Generation of

Polynomial Equality Invariants

by Abstract Interpretation

Enric Rodríguez-Carbonell
Universitat Politècnica de Catalunya (UPC)
Barcelona

Joint work with Deepak Kapur (UNM)
Introduction

Why Care about Invariants? (1)

- It is necessary to verify safety properties of systems:
 - no program execution reaches an erroneous state
 (state = values of variables)

- For instance in:
 - Imperative programs
 - Reactive systems
 - Concurrent systems
 - ...
Introduction

Why Care about Invariants? (2)

- Systems often have an infinite number of states
 → methods for finite-state systems (e.g. model checking)
 suffer from the state explosion problem
- Exact reachable set of a system is not computable generally
- **Solution**: overapproximate reachable states →
 INVARIENTS: properties that hold for all states
Introduction

Why Care about Invariants? (3)

System never reaches a bad state!!
Introduction

Abstract Interpretation (1)

Abstract interpretation allows to compute invariants:

- intervals (Cousot & Cousot 1976, Harrison 1977)

\[x \in [0, 1] \land y \in [0, \infty) \]

- congruences (Granger 1991)

\[x \equiv y \mod(2) \]

\[x + 2y - 3z \leq 3 \]
- **octagonal inequalities** (Mine 2001)
 \[x - y \leq 3\]

- **octahedral inequalities** (Clariso & Cortadella 2004)
 \[x - y + z \leq 2\]

- ...

 \[x = y^2\]
Concrete variable values overapproximated by *abstract values*
Introduction

Abstract Interpretation (3)

- Program semantics expressed in terms of abstract values
- Operations on states that must be abstracted:

- **Projection**
 - assignments

- **Union**
 - merging in loops and conditionals

- **Intersection**
 - guards in loops and conditionals
Introduction

Abstract Interpretation (4)

- Invariants are generated by symbolic execution of the program using the abstract semantics
- Termination is not guaranteed in general:
 → union in loops must be extrapolated

- Widening operator introduced to ensure termination
Related Work

Overview Polynomial Invariants

<table>
<thead>
<tr>
<th>Work</th>
<th>Restrictions</th>
<th>Equality Conditions</th>
<th>Disequality Conditions</th>
<th>Complete</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOS, POPL’04</td>
<td>bounded degree</td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>SSM, POPL’04</td>
<td>prefixed form</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>MOS, IPL’04</td>
<td>prefixed form</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>RCK, ISSAC’04</td>
<td>no restriction</td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>COL, SAS’04</td>
<td>bounded degree</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>RCK, SAS’04</td>
<td>bounded degree</td>
<td>yes</td>
<td>yes</td>
<td>yes*</td>
</tr>
</tbody>
</table>
Overview of the Talk

1. Overview of the Method
2. Ideals of Polynomials
3. Abstract Semantics
4. Widening Operator
5. Examples
6. Alternative Solution
7. Future Work & Conclusions
Overview of the Method (1)

- Finds \textit{polynomial equality} invariants
- \textbf{States} abstracted to \textit{ideal of polynomials} evaluating to 0
- Programming language admits
 - \textbf{Polynomial assignments}: \textit{variable} \(:= \) \textit{polynomial}
 - \textbf{Polynomial equalities and disequalities} in conditions:
 \[\text{polynomial} = 0 \quad , \quad \text{polynomial} \neq 0 \]
- Parametric widening \(\nabla_d \)
- \textbf{If conditions are ignored} and \textbf{assignments are linear}, finds \textbf{all} \textit{polynomial} invariants of degree \(\leq d \)
Overview of the Method (2)

- Our implementation has been successfully applied to a number of programs
- Ideals of polynomials represented by finite bases of generators: **Gröbner bases**
- There are several tools manipulating ideals, Gröbner bases
- Our implementation uses *Macaulay 2*
Overview of the Talk

1. Overview of the Method
2. Ideals of Polynomials
3. Abstract Semantics
4. Widening Operator
5. Examples
6. Alternative Solution
7. Future Work & Conclusions
Ideals of Polynomials

Preliminaries (1)

- Intuitively, an **ideal** is a set of polynomials and all their consequences.
- An **ideal** is a set of polynomials \(I \) such that
 1. \(0 \in I \)
 2. If \(p, q \in I \), then \(p + q \in I \)
 3. If \(p \in I \) and \(q \) any polynomial, \(pq \in I \)
Ideals of Polynomials
Preliminaries (2)

