
Generation of

Polynomial Equality Invariants

by Abstract Interpretation

Enric Rodŕıguez-Carbonell

Universitat Politècnica de Catalunya (UPC)

Barcelona

Joint work with Deepak Kapur (UNM)

1

Introduction

Why Care about Invariants ? (1)

It is necessary to verify safety properties of systems:

no program execution reaches an erroneous state

(state = values of variables)

For instance in:

• Imperative programs

• Reactive systems

• Concurrent systems

• ...

2

Introduction

Why Care about Invariants ? (2)

Systems often have an infinite number of states

→ methods for finite-state systems (e.g. model checking)

suffer from the state explosion problem

Exact reachable set of a system is not computable generally

Solution: overapproximate reachable states →

INVARIANTS: properties that hold for all states

3

Introduction

Why Care about Invariants ? (3)

 BAD
STATES

System never reaches
 a bad state !!

INVARIANT

SYSTEM
STATES

4

Introduction

Abstract Interpretation (1)

Abstract interpretation allows to compute invariants:

intervals (Cousot & Cousot 1976, Harrison 1977)

x ∈ [0,1] ∧ y ∈ [0,∞)

congruences (Granger 1991)

x ≡ y mod(2)

linear inequalities (Cousot & Halbwachs 1978, Colón &

Sankaranarayanan & Sipma 2003)

x + 2y − 3z ≤ 3

5

octagonal inequalities (Mine 2001)

x− y ≤ 3

octahedral inequalities (Clariso & Cortadella 2004)

x− y + z ≤ 2

...

polynomial equalities (Müller-Olm & Seidl 2004,

Sankaranarayanan & Sipma& Manna 2004, Colón 2004,

Rodŕıguez-Carbonell & Kapur 2004)

x = y2

6

Introduction

Abstract Interpretation (2)

Concrete variable values overapproximated by abstract values

Inequalities
Linear Polynomial

Equalities
Intervals

System
States

7

Introduction
Abstract Interpretation (3)

Program semantics expressed in terms of abstract values

Operations on states that must be abstracted:

guards in loops
and conditionals

merging in loops
and conditionals

Projection Union Intersection

assignments

8

Introduction

Abstract Interpretation (4)

Invariants are generated by symbolic execution of the

program using the abstract semantics

Termination is not guaranteeed in general:

−→ union in loops must be extrapolated

Widening operator introduced to ensure termination

9

Related Work

Overview Polynomial Invariants

Work Restrictions Equality Disequality Complete
Conditions Conditions

MOS, POPL’04 bounded degree no no yes
SSM, POPL’04 prefixed form yes no no
MOS, IPL’04 prefixed form no yes yes
RCK, ISSAC’04 no restriction no no yes
COL, SAS’04 bounded degree yes no no
RCK, SAS’04 bounded degree yes yes yes∗

10

Overview of the Talk

1. Overview of the Method

2. Ideals of Polynomials

3. Abstract Semantics

4. Widening Operator

5. Examples

6. Alternative Solution

7. Future Work & Conclusions

11

Overview of the Method (1)

Finds polynomial equality invariants

States abstracted to ideal of polynomials evaluating to 0

Programming language admits

• Polynomial assignments: variable := polynomial

• Polynomial equalities and disequalities in conditions:

polynomial = 0 , polynomial 6= 0

Parametric widening ∇d

If conditions are ignored and assignments are linear, finds

all polynomial invariants of degree ≤ d

12

Overview of the Method (2)

Our implementation has been successfully applied to a

number of programs

Ideals of polynomials represented by finite bases of

generators: Gröbner bases

There are several tools manipulating ideals, Gröbner bases

Our implementation uses Macaulay 2

13

Overview of the Talk

1. Overview of the Method

2. Ideals of Polynomials

3. Abstract Semantics

4. Widening Operator

5. Examples

6. Alternative Solution

7. Future Work & Conclusions

14

Ideals of Polynomials

Preliminaries (1)

Intuitively, an ideal is a set of polynomials and all their

consequences

An ideal is a set of polynomials I such that

1. 0 ∈ I

2. If p, q ∈ I, then p + q ∈ I

3. If p ∈ I and q any polynomial, pq ∈ I

15

Ideals of Polynomials

Preliminaries (2)

Example 1: polynomials evaluating to 0 on a set of points S

1. 0 evaluates to 0 everywhere

∀ω ∈ S, 0(ω) = 0

2. If p, q evaluate to 0 on S, then p + q evaluates to 0 on S

∀ω ∈ S, p(ω) = q(ω) = 0 =⇒ p(ω) + q(ω) = 0

3. If p evaluates to 0 on S, then pq evaluates to 0 on S

∀ω ∈ S, p(ω) = 0 =⇒ p(ω) · q(ω) = 0

16

Ideals of Polynomials

Preliminaries (3)

