#### **Generation of**

#### **Polynomial Equality Invariants**

#### by Abstract Interpretation

#### Enric Rodríguez-Carbonell Universitat Politècnica de Catalunya (UPC) Barcelona

Joint work with **Deepak Kapur** (UNM)

## Introduction Why Care about Invariants ? (1)

 It is necessary to verify *safety* properties of systems:
 no program execution reaches an erroneous state (state = values of variables)

- For instance in:
  - Imperative programs
  - Reactive systems
  - Concurrent systems
  - ...

## Introduction Why Care about Invariants ? (2)

- Systems often have an infinite number of states
   → methods for finite-state systems (e.g. model checking)
   suffer from the state explosion problem
- Exact reachable set of a system is not computable generally
- Solution: overapproximate reachable states  $\rightarrow$

**INVARIANTS:** properties that hold for all states



## Introduction Abstract Interpretation (1)

**Abstract interpretation** allows to compute invariants:

intervals (Cousot & Cousot 1976, Harrison 1977)

 $x \in [0,1] \land y \in [0,\infty)$ 

congruences (Granger 1991)

 $x \equiv y \mod(2)$ 

 linear inequalities (Cousot & Halbwachs 1978, Colón & Sankaranarayanan & Sipma 2003)

$$x + 2y - 3z \le 3$$

octagonal inequalities (Mine 2001)

$$x - y \leq 3$$

octahedral inequalities (Clariso & Cortadella 2004)

$$x - y + z \le 2$$

- ....
- polynomial equalities (Müller-Olm & Seidl 2004, Sankaranarayanan & Sipma& Manna 2004, Colón 2004, Rodríguez-Carbonell & Kapur 2004)

$$x = y^2$$

#### Introduction Abstract Interpretation (2)

Concrete variable values overapproximated by *abstract values* 



### Introduction Abstract Interpretation (3)

- Program semantics expressed in terms of abstract values
- Operations on states that must be abstracted:



### Introduction

## **Abstract Interpretation (4)**

- Invariants are generated by symbolic execution of the program using the abstract semantics
- Termination is not guaranteeed in general:
  - $\longrightarrow$  union in loops must be extrapolated



Widening operator introduced to ensure termination

## Related Work Overview Polynomial Invariants

| Work          | Restrictions   | Equality   | Disequality | Complete |
|---------------|----------------|------------|-------------|----------|
|               |                | Conditions | Conditions  |          |
| MOS, POPL'04  | bounded degree | no         | no          | yes      |
| SSM, POPL'04  | prefixed form  | yes        | no          | no       |
| MOS, IPL'04   | prefixed form  | no         | yes         | yes      |
| RCK, ISSAC'04 | no restriction | no         | no          | yes      |
| COL, SAS'04   | bounded degree | yes        | no          | no       |
| RCK, SAS'04   | bounded degree | yes        | yes         | yes*     |

#### **Overview of the Talk**

- **1. Overview of the Method**
- 2. Ideals of Polynomials
- 3. Abstract Semantics
- 4. Widening Operator
- 5. Examples
- 6. Alternative Solution
- 7. Future Work & Conclusions

### **Overview of the Method (1)**

- Finds polynomial equality invariants
- States abstracted to ideal of polynomials evaluating to 0
- Programming language admits
  - Polynomial assignments: *variable* := *polynomial*
  - Polynomial equalities and disequalities in conditions: polynomial = 0,  $polynomial \neq 0$

- Parametric widening  $\nabla_d$
- If conditions are ignored and assignments are linear, finds all polynomial invariants of degree  $\leq d$

### **Overview of the Method (2)**

- Our implementation has been successfully applied to a number of programs
- Ideals of polynomials represented by finite bases of generators: Gröbner bases
- There are several tools manipulating ideals, Gröbner bases
- Our implementation uses Macaulay 2

#### **Overview of the Talk**

- 1. Overview of the Method
- 2. Ideals of Polynomials
- 3. Abstract Semantics
- 4. Widening Operator
- 5. Examples
- 6. Alternative Solution
- 7. Future Work & Conclusions

# Ideals of Polynomials Preliminaries (1)

- Intuitively, an ideal is a set of polynomials and all their consequences
- An ideal is a set of polynomials *I* such that
  - 1. 0 ∈ *I*
  - 2. If  $p, q \in I$ , then  $p + q \in I$
  - 3. If  $p \in I$  and q any polynomial,  $pq \in I$