- Example 1: polynomials evaluating to 0 on a set of points S
 1. 0 evaluates to 0 everywhere
 $$\forall \omega \in S, \quad 0(\omega) = 0$$
 2. If p, q evaluate to 0 on S, then $p + q$ evaluates to 0 on S
 $$\forall \omega \in S, \quad p(\omega) = q(\omega) = 0 \implies p(\omega) + q(\omega) = 0$$
 3. If p evaluates to 0 on S, then pq evaluates to 0 on S
 $$\forall \omega \in S, \quad p(\omega) = 0 \implies p(\omega) \cdot q(\omega) = 0$$
Ideals of Polynomials

Preliminaries (3)

- Example 2: multiples of a polynomial \(p \), \(\langle p \rangle \)
 1. \(0 = 0 \cdot p \in \langle p \rangle \)
 2. \(q_1 \cdot p + q_2 \cdot p = (q_1 + q_2)p \in \langle p \rangle \)
 3. If \(q_2 \) is any polynomial, then \(q_2 \cdot q_1 \cdot p \in \langle p \rangle \)

- In general, ideal generated by \(p_1, \ldots, p_k \):

 \[
 \langle p_1, \ldots, p_k \rangle = \{ \sum_{j=1}^{k} q_j \cdot p_j \text{ for arbitrary } q_j \}
 \]

- Hilbert’s basis theorem: all ideals are finitely generated
 \(\rightarrow \) finite representation for ideals
Ideals of Polynomials

Operations with Ideals

Several operations available. Given ideals I, J in the variables x_1, ..., x_n:

- **projection**: $I \cap \mathbb{C}[x_1, ..., x_{i-1}, x_{i+1}, ..., x_n]$
- **addition**: $I + J = \{p + q \mid p \in I, q \in J\}$
- **quotient**: $I : J = \{p \mid \forall q \in J, p \cdot q \in I\}$
- **intersection**: $I \cap J$

All operations implemented using **Gröbner bases**

These operations will be used when defining abstract semantics
Ideals of Polynomials

Ideals as Abstract Values (1)

- **States** abstracted to **ideal of polynomials** evaluating to 0

- **Abstraction function** I
 \[I : \{\text{sets of states}\} \longrightarrow \{\text{ideals}\} \]
 \[S \longmapsto \{\text{polynomials evaluating to 0 on } S\} \]

- **Concretization function** V
 \[V : \{\text{ideals}\} \longrightarrow \{\text{sets of states}\} \]
 \[I \longmapsto \{\text{zeroes of } I\} \]
Ideals of Polynomials
Ideals as Abstract Values (2)

\[\langle p_1, \ldots, p_k \rangle \leftrightarrow p_1 = 0 \land \cdots \land p_k = 0 \]

\[x = y \]
\[x^2 + y^2 = 1 \]
\[x^2 = x \land x = y \]
Overview of the Talk

1. Overview of the Method
2. Ideals of Polynomials
3. Abstract Semantics
4. Widening Operator
5. Examples
6. Alternative Solution
7. Future Work & Conclusions
Abstract Semantics
Programming Model (1)

Programs \equiv finite connected flowcharts

- Entry node
- Assignment nodes: polynomial assignments
- Test nodes: polynomial dis/equalities
- Simple/loop junction nodes
- Exit nodes
Abstract Semantics
Programming Model (2)

\[x_1 := 0; x_2 := 0; \]
\[\textbf{while } x_2 \neq x_3 \textbf{ do} \]
\[\quad x_1 := x_1 + 2 \times x_2 + 1; \]
\[\quad x_2 := x_2 + 1; \]
\[\textbf{end while} \]
Abstract Semantics
Assignments (1)

- Assignment node labelled with $x_i := f(x_1, ..., x_n)$
- Input ideal: $\langle p_1, ..., p_k \rangle$
- Output ideal:
 - Want to express in terms of ideals
 $\exists x'_i(x_i = f(x_i \leftarrow x'_i) \land p_1(x_i \leftarrow x'_i) = 0 \land \cdots \land p_k(x_i \leftarrow x'_i) = 0)$
 where $x'_i \equiv$ previous value of x_i before the assignment
 - Solution: projection
 - eliminate x'_i from the ideal
 $\langle x_i - f(x_i \leftarrow x'_i), p_1(x_i \leftarrow x'_i), ..., p_k(x_i \leftarrow x'_i) \rangle$
Abstract Semantics
Assignments (2)