Example 2: multiples of a polynomial p, 〈p〉

1. 0 = 0 · p ∈ 〈p〉

2. q1 · p + q2 · p = (q1 + q2)p ∈ 〈p〉

3. If q2 is any polynomial, then q2 · q1 · p ∈ 〈p〉

In general, ideal generated by p1,...,pk:

〈p1, ..., pk〉 = {
∑k

j=1 qj · pj for arbitrary qj}

Hilbert’s basis theorem: all ideals are finitely generated

−→ finite representation for ideals

17

Ideals of Polynomials

Operations with Ideals

Several operations available. Given ideals I, J in the

variables x1, ..., xn:

• projection: I ∩ C[x1, ..., xi−1, xi+1, ..., xn]

• addition: I + J = {p + q | p ∈ I, q ∈ J}

• quotient: I : J = {p | ∀q ∈ J, p · q ∈ I}

• intersection: I ∩ J

All operations implemented using Gröbner bases

These operations will be used when defining abstract

semantics

18

Ideals of Polynomials

Ideals as Abstract Values (1)

States abstracted to ideal of polynomials evaluating to 0

Abstraction function I

I : {sets of states} −→ {ideals}

S 7−→ {polynomials evaluating

to 0 on S}

Concretization function V

V : {ideals} −→ {sets of states}

I 7−→ {zeroes of I}

19

Ideals of Polynomials
Ideals as Abstract Values (2)

〈p1, ..., pk〉 ←→ p1 = 0 ∧ · · · ∧ pk = 0

x = y x = y

x − y x² + y² −1

x² = x

x² − x , x − y

1

y

x x x

y y

x² + y² =

20

Overview of the Talk

1. Overview of the Method

2. Ideals of Polynomials

3. Abstract Semantics

4. Widening Operator

5. Examples

6. Alternative Solution

7. Future Work & Conclusions

21

Abstract Semantics

Programming Model (1)

Programs ≡ finite connected flowcharts

Entry node

Assignment nodes: polynomial assignments

Test nodes: polynomial dis/equalities

Simple/loop junction nodes

Exit nodes

22

Abstract Semantics
Programming Model (2)

��
HH - x1:=0 - x2:=0 -�

��
-

�
�

�
x2 6=x3

6
false

A
A

�
�

?
true

x1:=x1+2∗x2+1

?
x2:=x2+1

6

x1 := 0; x2 := 0;

while x2 6= x3 do

x1 := x1 + 2 ∗ x2 + 1; x2 := x2 + 1;

end while

23

Abstract Semantics

Assignments (1)

Assignment node labelled with xi := f(x1, ..., xn)

Input ideal: 〈p1, ..., pk〉

Output ideal:

• Want to express in terms of ideals

∃x′i(xi = f(xi ← x′i)∧p1(xi ← x′i) = 0∧· · ·∧pk(xi ← x′i) = 0)

where x′i ≡ previous value of xi before the assignment

• Solution: projection

◦ eliminate x′i from the ideal

〈xi − f(xi ← x′i) , p1(xi ← x′i) , ... , pk(xi ← x′i)〉

24

Abstract Semantics

Assignments (2)

Example:

Assignment x := x + 1

Input ideal: 〈x〉 ←→ x = 0

Output ideal:

• Have to eliminate x′ from the ideal

〈x− x′ − 1, x′〉

• Polynomials of 〈x− x′ − 1, x′〉 depending only on x:

〈x− 1〉 ←→ x = 1

25

Abstract Semantics

Tests: Polynomial Equalities

Test node labelled with q = 0

Input ideal: 〈p1, ..., pk〉

Output ideal: (true path)

• Want to express in terms of ideals

p1 = 0 ∧ · · · ∧ pk = 0 ∧ q = 0

• Solution: addition

◦ Add q to list of generators of input ideal

◦ Take maximal set of polynomials with same zeroes

I(V(p1, ..., pk, q))

26

Abstract Semantics

Tests: Polynomial Disequalities

Test node labelled with q 6= 0

Input ideal: 〈p1, ..., pk〉

Output ideal: (true path)

• Want to express in terms of ideals

p1 = 0 ∧ · · · ∧ pk = 0 ∧ q 6= 0

• Solution: quotient

◦ quotient ideal 〈p1, ..., pk〉 : 〈q〉 ≡

maximal ideal of polynomials evaluating to 0 on

zeroes of 〈p1, ..., pk〉 \ zeroes of 〈q〉

27

Abstract Semantics

Tests

Example:

Test node labelled with x = 0

Input ideal: 〈xy〉 ←→ x = 0 ∨ y = 0

Output ideal: (true path)

I(V(〈xy, x〉)) = 〈x〉 ←→ x = 0

Output ideal: (false path)

〈xy〉 : 〈x〉 = 〈y〉 ←→ y = 0

28

Abstract Semantics
Simple Junction Nodes (1)

Input ideals (one for each path):

Path 1: 〈p11, ..., p1k1
〉

· · ·
Path l: 〈pl1, ..., plkl

〉

Output ideal:

• Want to express in terms of ideals
∨l

i=1

∧ki
j=1 pij = 0

• Solution: intersection

◦ Take common polynomials for all paths ≡

Compute intersection of all input ideals

⋂l
i=1〈pi1, ..., piki

〉

29

Abstract Semantics

Simple Junction Nodes (2)

Example:

Input ideal 1st path: 〈x〉 ←→ x = 0

Input ideal 2nd path: 〈x− 1〉 ←→ x = 1

Input ideal 3rd path: 〈x− 2〉 ←→ x = 2

Output ideal:

〈x〉 ∩ 〈x− 1〉 ∩ 〈x− 2〉 = 〈x(x− 1)(x− 2)〉

←→ x = 0 ∨ x = 1 ∨ x = 2

Degree increases !!

30

Abstract Semantics

Loop Junction Nodes (1)

Input ideals: J1, · · · , Jl

Output ideal:

• As with simple junction nodes:

⋂l
i=1 Ji

• Problem: Non-termination of symbolic execution !

• Solution: WIDENING −→ bounding degree

31

Abstract Semantics

Loop Junction Nodes (2)

Example:

x := 0;

while ? do

x := x + 1;

end while

Generating loop invariant by symbolic execution:

1st iteration: 〈x〉 ←→ x = 0

2nd iteration: 〈x(x− 1)〉 ←→ x = 0 ∨ x = 1

3rd iteration: 〈x(x− 1)(x− 2)〉 ←→ x = 0 ∨ x = 1 ∨ x = 2

...

Unless we bound the degree, the procedure does not terminate

32

Overview of the Talk

1. Overview of the Method

2. Ideals of Polynomials

3. Abstract Semantics

4. Widening Operator

5. Examples

6. Alternative Solution

7. Future Work & Conclusions

33

Widening Operator

Definition

Parametric widening I∇d J

Based on taking polynomials of I ∩ J of degree ≤ d

Definition uses Gröbner bases

I∇d J := IV({p ∈ GB(I ∩ J) |deg(p) ≤ d})

Termination guaranteed since {p ∈ I |deg(p) ≤ d} are

vector spaces of finite dimension

34

Widening Operator

Loop Junction Nodes

Input ideals: J1, · · · , Jl

Previously computed output ideal: I

Output ideal:

I∇d

(

l
⋂

i=1

Ji

)

35

Widening Operator

A Completeness Result

THEOREM. If conditions are ignored and assignments are

linear, procedure computes all invariants of degree ≤ d

Key ideas of the proof:

• I∇d J retains all polynomials of degree d of I ∩ J

• Graded term orderings used in Gröbner bases:

glex, grevlex

Conditions must be ignored: the set of all linear invariants in

programs with linear equality conditions is not computable

36

Overview of the Talk

1. Overview of the Method

2. Ideals of Polynomials

3. Abstract Semantics

4. Widening Operator

5. Examples

6. Alternative Solution

7. Future Work & Conclusions

37

��
HH - x1:=0 -1 x2:=0 -2

�
��

-3 �
�

�
x2 6=x3

6
7false

A
A

�
�

?
4true

x1:=x1+2∗x2+1

?
5

x2:=x2+1

6

6

F0(I) = 〈0〉

F1(I) = (〈x1〉+ 〈I0(x1 ← x′1)〉) ∩ C[x1, x2, x3]

F2(I) = (〈x2〉+ 〈I1(x2 ← x′2)〉) ∩ C[x1, x2, x3]

F3(I) = I3∇2(I2 ∩ I6)

F4(I) = 〈I3〉 : 〈x2 − x3〉

F5(I) = I4(x1 ← x1 − 2x2 − 1)

F6(I) = I5(x2 ← x2 − 1)

F7(I) = I(V(I3 + 〈x2 − x3〉))

