bases

$$
I \nabla_{d} J:=\mathbf{I V}(\{p \in G B(I \cap J) \mid \operatorname{deg}(p) \leq d\})
$$

- Termination guaranteed since $\{p \in I \mid \operatorname{deg}(p) \leq d\}$ are vector spaces of finite dimension

Widening Operator Loop Junction Nodes

- Input ideals: J_{1}, \cdots, J_{l}
- Previously computed output ideal: I
- Output ideal:

$$
I \nabla_{d}\left(\bigcap_{i=1}^{l} J_{i}\right)
$$

Widening Operator A Completeness Result

- THEOREM. If conditions are ignored and assignments are linear, procedure computes all invariants of degree $\leq d$
- Key ideas of the proof:
- $I \nabla_{d} J$ retains all polynomials of degree d of $I \cap J$
- Graded term orderings used in Gröbner bases: glex, grevlex
- Conditions must be ignored: the set of all linear invariants in programs with linear equality conditions is not computable

Overview of the Talk

1. Overview of the Method
2. Ideals of Polynomials
3. Abstract Semantics
4. Widening Operator
5. Examples
6. Alternative Solution
7. Future Work \& Conclusions

$$
\begin{aligned}
& F_{0}(I)=\langle 0\rangle \\
& F_{1}(I)=\left(\left\langle x_{1}\right\rangle+\left\langle I_{0}\left(x_{1} \leftarrow x_{1}^{\prime}\right)\right\rangle\right) \cap \mathbb{C}\left[x_{1}, x_{2}, x_{3}\right] \\
& F_{2}(I)=\left(\left\langle x_{2}\right\rangle+\left\langle I_{1}\left(x_{2} \leftarrow x_{2}^{\prime}\right)\right\rangle\right) \cap \mathbb{C}\left[x_{1}, x_{2}, x_{3}\right] \\
& F_{3}(I)=I_{3} \nabla_{2}\left(I_{2} \cap I_{6}\right) \\
& F_{4}(I)=\left\langle I_{3}\right\rangle:\left\langle x_{2}-x_{3}\right\rangle \\
& F_{5}(I)=I_{4}\left(x_{1} \leftarrow x_{1}-2 x_{2}-1\right) \\
& F_{6}(I)=I_{5}\left(x_{2} \leftarrow x_{2}-1\right) \\
& F_{7}(I)=\mathbf{I}\left(\mathbf{V}\left(I_{3}+\left\langle x_{2}-x_{3}\right\rangle\right)\right)
\end{aligned}
$$

ABSTRACT PROGRAM SEMANTICS

$$
\begin{array}{ll}
I_{0}^{(0)}=\langle 1\rangle & I_{0}^{(1)}=\langle 0\rangle \\
I_{1}^{(0)}=\langle 1\rangle & I_{1}^{(1)}=\left(\left\langle x_{1}\right\rangle+\langle 0\rangle\right) \cap \mathbb{C}\left[x_{1}, x_{2}, x_{3}\right]=\left\langle x_{1}\right\rangle \\
I_{2}^{(0)}=\langle 1\rangle & I_{2}^{(1)}=\left(\left\langle x_{2}\right\rangle+\left\langle x_{1}\right\rangle\right) \cap \mathbb{C}\left[x_{1}, x_{2}, x_{3}\right]=\left\langle x_{1}, x_{2}\right\rangle \\
I_{3}^{(0)}=\langle 1\rangle & I_{3}^{(1)}=I_{3}^{(0)} \nabla_{2}\left(I_{2}^{(1)} \cap I_{6}^{(0)}\right)=I_{2}^{(1)}=\left\langle x_{1}, x_{2}\right\rangle \\
I_{4}^{(0)}=\langle 1\rangle & I_{4}^{(1)}=I_{3}^{(1)}:\left\langle x_{2}-x_{3}\right\rangle=\left\langle x_{1}, x_{2}\right\rangle \\
I_{5}^{(0)}=\langle 1\rangle & I_{5}^{(1)}=I_{4}^{(1)}\left(x_{1} \leftarrow x_{1}-2 x_{2}-1\right)=\left\langle x_{1}-2 x_{2}-1, x_{2}\right\rangle \\
I_{6}^{(0)}=\langle 1\rangle & I_{6}^{(1)}=I_{5}^{(1)}\left(x_{2} \leftarrow x_{2}-1\right)=\left\langle x_{1}-2 x_{2}+1, x_{2}-1\right\rangle \\
I_{7}^{(0)}=\langle 1\rangle & I_{7}^{(1)}=\mathbf{I}\left(\mathbf{V}\left(\left\langle x_{2}-x_{3}\right\rangle+I_{3}^{(1)}\right)\right)=\left\langle x_{1}, x_{2}, x_{3}\right\rangle
\end{array}
$$