Example:

- Assignment \(x := x + 1 \)
- Input ideal: \(\langle x \rangle \iff x = 0 \)
- Output ideal:
 - Have to eliminate \(x' \) from the ideal
 \[\langle x - x' - 1, x' \rangle \]
 - Polynomials of \(\langle x - x' - 1, x' \rangle \) depending only on \(x \):
 \[\langle x - 1 \rangle \iff x = 1 \]
Abstract Semantics
Tests: Polynomial Equalities

- Test node labelled with $q = 0$
- Input ideal: $\langle p_1, \ldots, p_k \rangle$
- Output ideal: (true path)
 - Want to express in terms of ideals
 \[p_1 = 0 \land \cdots \land p_k = 0 \land q = 0 \]
 - **Solution: addition**
 - Add q to list of generators of input ideal
 - Take maximal set of polynomials with same zeroes
 \[I(V(p_1, \ldots, p_k, q)) \]
Abstract Semantics
Tests: Polynomial Disequalities

- Test node labelled with $q \neq 0$
- Input ideal: $\langle p_1, ..., p_k \rangle$
- Output ideal: (true path)
 - Want to express in terms of ideals
 \[
 p_1 = 0 \land \cdots \land p_k = 0 \land q \neq 0
 \]
 - Solution: quotient
 - quotient ideal $\langle p_1, ..., p_k \rangle : \langle q \rangle \equiv$
 maximal ideal of polynomials evaluating to 0 on zeroes of $\langle p_1, ..., p_k \rangle \setminus$ zeroes of $\langle q \rangle$
Abstract Semantics
Tests

Example:

- Test node labelled with $x = 0$
- Input ideal: $\langle xy \rangle \leftrightarrow x = 0 \lor y = 0$
- Output ideal: (true path)
 \[
 I(V(\langle xy, x \rangle)) = \langle x \rangle \leftrightarrow x = 0
 \]
- Output ideal: (false path)
 \[
 \langle xy \rangle : \langle x \rangle = \langle y \rangle \leftrightarrow y = 0
 \]
Abstract Semantics
Simple Junction Nodes (1)

■ Input ideals (one for each path):
 Path 1: \(\langle p_{11}, \ldots, p_{1k_1} \rangle \)
 ...
 Path \(l \): \(\langle p_{l1}, \ldots, p_{lk_l} \rangle \)

■ Output ideal:
 • Want to express in terms of ideals
 \[
 \bigvee_{i=1}^{l} \bigwedge_{j=1}^{k_i} p_{ij} = 0
 \]
 • Solution: intersection
 • Take \textit{common} polynomials for all paths \(\equiv \)
 Compute \textit{intersection} of all input ideals
 \[
 \bigcap_{i=1}^{l} \langle p_{i1}, \ldots, p_{ik_i} \rangle
 \]
Abstract Semantics
Simple Junction Nodes (2)

Example:

- Input ideal 1st path: $\langle x \rangle \iff x = 0$
- Input ideal 2nd path: $\langle x - 1 \rangle \iff x = 1$
- Input ideal 3rd path: $\langle x - 2 \rangle \iff x = 2$
- Output ideal:

\[
\langle x \rangle \cap \langle x - 1 \rangle \cap \langle x - 2 \rangle = \langle x(x - 1)(x - 2) \rangle
\]

\[\iff x = 0 \lor x = 1 \lor x = 2\]

Degree increases !!
Abstract Semantics
Loop Junction Nodes (1)

- **Input ideals:** J_1, \ldots, J_l
- **Output ideal:**
 - As with simple junction nodes:
 $$\bigcap_{i=1}^{l} J_i$$
 - **Problem:** Non-termination of symbolic execution!
 - **Solution:** WIDENING \rightarrow bounding degree
Abstract Semantics
Loop Junction Nodes (2)

Example:

\[
\begin{align*}
x &:= 0; \\
\text{while} \ ? \ &\text{do} \\
& \quad x := x + 1; \\
\text{end while}
\end{align*}
\]

Generating loop invariant by symbolic execution:

- 1st iteration: \(\langle x \rangle \xleftarrow{} x = 0 \)
- 2nd iteration: \(\langle x(x - 1) \rangle \xleftarrow{} x = 0 \lor x = 1 \)
- 3rd iteration: \(\langle x(x - 1)(x - 2) \rangle \xleftarrow{} x = 0 \lor x = 1 \lor x = 2 \)
- ...