#### Ideals of Polynomials Preliminaries (2)

- Example 1: polynomials evaluating to 0 on a set of points S
  - 1. 0 evaluates to 0 everywhere

 $\forall \omega \in S, \quad \mathbf{0}(\omega) = \mathbf{0}$ 

2. If p, q evaluate to 0 on S, then p + q evaluates to 0 on S $\forall \omega \in S, \quad p(\omega) = q(\omega) = 0 \Longrightarrow p(\omega) + q(\omega) = 0$ 

3. If *p* evaluates to 0 on *S*, then *pq* evaluates to 0 on *S*  $\forall \omega \in S, \quad p(\omega) = 0 \Longrightarrow p(\omega) \cdot q(\omega) = 0$ 

## Ideals of Polynomials Preliminaries (3)

- Example 2: multiples of a polynomial p,  $\langle p \rangle$ 
  - 1.  $0 = 0 \cdot p \in \langle p \rangle$
  - 2.  $q_1 \cdot p + q_2 \cdot p = (q_1 + q_2)p \in \langle p \rangle$
  - 3. If  $q_2$  is any polynomial, then  $q_2 \cdot q_1 \cdot p \in \langle p \rangle$
- In general, ideal generated by  $p_1, \ldots, p_k$ :

$$\langle p_1, ..., p_k \rangle = \{\sum_{j=1}^k q_j \cdot p_j \text{ for arbitrary } q_j\}$$

■ Hilbert's basis theorem: all ideals are finitely generated
 → finite representation for ideals

## Ideals of Polynomials Operations with Ideals

- Several operations available. Given ideals I, J in the variables  $x_1, \ldots, x_n$ :
  - projection:  $I \cap \mathbb{C}[x_1, ..., x_{i-1}, x_{i+1}, ..., x_n]$
  - addition:  $I + J = \{p + q \mid p \in I, q \in J\}$
  - quotient:  $I : J = \{p \mid \forall q \in J, p \cdot q \in I\}$
  - intersection:  $I \cap J$
- All operations implemented using Gröbner bases
- These operations will be used when defining abstract semantics

## Ideals of Polynomials Ideals as Abstract Values (1)

- States abstracted to ideal of polynomials evaluating to 0
- Abstraction function I

 $I : \{\text{sets of states}\} \longrightarrow \{\text{ideals}\}$  $S \longmapsto \{ \begin{array}{c} \textbf{polynomials evaluating}\\ \text{to 0 on } S \} \end{array}$ 

Concretization function V

 $V : \{ \mathsf{ideals} \} \longrightarrow \{ \mathsf{sets of states} \}$  $I \longmapsto \{ \mathsf{zeroes of } I \}$ 



#### **Overview of the Talk**

- 1. Overview of the Method
- 2. Ideals of Polynomials
- 3. Abstract Semantics
- 4. Widening Operator
- 5. Examples
- 6. Alternative Solution
- 7. Future Work & Conclusions

# Abstract Semantics Programming Model (1)

 ${\sf Programs} \equiv {\sf finite} \ {\sf connected} \ {\sf flowcharts}$ 

- Entry node
- Assignment nodes: polynomial assignments
- Test nodes: polynomial dis/equalities
- Simple/loop junction nodes
- Exit nodes

#### Abstract Semantics Programming Model (2)



$$x_1 := 0; x_2 := 0;$$
  
while  $x_2 \neq x_3$  do  
 $x_1 := x_1 + 2 * x_2 + 1; x_2 := x_2 + 1;$   
end while

23

## Abstract Semantics Assignments (1)

- Assignment node labelled with  $x_i := f(x_1, ..., x_n)$
- Input ideal:  $\langle p_1,...,p_k \rangle$
- Output ideal:
  - Want to express in terms of ideals

 $\exists x_i'(x_i = f(x_i \leftarrow x_i') \land p_1(x_i \leftarrow x_i') = 0 \land \dots \land p_k(x_i \leftarrow x_i') = 0)$ 

where  $x'_i \equiv$  previous value of  $x_i$  before the assignment

• Solution: projection

 $\circ$  eliminate  $x'_i$  from the ideal

$$\langle x_i - f(x_i \leftarrow x'_i), p_1(x_i \leftarrow x'_i), \dots, p_k(x_i \leftarrow x'_i) \rangle$$

# Abstract Semantics Assignments (2)

Example:

- Assignment x := x + 1
- Input ideal:  $\langle x \rangle \longleftrightarrow x = 0$
- Output ideal:
  - Have to eliminate x' from the ideal

$$\langle x - x' - 1, x' 
angle$$

• Polynomials of  $\langle x - x' - 1, x' \rangle$  depending only on x:

$$\langle x - 1 \rangle \longleftrightarrow x = 1$$

## Abstract Semantics Tests: Polynomial Equalities

- Test node labelled with q = 0
- Input ideal:  $\langle p_1,...,p_k \rangle$
- Output ideal: (*true* path)
  - Want to express in terms of ideals

 $p_1 = 0 \land \cdots \land p_k = 0 \land q = 0$ 

#### • Solution: addition

- $\circ$  Add q to list of generators of input ideal
- $\circ\,$  Take maximal set of polynomials with same zeroes

 $\mathbf{I}(\mathbf{V}(p_1,...,p_k,q))$ 

## Abstract Semantics Tests: Polynomial Disequalities

- Test node labelled with  $q \neq 0$
- Input ideal:  $\langle p_1, ..., p_k \rangle$
- Output ideal: (*true* path)
  - Want to express in terms of ideals

 $p_1 = 0 \land \cdots \land p_k = 0 \land q \neq 0$ 

• Solution: quotient

• quotient ideal  $\langle p_1, ..., p_k \rangle : \langle q \rangle \equiv$  **maximal** ideal of polynomials evaluating to 0 on zeroes of  $\langle p_1, ..., p_k \rangle \setminus$  zeroes of  $\langle q \rangle$ 

## Abstract Semantics Tests

Example:

- Test node labelled with x = 0
- Input ideal:  $\langle xy \rangle \longleftrightarrow x = 0 \lor y = 0$
- Output ideal: (*true* path )

$$\mathbf{I}(\mathbf{V}(\langle xy, x \rangle)) = \langle x \rangle \longleftrightarrow x = 0$$

Output ideal: (false path )

$$\langle xy \rangle : \langle x \rangle = \langle y \rangle \longleftrightarrow y = 0$$

#### **Abstract Semantics Simple Junction Nodes (1)**

- Input ideals (one for each path):
  - Path 1:  $\langle p_{11},...,p_{1k_1}\rangle$
  - • •
  - Path *l*:  $\langle p_{l1}, ..., p_{lk_l} \rangle$
- Output ideal:
  - Want to express in terms of ideals

 $\bigvee_{i=1}^{l} \bigwedge_{j=1}^{k_i} p_{ij} = 0$ 

- Solution: intersection
  - Take *common* polynomials for all paths  $\equiv$ Compute *intersection* of all input ideals

$$\bigcap_{i=1}^{l} \langle p_{i1}, ..., p_{ik_i} \rangle$$

## Abstract Semantics Simple Junction Nodes (2)

Example:

- Input ideal 1st path:  $\langle x \rangle \longleftrightarrow x = 0$
- Input ideal 2nd path:  $\langle x 1 \rangle \longleftrightarrow x = 1$
- Input ideal 3rd path:  $\langle x 2 \rangle \longleftrightarrow x = 2$
- Output ideal:

$$\langle x \rangle \cap \langle x - 1 \rangle \cap \langle x - 2 \rangle = \langle x(x - 1)(x - 2) \rangle$$
  
 $\longleftrightarrow x = 0 \lor x = 1 \lor x = 2$ 

Degree increases !!

# Abstract Semantics Loop Junction Nodes (1)

- Input ideals:  $J_1, \cdots, J_l$
- Output ideal:
  - As with simple junction nodes:

### $\bigcap_{i=1}^{l} J_i$

- **Problem:** Non-termination of symbolic execution !
- Solution: WIDENING bounding degree

## **Abstract Semantics** Loop Junction Nodes (2)

Example:

x := 0;while ? do x := x + 1;

end while

Generating loop invariant by symbolic execution:

- 1st iteration:  $\langle x \rangle \leftrightarrow x = 0$
- 2nd iteration:  $\langle x(x-1) \rangle \longleftrightarrow x = 0 \lor x = 1$
- 3rd iteration:  $\langle x(x-1)(x-2) \rangle \longleftrightarrow x = 0 \lor x = 1 \lor x = 2$ • ...