ABSTRACT

PROGRAM

SEMANTICS

38

��
HH - x1:=0 -1 x2:=0 -2

�
��

-3 �
�

�
x2 6=x3

6
7false

A
A

�
�

?
4true

x1:=x1+2∗x2+1

?
5

x2:=x2+1

6

6

I
(0)
0 = 〈1〉

I
(0)
1 = 〈1〉

I
(0)
2 = 〈1〉

I
(0)
3 = 〈1〉

I
(0)
4 = 〈1〉

I
(0)
5 = 〈1〉

I
(0)
6 = 〈1〉

I
(0)
7 = 〈1〉

I
(1)
0 = 〈0〉

I
(1)
1 = (〈x1〉+ 〈0〉) ∩ C[x1, x2, x3] = 〈x1〉

I
(1)
2 = (〈x2〉+ 〈x1〉) ∩ C[x1, x2, x3] = 〈x1, x2〉

I
(1)
3 = I

(0)
3 ∇2(I

(1)
2 ∩ I

(0)
6) = I

(1)
2 = 〈x1, x2〉

I
(1)
4 = I

(1)
3 : 〈x2 − x3〉 = 〈x1, x2〉

I
(1)
5 = I

(1)
4 (x1 ← x1 − 2x2 − 1) = 〈x1 − 2x2 − 1, x2〉

I
(1)
6 =I

(1)
5 (x2 ← x2 − 1) = 〈x1 − 2x2 + 1, x2 − 1〉

I
(1)
7 = I(V(〈x2 − x3〉+ I

(1)
3)) = 〈x1, x2, x3〉

39

��
HH - x1:=0 -1 x2:=0 -2

�
��

-3 �
�

�
x2 6=x3

6
7false

A
A

�
�

?
4true

x1:=x1+2∗x2+1

?
5

x2:=x2+1

6

6

I
(2)
0 = 〈0〉

I
(2)
1 = 〈x1〉

I
(2)
2 = 〈x1, x2〉

I
(2)
3 = 〈x1 − x2

2, x2(x2 − 1)〉

I
(2)
4 = 〈x1 − x2

2, x2(x2 − 1)〉

I
(2)
5 = 〈x1 − x2

2 − 2x2 − 1, x2(x2 − 1)〉

I
(2)
6 = 〈x1 − x2

2, (x2 − 1)(x2 − 2)〉

I
(2)
7 = 〈x1 − x2

2, x2(x2 − 1), x2 − x3〉

In 6 iterations we get the

loop invariant

x1 = x2
2

40

Examples

Table

LOOP
PROGRAM COMPUTING d VARS IF’S LOOPS DEPTH TIME

cohencu cube 3 5 0 1 1 2.45
dershowitz real division 2 7 1 1 1 1.71
divbin integer division 2 5 1 2 1 1.91
euclidex1 Bezout’s coefs 2 10 0 2 2 7.15
euclidex2 Bezout’s coefs 2 8 1 1 1 3.69
fermat divisor 2 5 0 3 2 1.55
prod4br product 3 6 3 1 1 8.49
freire1 integer sqrt 2 3 0 1 1 0.75
hard integer division 2 6 1 2 1 2.19
lcm2 lcm 2 6 1 1 1 2.03
readers simulation 2 6 3 1 1 4.15

41

Overview of the Talk

1. Overview of the Method

2. Ideals of Polynomials

3. Abstract Semantics

4. Widening Operator

5. Examples

6. Alternative Solution

7. Future Work & Conclusions

42

Alternative Solution (1)

Alternative approach (Colón, SAS’04)

Based on approximating ideals using degree bound d

Key observation: given an ideal I, polynomials in I of

degree ≤ d form a vector space of finite dimension

→ use linear algebra instead of Gröbner bases

A pseudo-ideal is a set P of polynomials of degree ≤ d

such that

1. 0 ∈ P

2. If p, q ∈ P , then p + q ∈ P

3. If p ∈ P , q any polynomial and deg(pq) ≤ d, then pq ∈ P

Pseudo-ideals are vector spaces of finite dimension

43

Alternative Solution (2)

Operations on ideals approximated by operations on vector

spaces

Advantages

• Easier to implement

• Better complexity bounds

Disadvantages

• Loss of precision

• Dimension of vector spaces increments exponentially

with degree

Combination of both techniques would be better ?

44

Overview of the Talk

1. Overview of the Method

2. Ideals of Polynomials

3. Abstract Semantics

4. Widening Operator

5. Examples

6. Alternative Solution

7. Future Work & Conclusions

45

Future Work

Design widening operators not bounding degree

Integrate with linear inequalities

Study abstract domains for polynomial inequalities

Apply to other classes of programs

46

Conclusions

Method for generating polynomial equality invariants

Based on abstract interpretation

Programming language admits

• Polynomial assignments

• Polynomial dis/equalities in conditions

If conditions are ignored and assignments are linear, finds

all polynomial invariants of degree ≤ d

Implemented using Macaulay 2

Successfully applied to many programs

47