Unless we bound the degree, the procedure does not terminate.
Overview of the Talk

1. Overview of the Method
2. Ideals of Polynomials
3. Abstract Semantics
4. Widening Operator
5. Examples
6. Alternative Solution
7. Future Work & Conclusions
Widening Operator
Definition

- Parametric widening $I \triangledown_d J$
- Based on taking polynomials of $I \cap J$ of degree $\leq d$
- Definition uses Gröbner bases

\[I \triangledown_d J := \mathbf{IV}(\{ p \in GB(I \cap J) \mid \deg(p) \leq d \}) \]

- Termination guaranteed since $\{ p \in I \mid \deg(p) \leq d \}$ are vector spaces of finite dimension
Widening Operator
Loop Junction Nodes

- Input ideals: J_1, \cdots, J_l
- Previously computed output ideal: I
- Output ideal:

$$I \nabla_d \left(\bigcap_{i=1}^{l} J_i \right)$$
Widening Operator
A Completeness Result

- **THEOREM.** If conditions are ignored and assignments are linear, procedure computes **all** invariants of degree \(\leq d \)

- Key ideas of the proof:
 - \(I \triangledown_d J \) retains all polynomials of degree \(d \) of \(I \cap J \)
 - Graded term orderings used in Gröbner bases: glex, grevlex

- **Conditions must be ignored:** the set of all *linear invariants* in programs with *linear equality conditions* is not computable
Overview of the Talk

1. Overview of the Method
2. Ideals of Polynomials
3. Abstract Semantics
4. Widening Operator
5. Examples
6. Alternative Solution
7. Future Work & Conclusions
\(F_0(I) = \langle 0 \rangle \)

\(F_1(I) = (\langle x_1 \rangle + \langle I_0(x_1 \leftarrow x'_1) \rangle) \cap \mathbb{C}[x_1, x_2, x_3] \)

\(F_2(I) = (\langle x_2 \rangle + \langle I_1(x_2 \leftarrow x'_2) \rangle) \cap \mathbb{C}[x_1, x_2, x_3] \)

\(F_3(I) = I_3 \triangledown_2 (I_2 \cap I_6) \)

\(F_4(I) = \langle I_3 \rangle : \langle x_2 - x_3 \rangle \)

\(F_5(I) = I_4(x_1 \leftarrow x_1 - 2x_2 - 1) \)

\(F_6(I) = I_5(x_2 \leftarrow x_2 - 1) \)

\(F_7(I) = I(V(I_3 + \langle x_2 - x_3 \rangle)) \)
\[
I_0^{(0)} = \langle 1 \rangle \quad I_0^{(1)} = \langle 0 \rangle
\]
\[
I_1^{(0)} = \langle 1 \rangle \quad I_1^{(1)} = (\langle x_1 \rangle + \langle 0 \rangle) \cap \mathbb{C}[x_1, x_2, x_3] = \langle x_1 \rangle
\]
\[
I_2^{(0)} = \langle 1 \rangle \quad I_2^{(1)} = (\langle x_2 \rangle + \langle x_1 \rangle) \cap \mathbb{C}[x_1, x_2, x_3] = \langle x_1, x_2 \rangle
\]
\[
I_3^{(0)} = \langle 1 \rangle \quad I_3^{(1)} = I_3^{(0)} \nabla_2 (I_2^{(1)} \cap I_6^{(0)}) = I_2^{(1)} = \langle x_1, x_2 \rangle
\]
\[
I_4^{(0)} = \langle 1 \rangle \quad I_4^{(1)} = I_3^{(1)} : \langle x_2 - x_3 \rangle = \langle x_1, x_2 \rangle
\]
\[
I_5^{(0)} = \langle 1 \rangle \quad I_5^{(1)} = I_4^{(1)}(x_1 \leftarrow x_1 - 2x_2 - 1) = \langle x_1 - 2x_2 - 1, x_2 \rangle
\]
\[
I_6^{(0)} = \langle 1 \rangle \quad I_6^{(1)} = I_5^{(1)}(x_2 \leftarrow x_2 - 1) = \langle x_1 - 2x_2 + 1, x_2 - 1 \rangle
\]
\[
I_7^{(0)} = \langle 1 \rangle \quad I_7^{(1)} = I(V(\langle x_2 - x_3 \rangle + I_3^{(1)})) = \langle x_1, x_2, x_3 \rangle
\]
\[I_0^{(2)} = \langle 0 \rangle \]