$I_{0}^{(2)}=\langle 0\rangle$
$I_{1}^{(2)}=\left\langle x_{1}\right\rangle$
$I_{2}^{(2)}=\left\langle x_{1}, x_{2}\right\rangle$
$I_{3}^{(2)}=\left\langle x_{1}-x_{2}^{2}, x_{2}\left(x_{2}-1\right)\right\rangle$
$I_{4}^{(2)}=\left\langle x_{1}-x_{2}^{2}, x_{2}\left(x_{2}-1\right)\right\rangle$
$I_{5}^{(2)}=\left\langle x_{1}-x_{2}^{2}-2 x_{2}-1, x_{2}\left(x_{2}-1\right)\right\rangle$
$I_{6}^{(2)}=\left\langle x_{1}-x_{2}^{2},\left(x_{2}-1\right)\left(x_{2}-2\right)\right\rangle$
$I_{7}^{(2)}=\left\langle x_{1}-x_{2}^{2}, x_{2}\left(x_{2}-1\right), x_{2}-x_{3}\right\rangle$

In 6 iterations we get the loop invariant

$$
x_{1}=x_{2}^{2}
$$

Examples
 Table

PROGRAM	COMPUTING	d	VARS	IF'S	LOOPS	LOOP DEPTH	TIME
cohencu	Cube	3	5	0	1	1	2.45
dershowitz	real division	2	7	1	1	1	1.71
divbin	integer division	2	5	1	2	1	1.91
euclidex1	Bezout's coefs	2	10	0	2	2	7.15
euclidex2	Bezout's coefs	2	8	1	1	1	3.69
fermat	divisor	2	5	0	3	2	1.55
prod4br	product	3	6	3	1	1	8.49
freire1	integer sqrt	2	3	0	1	1	0.75
hard	integer division	2	6	1	2	1	2.19
Icm2	Icm	2	6	1	1	1	2.03
readers	simulation	2	6	3	1	1	4.15

Overview of the Talk

1. Overview of the Method
2. Ideals of Polynomials
3. Abstract Semantics
4. Widening Operator
5. Examples
6. Alternative Solution
7. Future Work \& Conclusions

Alternative Solution (1)

- Alternative approach (Colón, SAS'04)
- Based on approximating ideals using degree bound d
- Key observation: given an ideal I, polynomials in I of degree $\leq d$ form a vector space of finite dimension
\rightarrow use linear algebra instead of Gröbner bases
- A pseudo-ideal is a set P of polynomials of degree $\leq d$ such that

1. $0 \in P$
2. If $p, q \in P$, then $p+q \in P$
3. If $p \in P, q$ any polynomial and $\operatorname{deg}(p q) \leq d$, then $p q \in P$

- Pseudo-ideals are vector spaces of finite dimension

Alternative Solution (2)

- Operations on ideals approximated by operations on vector spaces
- Advantages
- Easier to implement
- Better complexity bounds
- Disadvantages
- Loss of precision
- Dimension of vector spaces increments exponentially with degree
- Combination of both techniques would be better ?

Overview of the Talk

1. Overview of the Method
2. Ideals of Polynomials
3. Abstract Semantics
4. Widening Operator
5. Examples
6. Alternative Solution
7. Future Work \& Conclusions

Future Work

- Design widening operators not bounding degree
- Integrate with linear inequalities
- Study abstract domains for polynomial inequalities
- Apply to other classes of programs

Conclusions

- Method for generating polynomial equality invariants
- Based on abstract interpretation
- Programming language admits
- Polynomial assignments
- Polynomial dis/equalities in conditions
- If conditions are ignored and assignments are linear, finds all polynomial invariants of degree $\leq d$
- Implemented using Macaulay 2
- Successfully applied to many programs