Unless we bound the degree, the procedure does not terminate

#### **Overview of the Talk**

- 1. Overview of the Method
- 2. Ideals of Polynomials
- 3. Abstract Semantics
- 4. Widening Operator
- 5. Examples
- 6. Alternative Solution
- 7. Future Work & Conclusions

# Widening Operator Definition

- Parametric widening  $I \nabla_d J$
- Based on taking polynomials of  $I \cap J$  of degree  $\leq d$
- Definition uses Gröbner bases

 $I \nabla_d J := IV(\{p \in GB(I \cap J) \mid \deg(p) \le d\})$ 

• Termination guaranteed since  $\{p \in I \mid \deg(p) \le d\}$  are vector spaces of finite dimension

# Widening Operator Loop Junction Nodes

- Input ideals:  $J_1, \cdots, J_l$
- Previously computed output ideal: I
- Output ideal:

$$I \, \nabla_d \left( \bigcap_{i=1}^l J_i \right)$$

## Widening Operator A Completeness Result

- **THEOREM**. If conditions are ignored and assignments are linear, procedure computes **all** invariants of degree  $\leq d$
- Key ideas of the proof:
  - $I \nabla_d J$  retains all polynomials of degree d of  $I \cap J$
  - Graded term orderings used in Gröbner bases: glex, grevlex
- Conditions must be ignored: the set of all *linear invariants* in programs with *linear equality conditions* is not computable

#### **Overview of the Talk**

- 1. Overview of the Method
- 2. Ideals of Polynomials
- 3. Abstract Semantics
- 4. Widening Operator
- 5. Examples
- 6. Alternative Solution
- 7. Future Work & Conclusions



 $F_{0}(I) = \langle 0 \rangle$   $F_{1}(I) = (\langle x_{1} \rangle + \langle I_{0}(x_{1} \leftarrow x'_{1}) \rangle) \cap \mathbb{C}[x_{1}, x_{2}, x_{3}]$   $F_{2}(I) = (\langle x_{2} \rangle + \langle I_{1}(x_{2} \leftarrow x'_{2}) \rangle) \cap \mathbb{C}[x_{1}, x_{2}, x_{3}]$   $F_{3}(I) = I_{3} \nabla_{2}(I_{2} \cap I_{6})$   $F_{4}(I) = \langle I_{3} \rangle : \langle x_{2} - x_{3} \rangle$   $F_{5}(I) = I_{4}(x_{1} \leftarrow x_{1} - 2x_{2} - 1)$   $F_{6}(I) = I_{5}(x_{2} \leftarrow x_{2} - 1)$   $F_{7}(I) = \mathbf{I}(\mathbf{V}(I_{3} + \langle x_{2} - x_{3} \rangle))$ 

ABSTRACT PROGRAM SEMANTICS



| $I_0^{(0)} = \langle 1 \rangle$ | $I_0^{(1)} = \langle 0 \rangle$                                                                                     |
|---------------------------------|---------------------------------------------------------------------------------------------------------------------|
| $I_1^{(0)} = \langle 1 \rangle$ | $I_1^{(1)} = (\langle x_1 \rangle + \langle 0 \rangle) \cap \mathbb{C}[x_1, x_2, x_3] = \langle x_1 \rangle$        |
| $I_2^{(0)} = \langle 1 \rangle$ | $I_2^{(1)} = (\langle x_2 \rangle + \langle x_1 \rangle) \cap \mathbb{C}[x_1, x_2, x_3] = \langle x_1, x_2 \rangle$ |
| $I_3^{(0)} = \langle 1 \rangle$ | $I_3^{(1)} = I_3^{(0)} \nabla_2 (I_2^{(1)} \cap I_6^{(0)}) = I_2^{(1)} = \langle x_1, x_2 \rangle$                  |
| $I_4^{(0)} = \langle 1 \rangle$ | $I_4^{(1)} = I_3^{(1)} : \langle x_2 - x_3 \rangle = \langle x_1, x_2 \rangle$                                      |
| $I_5^{(0)} = \langle 1 \rangle$ | $I_5^{(1)} = I_4^{(1)}(x_1 \leftarrow x_1 - 2x_2 - 1) = \langle x_1 - 2x_2 - 1, x_2 \rangle$                        |
| $I_6^{(0)} = \langle 1 \rangle$ | $I_6^{(1)} = I_5^{(1)}(x_2 \leftarrow x_2 - 1) = \langle x_1 - 2x_2 + 1, x_2 - 1 \rangle$                           |
| $I_7^{(0)} = \langle 1 \rangle$ | $I_7^{(1)} = I(V(\langle x_2 - x_3 \rangle + I_3^{(1)})) = \langle x_1, x_2, x_3 \rangle$                           |
|                                 |                                                                                                                     |