\[I_1^{(2)} = \langle x_1 \rangle \]

\[I_2^{(2)} = \langle x_1, x_2 \rangle \]

\[I_3^{(2)} = \langle x_1 - x_2^2, x_2(x_2 - 1) \rangle \]

\[I_4^{(2)} = \langle x_1 - x_2^2, x_2(x_2 - 1) \rangle \]

\[I_5^{(2)} = \langle x_1 - x_2^2 - 2x_2 - 1, x_2(x_2 - 1) \rangle \]

\[I_6^{(2)} = \langle x_1 - x_2^2, (x_2 - 1)(x_2 - 2) \rangle \]

\[I_7^{(2)} = \langle x_1 - x_2^2, x_2(x_2 - 1), x_2 - x_3 \rangle \]

In 6 iterations we get the loop invariant

\[x_1 = x_2^2 \]
Examples

Table

<table>
<thead>
<tr>
<th>PROGRAM</th>
<th>COMPUTING</th>
<th>d</th>
<th>VARS</th>
<th>IF’S</th>
<th>LOOPS</th>
<th>LOOP DEPTH</th>
<th>TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>cohencu</td>
<td>cube</td>
<td>3</td>
<td>5</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2.45</td>
</tr>
<tr>
<td>dershowitz</td>
<td>real division</td>
<td>2</td>
<td>7</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1.71</td>
</tr>
<tr>
<td>divbin</td>
<td>integer division</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1.91</td>
</tr>
<tr>
<td>euclidex1</td>
<td>Bezout’s coefs</td>
<td>2</td>
<td>10</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>7.15</td>
</tr>
<tr>
<td>euclidex2</td>
<td>Bezout’s coefs</td>
<td>2</td>
<td>8</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3.69</td>
</tr>
<tr>
<td>fermat</td>
<td>divisor</td>
<td>2</td>
<td>5</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>1.55</td>
</tr>
<tr>
<td>prod4br</td>
<td>product</td>
<td>3</td>
<td>6</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>8.49</td>
</tr>
<tr>
<td>freire1</td>
<td>integer sqrt</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0.75</td>
</tr>
<tr>
<td>hard</td>
<td>integer division</td>
<td>2</td>
<td>6</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2.19</td>
</tr>
<tr>
<td>lcm2</td>
<td>lcm</td>
<td>2</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2.03</td>
</tr>
<tr>
<td>readers</td>
<td>simulation</td>
<td>2</td>
<td>6</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>4.15</td>
</tr>
</tbody>
</table>
Overview of the Talk

1. Overview of the Method
2. Ideals of Polynomials
3. Abstract Semantics
4. Widening Operator
5. Examples
6. Alternative Solution
7. Future Work & Conclusions
Alternative Solution (1)

- Alternative approach (Colón, SAS’04)

- Based on approximating ideals using degree bound d

- **Key observation:** given an ideal I, polynomials in I of degree $\leq d$ form a vector space of finite dimension → use linear algebra instead of Gröbner bases

- A **pseudo-ideal** is a set P of polynomials of degree $\leq d$ such that
 1. $0 \in P$
 2. If $p, q \in P$, then $p + q \in P$
 3. If $p \in P$, q any polynomial and $\deg(pq) \leq d$, then $pq \in P$

- Pseudo-ideals are vector spaces of finite dimension
Alternative Solution (2)

- Operations on ideals approximated by operations on vector spaces

- **Advantages**
 - Easier to implement
 - Better complexity bounds

- **Disadvantages**
 - Loss of precision
 - Dimension of vector spaces increments exponentially with degree

- **Combination** of both techniques would be better?
Overview of the Talk

1. Overview of the Method
2. Ideals of Polynomials
3. Abstract Semantics
4. Widening Operator
5. Examples
6. Alternative Solution
7. Future Work & Conclusions
Future Work

- Design widening operators not bounding degree
- Integrate with linear inequalities
- Study abstract domains for polynomial inequalities
- Apply to other classes of programs
Conclusions

- Method for generating polynomial equality invariants
- Based on abstract interpretation
- Programming language admits
 - Polynomial assignments
 - Polynomial dis/equalities in conditions
- If conditions are ignored and assignments are linear, finds all polynomial invariants of degree \(\leq d \)
- Implemented using Macaulay 2
- Successfully applied to many programs