 $I_0^{(2)} = \langle \mathbf{0} \rangle$  $I_1^{(2)} = \langle x_1 \rangle$  $I_2^{(2)} = \langle x_1, x_2 \rangle$  $I_{2}^{(2)} = \langle x_1 - x_2^2, x_2(x_2 - 1) \rangle$  $I_{A}^{(2)} = \langle x_1 - x_2^2, x_2(x_2 - 1) \rangle$  $I_{5}^{(2)} = \langle x_{1} - x_{2}^{2} - 2x_{2} - 1, x_{2}(x_{2} - 1) \rangle$  $I_6^{(2)} = \langle x_1 - x_2^2, (x_2 - 1)(x_2 - 2) \rangle$  $I_7^{(2)} = \langle x_1 - x_2^2, x_2(x_2 - 1), x_2 - x_3 \rangle$ 

In 6 iterations we get the loop invariant

$$x_1 = x_2^2$$

# Examples Table

|            |                  |   |      |      |       | LOOP  |      |
|------------|------------------|---|------|------|-------|-------|------|
| PROGRAM    | COMPUTING        | d | VARS | IF'S | LOOPS | DEPTH | TIME |
| cohencu    | cube             | 3 | 5    | 0    | 1     | 1     | 2.45 |
| dershowitz | real division    | 2 | 7    | 1    | 1     | 1     | 1.71 |
| divbin     | integer division | 2 | 5    | 1    | 2     | 1     | 1.91 |
| euclidex1  | Bezout's coefs   | 2 | 10   | 0    | 2     | 2     | 7.15 |
| euclidex2  | Bezout's coefs   | 2 | 8    | 1    | 1     | 1     | 3.69 |
| fermat     | divisor          | 2 | 5    | 0    | 3     | 2     | 1.55 |
| prod4br    | product          | 3 | 6    | 3    | 1     | 1     | 8.49 |
| freire1    | integer sqrt     | 2 | 3    | 0    | 1     | 1     | 0.75 |
| hard       | integer division | 2 | 6    | 1    | 2     | 1     | 2.19 |
| Icm2       | Icm              | 2 | 6    | 1    | 1     | 1     | 2.03 |
| readers    | simulation       | 2 | 6    | 3    | 1     | 1     | 4.15 |

#### **Overview of the Talk**

- 1. Overview of the Method
- 2. Ideals of Polynomials
- 3. Abstract Semantics
- 4. Widening Operator
- 5. Examples
- 6. Alternative Solution
- 7. Future Work & Conclusions

#### **Alternative Solution (1)**

- Alternative approach (Colón, SAS'04)
- Based on approximating ideals using degree bound d
- Key observation: given an ideal *I*, polynomials in *I* of degree ≤ *d* form a vector space of finite dimension → use linear algebra instead of Gröbner bases
- A pseudo-ideal is a set P of polynomials of degree < d such that
  - **1.**  $0 \in P$
  - 2. If  $p, q \in P$ , then  $p + q \in P$
  - 3. If  $p \in P$ , q any polynomial and  $deg(pq) \leq d$ , then  $pq \in P$
- Pseudo-ideals are vector spaces of finite dimension

## **Alternative Solution (2)**

Operations on ideals approximated by operations on vector spaces

#### Advantages

- Easier to implement
- Better complexity bounds

#### Disadvantages

- Loss of precision
- Dimension of vector spaces increments exponentially with degree
- Combination of both techniques would be better ?

#### **Overview of the Talk**

- 1. Overview of the Method
- 2. Ideals of Polynomials
- 3. Abstract Semantics
- 4. Widening Operator
- 5. Examples
- 6. Alternative Solution
- 7. Future Work & Conclusions

### **Future Work**

- Design widening operators not bounding degree
- Integrate with linear inequalities
- Study abstract domains for polynomial inequalities
- Apply to other classes of programs

### Conclusions

- Method for generating polynomial equality invariants
- Based on abstract interpretation
- Programming language admits
  - Polynomial assignments
  - Polynomial dis/equalities in conditions
- If conditions are ignored and assignments are linear, finds all polynomial invariants of degree  $\leq d$
- Implemented using Macaulay 2
- Successfully applied to many programs